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In recent years, various heuristic optimization methods have been developed. Many of
these methods are inspired by swarm behaviors in nature. In this paper, a new optimiza-
tion algorithm based on the law of gravity and mass interactions is introduced. In the pro-
posed algorithm, the searcher agents are a collection of masses which interact with each
other based on the Newtonian gravity and the laws of motion. The proposed method has
been compared with some well-known heuristic search methods. The obtained results con-
firm the high performance of the proposed method in solving various nonlinear functions.
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1. Introduction

In solving optimization problems with a high-dimensional search space, the classical optimization algorithms do not pro-
vide a suitable solution because the search space increases exponentially with the problem size, therefore solving these
problems using exact techniques (such as exhaustive search) is not practical.

Over the last decades, there has been a growing interest in algorithms inspired by the behaviors of natural phenomena
[5,8,17,19,21,32]. It is shown by many researchers that these algorithms are well suited to solve complex computational
problems such as optimization of objective functions [6,36], pattern recognition [24,31], control objectives [2,16,20], image
processing [4,27], filter modeling [15,23], etc. Various heuristic approaches have been adopted by researches so far, for
example Genetic Algorithm [32], Simulated Annealing [21], Ant Colony Search Algorithm [5], Particle Swarm Optimization
[17], etc. These algorithms are progressively analyzed or powered by researchers in many different areas [1,3,7,12,25,34].
These algorithms solve different optimization problems. However, there is no specific algorithm to achieve the best solution
for all optimization problems. Some algorithms give a better solution for some particular problems than others. Hence,
searching for new heuristic optimization algorithms is an open problem [35].

In this paper, a new optimization algorithm based on the law of gravity, namely Gravitational Search Algorithm (GSA) is
proposed [28]. This algorithm is based on the Newtonian gravity: ‘‘Every particle in the universe attracts every other particle
with a force that is directly proportional to the product of their masses and inversely proportional to the square of the dis-
tance between them”.

This paper is organized as follows. Section 2 provides a brief review of heuristic algorithms. In Section 3, we introduce the
basic aspects of our algorithm. In Section 4, the Gravitational Search Algorithm (GSA) and its characteristics are described. A
comparative study is presented in Section 5 and, finally in Section 6 the experimental results are demonstrated.
. All rights reserved.
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2. A review of heuristic algorithms

The word ‘‘heuristic” is Greek and means ‘‘to know”, ‘‘to find”, ‘‘to discover” or ‘‘to guide an investigation” [22]. Specifi-
cally, ‘‘Heuristics are techniques which seek good (near-optimal) solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases to state how close to optimality a particular feasible
solution is.” (Russell and Norvig, 1995; [29])

Heuristic algorithms mimic physical or biological processes. Some of most famous of these algorithms are Genetic Algo-
rithm, Simulated Annealing [21], Artificial Immune System [8], Ant Colony Optimization, Particle Swarm Optimization [17]
and Bacterial Foraging Algorithm [11]. Genetic Algorithm, GA, are inspired from Darwinian evolutionary theory [32], Simu-
lated Annealing, SA, is designed by use of thermodynamic effects [21], Artificial Immune Systems, AIS, simulate biological
immune systems [8], Ant Colony Optimization, ACO, mimics the behavior of ants foraging for food [5], Bacterial Foraging
Algorithm, BFA, comes from search and optimal foraging of bacteria [11,19] and Particle Swarm Optimization, PSO, simulates
the behavior of flock of birds [3,17].

All of the above-mentioned heuristic algorithms have a stochastic behavior. However, Formato [9,10] has proposed a
deterministic heuristic search algorithm based on the metaphor of gravitational kinematics that is called Central Force Opti-
mization, CFO.

In some of stochastic algorithms, like SA, the search starts from a single point and continues in a sequential manner, how-
ever, most of the heuristic algorithms do search in a parallel fashion with multiple initial points, e.g. swarm based algorithms
use a collection of agents similar to a natural flock of birds or fishes.

In a swarm based algorithm, each member executes a series of particular operations and shares its information with oth-
ers. These operations are almost very simple, however their collective effect, known as swarm intelligence [5,33], produce a
surprising result. Local interactions between agents provide a global result which permit the system to solve the problem
without using any central controller. In this case, member operations including randomized search, positive feedback, neg-
ative feedback and multiple interactions, conduct to a self-organization situation [5].

One can recognize two common aspects in the population-based heuristic algorithms: exploration and exploitation. The
exploration is the ability of expanding search space, where the exploitation is the ability of finding the optima around a good
solution. In premier iterations, a heuristic search algorithm explores the search space to find new solutions. To avoid trap-
ping in a local optimum, the algorithm must use the exploration in the first few iterations. Hence, the exploration is an
important issue in a population-based heuristic algorithm. By lapse of iterations, exploration fades out and exploitation fades
in, so the algorithm tunes itself in semi-optimal points. To have a high performance search, an essential key is a suitable
tradeoff between exploration and exploitation. However, all the population-based heuristic algorithms employ the explora-
tion and exploitation aspects but they use different approaches and operators. In other words, all search algorithms have a
common framework.

From a different point of view, the members of a population-based search algorithm pass three steps in each iteration to
realize the concepts of exploration and exploitation: self-adaptation, cooperation and competition. In the self-adaptation
step, each member (agent) improves its performance. In the cooperation step, members collaborate with each other by infor-
mation transferring. Finally, in the competition step, members compete to survive. These steps have usually stochastic forms,
and could be realized in different ways. These steps, inspired from nature, are the principle ideas of the population-based
heuristic algorithms. These concepts guide an algorithm to find a global optimum.

However, all population-based search algorithms provide satisfactory results but there is no heuristic algorithm that
could provide a superior performance than others in solving all optimizing problems. In other words, an algorithm may solve
some problems better and some problems worse than others [35]. Hence, proposing new high performance heuristic algo-
rithms are welcome.

In this paper, our aim is to establish a new population-based search algorithm considering the mentioned aspects and
based on the gravity rules. In the next section, a brief overview of gravitational force is given to provide a proper background
and followed by explanation of GSA.
3. The law of gravity

The gravitation is the tendency of masses to accelerate toward each other. It is one of the four fundamental interactions in
nature [30] (the others are: the electromagnetic force, the weak nuclear force, and the strong nuclear force). Every particle in
the universe attracts every other particle. Gravity is everywhere. The inescapability of gravity makes it different from all
other natural forces.

The way Newton’s gravitational force behaves is called ‘‘action at a distance”. This means gravity acts between separated
particles without any intermediary and without any delay. In the Newton law of gravity, each particle attracts every other
particle with a ‘gravitational force’ [14,30]. The gravitational force between two particles is directly proportional to the prod-
uct of their masses and inversely proportional to the square of the distance between them [14]:
F ¼ G
M1M2

R2 ; ð1Þ
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where F is the magnitude of the gravitational force, G is gravitational constant, M1 and M2 are the mass of the first and second
particles respectively, and R is the distance between the two particles. Newton’s second law says that when a force, F, is ap-
plied to a particle, its acceleration, a, depends only on the force and its mass, M [14]:
a ¼ F
M
: ð2Þ
Based on (1) and (2), there is an attracting gravity force among all particles of the universe where the effect of bigger and the
closer particle is higher. An increase in the distance between two particles means decreasing the gravity force between them
as it is illustrated in Fig. 1. In this figure, F1j is the force that acting on M1 from Mj and F1 is the overall force that acts on M1

and causes the acceleration vector a1.
In addition, due to the effect of decreasing gravity, the actual value of the ‘‘gravitational constant” depends on the actual

age of the universe. Eq. (3) gives the decrease of the gravitational constant, G, with the age [26]:
GðtÞ ¼ Gðt0Þ �
t0

t

� �b

; b < 1; ð3Þ
where G(t) is the value of the gravitational constant at time t. G(t0) is the value of the gravitational constant at the first cosmic
quantum-interval of time t0 [26]. Three kinds of masses are defined in theoretical physics:

Active gravitational mass, Ma, is a measure of the strength of the gravitational field due to a particular object. Gravita-
tional field of an object with small active gravitational mass is weaker than the object with more active gravitational
mass.
Passive gravitational mass, Mp, is a measure of the strength of an object’s interaction with the gravitational field. Within
the same gravitational field, an object with a smaller passive gravitational mass experiences a smaller force than an object
with a larger passive gravitational mass.
Inertial mass, Mi, is a measure of an object resistance to changing its state of motion when a force is applied. An object
with large inertial mass changes its motion more slowly, and an object with small inertial mass changes it rapidly.

Now, considering the above-mentioned aspects, we rewrite Newton’s laws.
The gravitational force, Fij, that acts on mass i by mass j, is proportional to the product of the active gravitational of mass j

and passive gravitational of mass i, and inversely proportional to the square distance between them. ai is proportional to Fij

and inversely proportional to inertia mass of i. More precisely, one can rewrite Eqs. (1) and (2) as follows:
Fij ¼ G
Maj �Mpi

R2 ; ð4Þ

ai ¼
Fij

Mii
; ð5Þ
where Maj and Mpi represent the active gravitational mass of particle i and passive gravitational mass of particle j, respec-
tively, and Mii represents the inertia mass of particle i.
M1

a1
F12

F13

F14

M3

M4

M2

F1

Fig. 1. Every mass accelerate toward the result force that act it from the other masses.
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Although inertial mass, passive gravitational mass, and active gravitational mass are conceptually distinct, no experiment
has ever unambiguously demonstrated any difference between them. The theory of general relativity rests on the assump-
tion that inertial and passive gravitational mass are equivalent. This is known as the weak equivalence principle [18]. Stan-
dard general relativity also assumes the equivalence of inertial mass and active gravitational mass; this equivalence is
sometimes called the strong equivalent principle [18].

4. Gravitational Search Algorithm (GSA)

In this section, we introduce our optimization algorithm based on the law of gravity [28]. In the proposed algorithm,
agents are considered as objects and their performance is measured by their masses. All these objects attract each other
by the gravity force, and this force causes a global movement of all objects towards the objects with heavier masses. Hence,
masses cooperate using a direct form of communication, through gravitational force. The heavy masses – which correspond
to good solutions – move more slowly than lighter ones, this guarantees the exploitation step of the algorithm.

In GSA, each mass (agent) has four specifications: position, inertial mass, active gravitational mass, and passive gravita-
tional mass. The position of the mass corresponds to a solution of the problem, and its gravitational and inertial masses are
determined using a fitness function.

In other words, each mass presents a solution, and the algorithm is navigated by properly adjusting the gravitational and
inertia masses. By lapse of time, we expect that masses be attracted by the heaviest mass. This mass will present an optimum
solution in the search space.

The GSA could be considered as an isolated system of masses. It is like a small artificial world of masses obeying the New-
tonian laws of gravitation and motion. More precisely, masses obey the following laws:

Law of gravity: each particle attracts every other particle and the gravitational force between two particles is directly
proportional to the product of their masses and inversely proportional to the distance between them, R. We use here R
instead of R2, because according to our experiment results, R provides better results than R2 in all experimental cases.
Law of motion: the current velocity of any mass is equal to the sum of the fraction of its previous velocity and the var-
iation in the velocity. Variation in the velocity or acceleration of any mass is equal to the force acted on the system
divided by mass of inertia.

Now, consider a system with N agents (masses). We define the position of the ith agent by:
Xi ¼ ðx1
i ; . . . ; xd

i ; . . . ; xn
i Þ for i ¼ 1;2; . . . ;N; ð6Þ
where xd
i presents the position of ith agent in the dth dimension.

At a specific time ‘t’, we define the force acting on mass ‘i’ from mass ‘j’ as following:
Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞ þ e
ðxd

j ðtÞ � xd
i ðtÞÞ; ð7Þ
where Maj is the active gravitational mass related to agent j, Mpi is the passive gravitational mass related to agent i, G(t) is
gravitational constant at time t, e is a small constant, and Rij(t) is the Euclidian distance between two agents i and j:
RijðtÞ ¼ XiðtÞ;XjðtÞ
�� ��

2: ð8Þ
To give a stochastic characteristic to our algorithm, we suppose that the total force that acts on agent i in a dimension d be a
randomly weighted sum of dth components of the forces exerted from other agents:
Fd
i ðtÞ ¼

XN

j¼1;j–i

randjF
d
ijðtÞ; ð9Þ
where randj is a random number in the interval [0,1].
Hence, by the law of motion, the acceleration of the agent i at time t, and in direction dth, ad

i ðtÞ, is given as follows:
ad
i ðtÞ ¼

Fd
i ðtÞ

MiiðtÞ
; ð10Þ
where Mii is the inertial mass of ith agent.
Furthermore, the next velocity of an agent is considered as a fraction of its current velocity added to its acceleration.

Therefore, its position and its velocity could be calculated as follows:
vd
i ðt þ 1Þ ¼ randi � vd

i ðtÞ þ ad
i ðtÞ; ð11Þ

xd
i ðt þ 1Þ ¼ xd

i ðtÞ þ vd
i ðt þ 1Þ; ð12Þ
where randi is a uniform random variable in the interval [0,1]. We use this random number to give a randomized character-
istic to the search.
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The gravitational constant, G, is initialized at the beginning and will be reduced with time to control the search accuracy.
In other words, G is a function of the initial value (G0) and time (t):
GðtÞ ¼ GðG0; tÞ: ð13Þ
Gravitational and inertia masses are simply calculated by the fitness evaluation. A heavier mass means a more efficient
agent. This means that better agents have higher attractions and walk more slowly. Assuming the equality of the gravita-
tional and inertia mass, the values of masses are calculated using the map of fitness. We update the gravitational and inertial
masses by the following equations:
Mai ¼ Mpi ¼ Mii ¼ Mi; i ¼ 1;2; . . . ;N; ð14Þ

miðtÞ ¼
fitiðtÞ �worstðtÞ

bestðtÞ �worstðtÞ ; ð15Þ

MiðtÞ ¼
miðtÞPN
j¼1mjðtÞ

; ð16Þ
where fiti(t) represent the fitness value of the agent i at time t, and, worst(t) and best(t) are defined as follows (for a minimi-
zation problem):
bestðtÞ ¼ min
j2f1;...;Ng

fitjðtÞ; ð17Þ

worstðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ: ð18Þ
It is to be noted that for a maximization problem, Eqs. (17) and (18) are changed to Eqs. (19) and (20), respectively:
bestðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ; ð19Þ

worstðtÞ ¼ min
j2f1;...;Ng

fitjðtÞ: ð20Þ
One way to perform a good compromise between exploration and exploitation is to reduce the number of agents with lapse
of time in Eq. (9). Hence, we propose only a set of agents with bigger mass apply their force to the other. However, we should
be careful of using this policy because it may reduce the exploration power and increase the exploitation capability.

We remind that in order to avoid trapping in a local optimum the algorithm must use the exploration at beginning. By
lapse of iterations, exploration must fade out and exploitation must fade in. To improve the performance of GSA by control-
ling exploration and exploitation only the Kbest agents will attract the others. Kbest is a function of time, with the initial va-
lue K0 at the beginning and decreasing with time. In such a way, at the beginning, all agents apply the force, and as time
passes, Kbest is decreased linearly and at the end there will be just one agent applying force to the others. Therefore, Eq.
(9) could be modified as:
Fd
i ðtÞ ¼

X
j2Kbest;j–i

randjF
d
ijðtÞ; ð21Þ
where Kbest is the set of first K agents with the best fitness value and biggest mass. The different steps of the proposed algo-
rithm are the followings:

(a) Search space identification.
(b) Randomized initialization.
(c) Fitness evaluation of agents.
(d) Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,. . .,N.
(e) Calculation of the total force in different directions.
(f) Calculation of acceleration and velocity.
(g) Updating agents’ position.
(h) Repeat steps c to g until the stop criteria is reached.
(i) End.

The principle of GSA is shown in Fig. 2.
To see how the proposed algorithm is efficient some remarks are noted:

– Since each agent could observe the performance of the others, the gravitational force is an information-transferring tool.
– Due to the force that acts on an agent from its neighborhood agents, it can see space around itself.
– A heavy mass has a large effective attraction radius and hence a great intensity of attraction. Therefore, agents with a

higher performance have a greater gravitational mass. As a result, the agents tend to move toward the best agent.
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Fig. 2. General principle of GSA.
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– The inertia mass is against the motion and make the mass movement slow. Hence, agents with heavy inertia mass move
slowly and hence search the space more locally. So, it can be considered as an adaptive learning rate.

– Gravitational constant adjusts the accuracy of the search, so it decreases with time (similar to the temperature in a Sim-
ulated Annealing algorithm).

– GSA is a memory-less algorithm. However, it works efficiently like the algorithms with memory. Our experimental results
show the good convergence rate of the GSA.

– Here, we assume that the gravitational and the inertia masses are the same. However, for some applications different val-
ues for them can be used. A bigger inertia mass provides a slower motion of agents in the search space and hence a more
precise search. Conversely, a bigger gravitational mass causes a higher attraction of agents. This permits a faster
convergence.
5. Comparative study

In this section, to see how GSA is situated comparing other heuristic search algorithms, we compare theoretically GSA
with a stochastic heuristic search, PSO, and a deterministic one, CFO. In addition, an experimental comparison is given in
the next section. To start, let us review PSO and CFO algorithms in detail.

5.1. PSO algorithm

PSO is motivated from the simulation of the social behavior (flock of birds). This optimization approach update the popula-
tion of particles by applying an operator according to the fitness information obtained from the environment so that the indi-
viduals of the population can be expected to move towards the better solution. In PSO, xd

i and vd
i are calculated as follows [17]:
xd
i ðt þ 1Þ ¼ xd

i ðtÞ þ vd
i ðt þ 1Þ; ð22Þ

vd
i ðt þ 1Þ ¼ wðtÞvd

i ðtÞ þ c1ri1 pbestd
i � xd

i ðtÞ
� �

þ c2ri2 gbestd � xd
i ðtÞ

� �
; ð23Þ
where ri1 and ri2 are two random variables in the range [0,1], c1 and c2 are positive constants, w is the inertia weight.
Xi ¼ ðx1

i ; x
2
i ; . . . ; xn

i Þ and Vi ¼ ðv1
i ;v2

i ; . . . ;vn
i Þ represent position and velocity of the ith particle, respectively. pbesti ¼

ðpbest1
i ; pbest2

i ; . . . ; pbestn
i Þ and gbest = (gbest1,gbest2, . . . ,gbestn) represent the best pervious position of the ith particle and

the best pervious position among all the particles in the population, respectively.
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From Eq. (23), we find that each particle tries to modify its position (Xi) using the distance between the current position
and pbesti, and the distance between the current position and gbest:

– GSA versus PSO
In both GSA and PSO the optimization is obtained by agents movement in the search space, however the movement strat-
egy is different. Some important differences are as follows:

– In PSO the direction of an agent is calculated using only two best positions, pbesti and gbest. But in GSA, the agent direction
is calculated based on the overall force obtained by all other agents.

– In PSO, updating is performed without considering the quality of the solutions, and the fitness values are not important in
the updating procedure while in GSA the force is proportional to the fitness value and so the agents see the search space
around themselves in the influence of force.

– PSO uses a kind of memory for updating the velocity (due to pbesti and gbest). However, GSA is memory-less and only the
current position of the agents plays a role in the updating procedure.

– In PSO, updating is performed without considering the distance between solutions while in GSA the force is reversely pro-
portional to the distance between solutions.

– Finally, note that the search ideas of these algorithms are different. PSO simulates the social behavior of birds and GSA
inspires by a physical phenomena.
5.2. CFO algorithm

Central Force Optimization, CFO, is a deterministic multi-dimensional search algorithm. It models the probes that fly
through the search space under the influence of gravity [9,10]. At the beginning, the initial probe positions are computed
in a deterministic manner. For initialization, the position vector array is filled with a uniform distribution of probes on each
coordinate axis at time 0 according to Eq. (24) [9]:
for d ¼ 1 to n; for p ¼ 1 to
N
n

: i ¼ pþ ðd� 1ÞN
n

; xd
i ð0Þ ¼ xd

min þ
ðp� 1Þðxd

max � xd
minÞ

N
n � 1

; ð24Þ
where n is the dimension of problem and N is the number of probes. In CFO, at each iteration, probes are evaluated and for
each probe, M is calculated using fitness function (Eq. (25)). MðtÞ

i is the mass of the probe i at time t. Then, acceleration is
updated using Eq. (26). A new position is calculated using Eq. (27). In this equation, ad

i ðtÞ and xd
i ðtÞ are the acceleration

and the position of probe i at time t, a and b are two constants. fiti is the fitness function of probe i that must be maximized:
MiðtÞ ¼ fiti; ð25Þ

ad
i ðtÞ ¼ G

XN

j¼1;j–i

UðMjðtÞ �MiðtÞÞ½MjðtÞ �MiðtÞ�a
ðxd

j ðtÞ � xd
i ðtÞÞ

RijðtÞb
; ð26Þ

xd
i ðt þ 1Þ ¼ xd

i ðtÞ þ
1
2

ad
i ðtÞ; ð27Þ
where G is gravitational constant and Rij(t) is the Euclidean distance between probe i and j at time t, U is the unit step func-
tion. As Eqs. (25) and (26) show, in CFO, mass is considered as the difference between values fitness. Since masses can be
positive or negative depending on which fitness is greater, the unit step function is included to avoid the possibility of having
a negative mass [9]. Due to Eq. (25), mass is dependent proportionally to fitness function. Therefore, in some problems, accel-
eration may be very high and probes go out of the search space. In CFO any probe that ‘‘flew” out of the decision space was
returned to the midpoint between its past position and the minimum or maximum value of the coordinate lying outside the
allowable range [9].

– GSA versus CFO
In both CFO and GSA the probes positions and accelerations are inspired by particle motion in a gravitational field but they
use different formulations.

– One of major differences is that CFO is inherently deterministic and does not use any random parameter in its formulation
while GSA is a stochastic search algorithm.

– The acceleration and movement expressions and calculation of the masses in GSA are different from CFO.
– In CFO, the initial probe distribution is systematic (based on a deterministic rule) and has a significant effect on the algo-

rithm’s convergence but in GSA the initial distribution is random.
– Another difference is that in CFO, G is a constant while in GSA, G is a control parameter.
6. Experimental results

To evaluate the performance of our algorithm, we applied it to 23 standard benchmark functions [36]. These benchmark
functions are presented in Section 6.1. A comparison with Real Genetic Algorithm (RGA) and PSO, is given in Section 6.2. In
addition we compare our algorithm with CFO, which is deterministic, in Section 6.3.
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6.1. Benchmark functions

Tables 1–3 represent the benchmark functions used in our experimental study. In these tables, n is the dimension of func-
tion, fopt is the minimum value of the function, and S is a subset of Rn. The minimum value (fopt) of the functions of Tables 1
and 2 are zero, except for F8 which has a minimum value of �418.9829 � n. The optimum location (Xopt) for functions of Ta-
bles 1 and 2, are in [0]n, except for F5, F12 and F13 with Xopt in [1]n and F8 in [420.96]n. A detailed description of the functions of
Table 3 is given in Appendix A.

6.2. A comparison with PSO and RGA

We applied GSA to these minimization functions and compared the results with those of RGA as well as PSO. In all cases,
population size is set to 50 (N = 50). Dimension is 30 (n = 30) and maximum iteration is 1000 for functions of Tables 1 and 2,
and 500 for functions of Table 3. In PSO, c1 = c2 = 2 and inertia factor (w) is decreasing linearly from 0.9 to 0.2. In RGA, arith-
Table 2
Multimodal test functions.

Test function S

F8ðXÞ ¼
Pn

i¼1 � xi sin
ffiffiffiffiffiffiffi
xij j

p� 	
[�500,500]n

F9ðXÞ ¼
Pn

i¼1 x2
i � 10 cos 2pxið Þ þ 10


 �
[�5.12,5.12]n

F10ðXÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cos 2pxið Þ

� 	
þ 20þ e [�32,32]n

F11ðXÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1 [�600,600]n

F12ðxÞ ¼ p
n f10 sinðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2g þ

Pn
i¼1uðxi;10;100;4Þ [�50,50]n

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi > a
0 �a < xi < a
kð�xi � aÞm xi < �a

8<
:

F13ðXÞ ¼ 0:1fsin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�g þ
Pn

i¼1uðxi;5;100;4Þ [�50,50] n

Table 1
Unimodal test functions.

Test function S

F1ðXÞ ¼
Pn

i¼1x2
i [�100,100]n

F2ðXÞ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j [�10,10]n

F3ðXÞ ¼
Pn

i¼1
Pi

j¼1xj

� �2
[�100,100]n

F4ðXÞ ¼max
i

xij j;1 6 i 6 nf g [�100,100]n

F5ðXÞ ¼
Pn�1

i¼1 100 xiþ1 � x2
i

� 	2 þ ðxi � 1Þ2
h i

[�30,30]n

F6ðXÞ ¼
Pn

i¼1 ½xi þ 0:5�ð Þ2 [�100,100]n

F7ðXÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ [�1.28,1.28]n

Table 3
Multimodal test functions with fix dimension.

Test function S

F14ðXÞ ¼ 1
500þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6

� ��1 [�65.53,65.53]2

F15ðXÞ ¼
P11

i¼1 ai � x1ðb2
i þbi x2Þ

b2
i þbi x3þx4

� 
2

[�5,5]4

F16ðXÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3 x6

1 þ x1x2 � 4x2
2 þ 4x4

2 [�5,5]2

F17ðXÞ ¼ x2 � 5:1
4p2 x2

1 þ 5
p x1 � 6

� �2
þ 10 1� 1

8p
� 	

cos x1 þ 10 [�5,10] � [0,15]

F18ðXÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ� � ½30þ ð2x1 � 3x2Þ2 � ð18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2Þ� [�5,5]2

F19ðXÞ ¼ �
P4

i¼1ci exp �
P3

j¼1aijðxj � pijÞ
2

� �
[0,1]3

F20ðXÞ ¼ �
P4

i¼1ci exp �
P6

j¼1aijðxj � pijÞ
2

� �
[0,1]6

F21ðXÞ ¼ �
P5

i¼1½ðX � aiÞðX � aiÞT þ ci��1 [0,10]4

F22ðXÞ ¼ �
P7

i¼1½ðX � aiÞðX � aiÞT þ ci��1 [0,10]4

F23ðXÞ ¼ �
P10

i¼1½ðX � aiÞðX � aiÞT þ ci��1 [0,10]4
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metic crossover, Gaussian mutation and roulette wheel selection are used as described in [13]. The crossover and mutation
probabilities were set to 0.3 and 0.1, respectively.

In GSA, G is set using Eq. (28), where G0 is set to 100 and a is set to 20, and T is the total number of iterations (the total age
of system):
Table 4
Minimi

F1

F2

F3

F4

F5

F6

F7
GðtÞ ¼ G0e�at
T : ð28Þ
Furthermore, K0 is set to N (total number of agents) and is decreased linearly to 1.
We applied the three mentioned algorithms to the benchmark functions, and the results for the following cases are:
Unimodal high-dimensional functions
Functions F1 to F7 are unimodal functions. In this case the convergence rate of search algorithm is more important for

unimodal functions than the final results because there are other methods which are specifically designed to optimize uni-
modal functions.

The results are averaged over 30 runs and the average best-so-far solution, average mean fitness function and median of
the best solution in the last iteration are reported for unimodal functions in Table 4. As this table illustrates GSA provides
better results than RGA and PSO for all functions. The largest difference in performance between them occurs with these
zation result of benchmark functions in Table 1 with n = 30. Maximum number of iterations = 1000.

RGA PSO GSA

Average best-so-far 23.13 1.8 � 10�3 7.3 � 10�11

Median best-so-far 21.87 1.2 � 10�3 7.1 � 10�11

Average mean fitness 23.45 5.0 � 10�2 2.1 � 10�10

Average best-so-far 1.07 2.0 4.03 � 10�5

Median best-so-far 1.13 1.9 � 10�3 4.07 � 10�5

Average mean fitness 1.07 2.0 6.9 � 10�5

Average best-so-far 5.6 � 10+3 4.1 � 10+3 0.16 � 10+3

Median best-so-far 5.6 � 10+3 2.2 � 10+3 0.15 � 10+3

Average mean fitness 5.6 � 10+3 2.9 � 10+3 0.16 � 10+3

Average best-so-far 11.78 8.1 3.7 � 10�6

Median best-so-far 11.94 7.4 3.7 � 10�6

Average mean fitness 11.78 23.6 8.5 � 10�6

Average best-so-far 1.1 � 10+3 3.6 � 10+4 25.16
Median best-so-far 1.0 � 10+3 1.7 � 10+3 25.18
Average mean fitness 1.1 � 10+3 3.7 � 10+4 25.16

Average best-so-far 24.01 1.0 � 10�3 8.3 � 10�11

Median best-so-far 24.55 6.6 � 10�3 7.7 � 10�11

Average mean fitness 24.52 0.02 2.6 � 10�10

Average best-so-far 0.06 0.04 0.018
Median best-so-far 0.06 0.04 0.015
Average mean fitness 0.56 1.04 0.533

Fig. 3. Comparison of performance of GSA, PSO and RGA for minimization of F1 with n = 30.
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unimodal functions. This is due to the attractive power of GSA. Also, the good convergence rate of GSA could be concluded
from Figs. 3 and 4. According to these figures, GSA tends to find the global optimum faster than other algorithms and hence
has a higher convergence rate.

Multimodal high-dimensional functions
Multimodal functions have many local minima and almost are most difficult to optimize. For multimodal functions, the

final results are more important since they reflect the ability of the algorithm in escaping from poor local optima and locating
a near-global optimum. We have carried out experiments on F8 to F13 where the number of local minima increases exponen-
tially as the dimension of the function increases. The dimension of these functions is set to 30. The results are averaged over
30 runs and the average best-so-far solution, average mean fitness function and median of the best solution in the last iter-
ation are reported for these functions in Table 5. For F10, F12 and F13, GSA performs much better solution than the others.
However, for function F8, GSA cannot tune itself and have not a good performance. The progress of the average best-so-
far solution over 30 run for functions F10 and F12 are shown in Figs. 5 and 6.

Multimodal low-dimensional functions
Table 6 shows the comparison between GSA, RGA and PSO on multimodal low-dimensional benchmark functions of Table

3. The results show that RGA, PSO and GSA have similar solutions and the performances are almost the same as Figs. 7 and 8
confirm it.
Fig. 4. Comparison of performance of GSA, PSO and RGA for minimization of F7 with n = 30.

Table 5
Minimization result of benchmark functions in Table 2 with n = 30. Maximum number of iterations = 1000.

RGA PSO GSA

F8 Average best-so-far �1.2 � 10+4 �9.8 � 10+3 �2.8 � 10+3

Median best-so-far �1.2 � 10+4 �9.8 � 10+3 �2.6 � 10+3

Average mean fitness �1.2 � 10+4 �9.8 � 10+3 �1.1 � 10+3

F9 Average best-so-far 5.90 55.1 15.32
Median best-so-far 5.71 56.6 14.42
Average mean fitness 5.92 72.8 15.32

F10 Average best-so-far 2.13 9.0 � 10�3 6.9 � 10�6

Median best-so-far 2.16 6.0 � 10�3 6.9 � 10�6

Average mean fitness 2.15 0.02 1.1 � 10�5

F11 Average best-so-far 1.16 0.01 0.29
Median best-so-far 1.14 0.0081 0.04
Average mean fitness 1.16 0.055 0.29

F12 Average best-so-far 0.051 0.29 0.01
Median best-so-far 0.039 0.11 4.2 � 10�13

Average mean fitness 0.053 9.3 � 10+3 0.01

F13 Average best-so-far 0.081 3.1 � 10�18 3.2 � 10�32

Median best-so-far 0.032 2.2 � 10�23 2.3 � 10�32

Average mean fitness 0.081 4.8 � 10+5 3.2 � 10�32



Fig. 5. Comparison of performance of GSA, PSO and RGA for minimization of F10 with n = 30.

Fig. 6. Comparison of performance of GSA, PSO and RGA for minimization of F12 with n = 30.
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6.3. Comparison with CFO

Based on the theoretical comparison of GSA and CFO, one could understand that it is very difficult to compare the two
algorithms in the same conditions. CFO is a deterministic search algorithm and its performance is highly dependent on
the initial population generation and the size of the population. Specially, when the complexity and the dimension of the
problem at hand increases, CFO will be more sensitive to the population size and initialization criterion. Moreover, in this
condition to obtain acceptable results, CFO must start with a large size of population. This means that before solving a prob-
lem using CFO, we have to know some a priori information about its complexity to set up the number of population or run
the algorithm many times to attain a suitable population value with try and error. However, GSA is a stochastic search algo-
rithm and can optimize a wide range of problems with a fixed small size population.

Due to the above-mentioned reasons, it is not possible to compare GSA and CFO in optimization of high-dimensional
functions with the same condition. Therefore, we compared CFO and GSA in low-dimensional problems. Since CFO searches
for maxima, the negative of the functions is tested for CFO. In addition, according to [9], in order to avoid any bias resulting
from the locations of maxima relative to the initial probe distribution, the maxima were offset if necessary. In CFO, the posi-
tion vector array is filled with uniform distribution of probes on each coordinate axis at step 0. In GSA, initialization is ran-
dom. The number of agents and the maximum number of iterations are set to 60 and 500, respectively. We use 60 agents
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because CFO needs a large population size. The parameters of GSA are set as the previous section. For CFO we have G = 2,
a = 2 and b = 2 [9]. Note that we compare both GSA and CFO only for the functions that reported by Formato [9], because
we need some a priori information about the function to be optimized to apply to CFO.

Results of GSA are averaged over 30 runs. CFO is deterministic and hence has the same results for each run. The results are
given in Table 7, where we have also reported the result of CFO with random initialization (not uniform distribution initial-
Table 6
Minimization result of benchmark functions in Table 3. Maximum number of iterations = 500.

RGA PSO GSA

F14 n = 2 Average best-so-far 0.998 0.998 3.70
Median best-so-far 0.998 0.998 2.07
Average mean fitness 0.998 0.998 9.177

F15 n = 4 Average best-so-far 4.0 � 10�3 2.8 � 10�3 8.0 � 10�3

Median best-so-far 1.7 � 10�3 7.1 � 10�4 7.4 � 10�4

Average mean fitness 4.0 � 10�3 215.60 9.0 � 10�3

F16 n = 2 Average best-so-far �1.0313 �1.0316 �1.0316
Median best-so-far �1.0315 �1.0316 �1.0316
Average mean fitness �1.0313 �1.0316 �1.0316

F17 n = 2 Average best-so-far 0.3996 0.3979 0.3979
Median best-so-far 0.3980 0.3979 0.3979
Average mean fitness 0.3996 2.4112 0.3979

F18 n = 2 Average best-so-far 5.70 3.0 3.0
Median best-so-far 3.0 3.0 3.0
Average mean fitness 5.70 3.0 3.0

F19 n = 3 Average best-so-far �3.8627 �3.8628 �3.7357
Median best-so-far �3.8628 �3.8628 �3.8628
Average mean fitness �3.8627 �3.8628 �3.8020

F20 n = 6 Average best-so-far �3.3099 �3.2369 �2.0569
Median best-so-far �3.3217 �3.2031 �1.9946
Average mean fitness �3.3098 �3.2369 �1.6014

F21 n = 4 Average best-so-far �5.6605 �6.6290 �6.0748
Median best-so-far �2.6824 �5.1008 �5.0552
Average mean fitness �5.6605 �5.7496 �6.0748

F22 n = 4 Average best-so-far �7.3421 �9.1118 �9.3399
Median best-so-far �10.3932 �10.402 �10.402
Average mean fitness �7.3421 �9.9305 �9.3399

F23 n = 4 Average best-so-far �6.2541 �9.7634 �9.4548
Median best-so-far �4.5054 �10.536 �10.536
Average mean fitness �6.2541 �8.7626 �9.4548

Fig. 7. Comparison of performance of GSA, PSO and RGA for minimization of F15 with n = 4.
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ization) in the last row. These results are averaged over 30 runs. As Table 7 shows, CFO does not present good results with
random initialization and the initialization criterion has a significant effect on the obtained results. Performance of each
algorithm is shown in Figs. 9–11 for three functions. The results show that GSA has better solution than CFO except for func-
tions F5, F8 and F11.
Fig. 8. Comparison of performance of GSA, PSO and RGA for minimization of F22 with n = 4.

Table 7
Minimization result of some functions in Tables 1–3. Maximum number of iterations = 500. Results for GSA and CFO with random initialization are averaged
over 30 runs.

F1 F5 F6 F8 F9 F10 F11 F14 F16 F17

n (dimension) 5 5 5 5 5 5 5 2 2 2
GSA 3.1 � 10�19 1.62 3.3 � 10�19 �1.08 � 10+3 0.99 1.1 � 10�9 0.61 2.87 �1.031 0.39
CFO 1.13 0.02 0.093 �1.37 � 10+3 1.09 1.13 0.02 3.18 �1.025 0.41
CFO with random initialization 880.18 1.22 � 10+5 1.03 � 10+3 �1.94 � 10+3 23.52 2.81 9.46 8.88 �0.98 0.46

Fig. 9. Comparison of performance of GSA, CFO and CFO with random initialization for minimization of F1 with n = 5.
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For optimization of high-dimensional functions, CFO should run with large amounts of probes. Due to the deterministic
characteristics of CFO, it converges in the first few iterations. The simulations of some functions with 30 dimensions have
been reported in [9].

The reported results for dimension 30 by [9] with different number of agents (N), are summarized in Table 8. By compar-
ing these results with average best-so-far of GSA in Tables 4–6, we can see that GSA provides better solutions except for F5,
F11 and F14. CFO converges at the first few iterations and cannot tune itself in the local optimum.
Fig. 10. Comparison of performance of GSA, CFO and CFO with random initialization for minimization of F5 with n = 5.

Fig. 11. Comparison of performance of GSA, CFO and CFO with random initialization for minimization of F16 with n = 2.

Table 8
Optimization result of some functions of Tables 1–3 with CFO reported in [9]. Negative of results are reported.

F1 F5 F6 F8 F9 F10 F11 F14 F16 F17

n 30 30 30 30 30 30 30 2 2 2
N [9] 15000 60 600 240 600 780 780 240 260 400
Iterations [9] 2 250 4 8 8 5 6 2 16 18
Best so far [9] 0.0836 3.8 1 �12569.1 30.53 1 0.045 1.2 �1.027 0.398
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7. Conclusion

In recent years, various Heuristic optimization methods have been developed. Some of these algorithms are inspired by
swarm behaviors in nature. In this article, a new optimization algorithm that is called Gravitational Search Algorithm (GSA),
is introduced. GSA is constructed based on the law of Gravity and the notion of mass interactions. The GSA algorithm uses the
theory of Newtonian physics and its searcher agents are the collection of masses. In GSA, we have an isolated system of
masses. Using the gravitational force, every mass in the system can see the situation of other masses. The gravitational force
is therefore a way of transferring information between different masses.

In order to evaluate our algorithm, we have examined it on a set of various standard benchmark functions. The results
obtained by GSA in most cases provide superior results and in all cases are comparable with PSO, RGA and CFO. Finally it
must be noted that a local search – as used in [12] – after found result may be beneficial.
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Appendix A

See Tables A.1–A.8
Table A.1
aij in F14.

ðaijÞ ¼
�32;�16;0;16;32;�32; . . . ;0;16;32
�32;�32;�32;�32;�16; . . . ;32;32;32

� �

Table A.4
Pij in F19.

i Pij, j = 1,2,3

1 0.3689 0.1170 0.2673
2 0.4699 0.4387 0.7470
3 0.1091 0.8732 0.5547
4 0.03815 0.5743 0.8828

Table A.2
ai and bi in F15.

i 1 2 3 4 5 6 7 8 9 10 11

ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246
b�1

i 0.25 0.5 1 2 4 6 8 10 12 14 16

Table A.3
aij and ci in F19.

i aij, j = 1,2,3 ci

1 3 10 30 1
2 0.1 10 35 1.2
3 3 10 30 3
4 0.1 10 30 3.2

Table A.5
aij and ci in F20.

i aij, j = 1,2,3,4,5,6 ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2



Table A.6
Pij in F20.

i Pij, j = 1,2,3,4,5,6

1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.232 0.413 0.830 0.373 0.100 0.999
3 0.234 0.141 0.352 0.288 0.304 0.665
4 0.404 0.882 0.873 0.574 0.109 0.038

Table A.7
aij and ci in F21, F22 and F23.

i aij, j = 1,2,3,4 ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Table A.8
Optima in functions of Table 3.

F Xopt fopt

F14 (�32,32) 1
F15 (0.1928,0.1908,0.1231,0.1358) 0.00030
F16 (0.089,�0.712), (�0.089,0.712) �1.0316
F17 (�3.14,12.27), (3.14,2.275), (9.42,2.42) 0.398
F18 (0,�1) 3
F19 (0.114,0.556,0.852) �3.86
F20 (0.201,0.15,0.477,0.275,0.311,0.657) �3.32
F21 5 local minima in aij i = 1, . . . ,5 �10.1532
F22 7 local minima in aij i = 1, . . . ,7 �10.4028
F23 10 local minima in aij i = 1, . . . ,10 �10.5363
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