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Abstract—This letter proposes a multioutput support vector
regression (M-SVR) method for the simultaneous estimation of
different biophysical parameters from remote sensing images.
General retrieval problems require multioutput (and potentially
nonlinear) regression methods. M-SVR extends the single-output
SVR to multiple outputs maintaining the advantages of a sparse
and compact solution by using an ε-insensitive cost function. The
proposed M-SVR is evaluated in the estimation of chlorophyll
content, leaf area index and fractional vegetation cover from a
hyperspectral compact high-resolution imaging spectrometer im-
ages. The achieved improvement with respect to the single-output
regression approach suggests that M-SVR can be considered a
convenient alternative for nonparametric biophysical parameter
estimation and model inversion.

Index Terms—Biophysical parameter estimation, model inver-
sion, regression, support vector regression (SVR).

I. INTRODUCTION

IN REMOTE sensing data analysis, the estimation of bio-
physical parameters is of special relevance in order to better

understand the environment dynamics at local and global scales
[1]. Leaf chlorophyll content (Chl), leaf area index (LAI), and
fractional vegetation cover (fCover) are among the most impor-
tant vegetation parameters [2], [3]. To date, a large number of
spectral vegetation indices have been developed for the study of
Chl based on leaf reflectance [4]. Since the launch of imaging
spectrometers, such as the Compact High Resolution Imag-
ing Spectrometer (CHRIS) on board the Project for Onboard
Autonomy (PROBA) spacecraft, these vegetation indexes have
been applied at the canopy level on ecosystems across the globe
[5], [6]. Nevertheless, the majority of these indices make use of
only two up to five spectral bands and are typically limited to
simple relations, such as band ratios or polynomials. Parametric
models have the important limitation of assuming explicit (and
typically simple) relationships among variables, which could
lead to poor prediction results when these assumptions are not
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met. As a consequence, nonparametric and potentially non-
linear regression techniques have been effectively introduced
for the estimation of biophysical parameters from remotely
sensed images [7]. Nonparametric models do not assume a rigid
functional form, they rely on the available data, and no a priori
assumptions on variable relations are made. Different models
and architectures of neural networks have been considered for
the estimation of biophysical parameters [8], [9]. However,
despite their potential effectiveness, neural networks offer a
poor performance when working with few labeled data points.
Support vector regression (SVR) [10] is a promising alternative
to neural networks, which yields good results for retrieving
some biophysical parameters [11].

Despite its potential usefulness, the standard formulation of
the SVR cannot cope with multioutput problems. The usual
procedure considers developing a different SVR to learn each
parameter individually. However, this approach ignores the
(potentially nonlinear) cross relations among biophysical pa-
rameters. For example, if one is interested in retrieving the LAI
and the fCover, as both parameters are a measure of the plant
density and thus related, a model should consider not only the
underlying relations between the inputs (spectral channels) and
the corresponding outputs (parameters to be predicted) but also
the relations between the outputs.

In this letter, we study the applicability of a multioutput
SVR (M-SVR) in the context of remote sensing biophysical
parameter estimation. The method introduced in this letter was
first applied to a complex biomedical problem [12] and was
successfully used in MIMO channel estimation [13]. Here,
we analyze its capabilities to deal with biophysical parame-
ter estimation and how cross relations can be exploited for
nonparametric retrieval. The multioutput approach can be of
particular interest within operational processing chains (e.g.,
the Sentinel missions), as they are aimed at retrieving several
interdependent biophysical parameters at once. Section II re-
views the formulation of the single-output standard SVR and
the proposed formulation for the M-SVR. The data collected for
the experiments are presented in Section III. Section IV shows
and discusses the experimental results. This letter is concluded
in Section V.

II. M-SVR

In this letter, we introduce a generalization of SVRs to solve
the problem of regression estimation for multiple variables.
Thus, we refer to the proposed method, which is based on a
previous contribution [12], as the M-SVR.

Although, under a pure Gaussian perspective, the estimation
of each component can be individually addressed without the
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loss of accuracy, the use of a multidimensional regression tool
helps in exploiting the dependences between variables and
makes each retrieval less vulnerable to noise and measurement
errors. Treating all the variables together may allow accurately
estimating each of them when only scarce data are available,
and the ε-insensitive cost function, which is introduced below,
improves the scheme robustness when a different kind of noise
and nonlinearities appears in the system.

A. Regression With the Standard SVR Formulation

The unidimensional regression estimation problem is re-
garded as finding the mapping between an incoming vector x ∈
R

d and an observable output y ∈ R, from a given set of inde-
pendent and identically distributed samples, i.e., {(xi, yi)}li=1.
The standard SVR [10] solves this problem by finding re-
gressor w and b that minimizes ‖w‖2/2 + C

∑l
i=1 Lv(yi −

(ϕ(xi)
�w + b)), where ϕ(·) is a nonlinear transformation to

a higher (possibly infinite) dimensional Hilbert space H, also
known as the feature space. The SVR can be solved using only
inner products between ϕ(·), not needing to know the nonlinear
mapping; thus, we only need to specify a kernel function
κ(xi,xj) = ϕ(xi)

�ϕ(xj) that has to fulfill Mercer’s theorem
[14]. Lv(·) is known as the Vapnik ε-insensitive loss function,
which is equal to 0 for |yi − (ϕ(xi)

�w + b)| < ε and equal to
|yi − (ϕ(xi)

�w + b)| − ε for |yi − (ϕ(xi)
�w + b)| ≥ ε. The

solution (w and b) is formed by a linear combination of the
training samples in the transformed space with an absolute error
equal to or greater than ε (i.e., the support vectors). This model
has been successfully used in biophysical parameter estimation
[11], [15].

B. M-SVR Formulation

If the observable output is a vector with Q variables to be
predicted, i.e., y ∈ R

Q, we need to solve a multidimensional
regression estimation problem, in which we have to find regres-
sor wj and bj (j = 1, . . . , Q) for every output. We can directly
generalize the 1-D SVR to solve the multidimensional case,
leading to the minimization of

LP (w,b) =
1

2

Q∑
j=1

‖wj‖2 + C
l∑

i=1

L(ui) (1)

with respect to W and b, where ui = ‖ei‖ =
√

e�i ei,
e�i = y�

i −ϕ(xi)
�W − b�, W = [w1, . . . ,wQ], b =

[b1, . . . , bQ]�.
The Vapnik ε-insensitive loss function can be extended to

multiple dimensions, but being based on an L1 norm, it needs
to account for each dimension independently, which makes the
solution complexity grow linearly with the number of dimen-
sions. If we instead use an L2-based norm, all dimensions can
be considered into a unique restriction yielding a single support
vector for all dimensions (see details in [13]). Therefore, we
propose to use

L(u) =

{
0, u < ε
u2 − 2uε+ ε2, u ≥ ε

(2)

which is a differentiable version of the loss function proposed
in [12].

For ε = 0, this problem reduces to a kernel ridge regres-
sion (KRR) for each component, but for a nonzero ε value,
the solution takes into account all outputs to construct each
individual regressor. This way, the cross-output relations are
exploited, thus leading to possibly more accurate predictions.
Note that the M-SVR returns a multidimensional and sparse
solution, thus solving the main issues of the SVR and the
KRR when dealing with multiple outputs; the SVR cannot
handle multiple outputs, whereas the KRR is not sparse and
thus accounts for output relations in a dense way. We have
devised a quasi-Newton approach in which each iteration has,
at most, the same computational complexity as a least-squares
procedure for each component. This iterative reweighted least-
squares (IRWLS) procedure [16] is a weighted least-squares
problem, and the number of iterations needed to obtain the
final result is small, making the procedure only slightly more
computationally demanding than least-squares regression for
each component.

C. Resolution of the M-SVR

Optimization problems are solved using iterative procedures
that rely on each iteration k on the previous solution (Wk and
bk in our case) to obtain the following one, until the optimal
solution is reached. To construct the IRWLS procedure, we
approximate (1) using a first-order Taylor expansion of L(u)
over the previous solution, leading to

L′
P (W,b) =

1

2

Q∑
j=1

‖wj‖2

+ C

⎛
⎝ l∑

i=1

L
(
uk
i

)
+

dL(u)

du

∣∣∣∣∣
uk
i

(
eki

)�
uk
i

[
ei − eki

]⎞⎠ (3)

where uk
i = ‖eki ‖ =

√
(eki )

�eki and (eki )
� = y�

i −
ϕ(xi)

�Wk − (bk)�, which presents the same value
and gradient as LP (W,b) for W = Wk and b = bk

(i.e., L′
P (W

k,bk) = LP (W
k,bk) and ∇L′

P (W
k,bk) =

∇LP (W
k,bk)). L′

P (W
k,bk) is a lower bound of LP (W,b)

(i.e., LP (W,b) ≥ L′
P (W,b), ∀ W ∈ R

H × R
Q) and

∀b ∈ R
Q, because L′

P (W,b) is a first-order Taylor expansion
of a convex function.

Now, we construct a quadratic approximation from (3), i.e.,

L′′
P =

1

2

Q∑
j=1

‖wj‖2+C

⎛
⎝ l∑

i=1

L
(
uk
i

)
+
dL(u)

du

∣∣∣∣∣
uk
i

u2
i −

(
uk
i

)2
2uk

i

⎞
⎠

=
1

2

Q∑
j=1

‖wj‖2+1

2

l∑
i=1

aiu
2
i +τ (4)

where

ai =
C

uk
i

dL(u)

du

∣∣∣∣
uk
i

=

{
0, uk

i < ε
2C(uk

i −ε)
uk
i

, uk
i ≥ ε

(5)

and τ is a sum of constant terms that do not depend on either
W or b, which also presents the same value and gradient as
LP (W,b) for W = Wk and b = bk. It is shown that (4) is a
weighted least-squares problem in which the weights depend
on the previous solution, incorporating the knowledge of all
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the components of each yi. To optimize (1), we construct a
descending direction using the optimal solution of (4), and
then, we compute the next step solution using a line search
algorithm [17]. The IRWLS procedure can be summarized in
the following steps:

1) Initialization: Set k = 0, Wk = 0, bk = 0, and compute
uk
i and ai.

2) Compute the solution to (4), and label it as Ws and bs.
Define a descending direction for (1) as

Pk =

[
Ws −Wk

(bs − bk)�

]
.

3) Obtain the next step solution, i.e.,[
Wk+1

(bk+1)�

]
=

[
Wk

(bk)�

]
+ ηkPk

computing the step size ηk using a backtracking
algorithm.

4) Compute uk+1
i and ai, set k = k + 1, and go back to

step 2 until convergence.
Before actually computing Ws and bs, note that Pk is not

a vector but a matrix in which each column is a descending
direction for each regressor. Therefore, one should see it as
an aggregate of descending directions for each component to
be estimated. The value of ηk is computed using a back-
tracking algorithm [17] that initially sets ηk = 1 and checks
LP (W

k+1,bk+1) < LP (W
k,bk). If the condition is not met,

ηk is multiplied by a positive constant lower than 1, and
the procedure is repeated until a decrease is achieved in the
minimizing functional.

To obtain Ws and bs, one needs to solve the weighted least-
squares problem in (4), in which each component is decoupled.
Therefore, each component is independently solved by equating
its gradient to zero, i.e.,

∇wjL′′
P =wj −

∑
i

ϕ(xi)ai
(
yij −ϕ(xi)

�wj − bj
)
=0 (6)

∇bjL
′′
P = −

∑
i

ai
(
yij −ϕ(xi)

�wj − bj
)
= 0 (7)

for j = 1, . . . , Q, which can be expressed as a linear system of
equations, i.e.,[

ϕ�Daϕ+ I ϕ�a
a�ϕ 1�a

] [
wj

bj

]
=

[
ϕ�Day

j

a�yj

]
(8)

where ϕ=[ϕ(x1),. . . ,ϕ(xn)]
�, a=[a1,. . . ,an]

�, (Da)ij =
aiδ(i− j), yj = [y1j , . . . , ynj ], and 1 is an all-one column vec-
tor. It is shown that the matrix in the previous linear system does
not depend on j; therefore, it is identical for all components,
and the difference on the linear systems associated to each pair
(wj , bj) is due to the independent term in (8). Each column of
Ws and bs is constructed with the Q solutions of (8).

It is usual to work with the feature-space kernel (the
inner product of the transformed vectors, i.e., κ(xi,xj) =
ϕ(xi)

�ϕ(xj)), instead of the whole nonlinear mapping [14].
Here, the representer’s theorem [14] is used by which, under
fairly general conditions, a learning problem can be expressed
as a linear combination of the training samples in the fea-
ture space, i.e., wj =

∑
i ϕ(xi)β

j = ϕ�βj . If we replace this

expression into (6) and (7), the linear system in (8) can be
expressed as follows:

[
K+D−1

a 1
a�K 1�a

] [
βj

bj

]
=

[
yj

a�yj

]
(9)

for j = 1, . . . , Q, where (K)ij = κ(xi,xj) is known as the ker-
nel matrix. The line search algorithm can be readily expressed
in terms of βj , as it was presented for wj .

III. DATA AND EXPERIMENTAL SETUP

A. Data Collection and Campaigns

The data used in this letter were obtained during the Eu-
ropean Space Agency SPectra bARrax Campaign (SPARC)
2003 and 2004 campaigns in Barrax, Spain. The test area is an
agricultural research facility with an extent of 5 km × 10 km.
It is characterized by a flat morphology and large uniform land-
use units of irrigated and dry lands. The measuring strategy was
based on an elementary sampling unit (ESU) of 10-m radius,
where a large number of samples were taken and averaged
for different parameters, obtaining a local characterization. For
each crop type, several ESUs were defined to be randomly dis-
tributed within the total cultivated area in order to characterize
the global variation of the biophysical parameters. The Chl was
measured with a calibrated Minolta CCM-200 from 50 samples
per ESU. The LAI was derived from canopy measurements
made with a LiCor LAI-2000 at 24 locations per ESU. The
fCover was derived from hemispherical photographs taken at
the same locations as the LAI measurements. All parameters
present standard errors between 3% and 10% [18].

During the 2003 campaign carried out in July 12–14, a total
of 121 ESUs were measured for different crops, whereas in
2004 (July 15–16), a total of 14 ESUs were sampled. Selected
crops include garlic, alfalfa, onion, sunflower, corn, potato,
sugar beet, vineyard, and wheat. The large variety of crop
types and phenological stages provide a very complete sample
of possible combinations of parameters and almost the widest
range of values in them, i.e., values of the LAI that vary
between 0.4 and 6.3, that of the Chl between 2 and 55 μg/cm−2,
and that of the fCover between 0 and 1. This results in a
very representative database for agricultural sites. Collecting
such a database is not an easy task since many resources are
needed, which are not always available. This makes the data set
representative and well suited to multioutput regression studies.

Simultaneously to the ground sampling, hyperspectral im-
ages were collected by the CHRIS/PROBA spaceborne sensor.
The data provided have 62 bands in the visible and near-infrared
(NIR) region (400–1000 nm) at a spatial resolution of 34 m.
The images selected for this letter were those acquired from the
nadir view sharing similar observation configuration in order
to minimize angular and atmospheric effects. The images were
geometrically corrected, followed by atmospheric correction
using the official CHRIS/PROBA Toolbox for BEAM (CHRIS-
Box) at http://www.brockmann-consult.de/beam/chris-box/.

Summarizing, a total of n = 135 data points with d = 62
dimensions and Q = 3 output variables (Chl, LAI, fCover)
constitute the database.
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TABLE I
MEAN AND STANDARD DEVIATION OF AVERAGE RESULTS

Fig. 1. Boxplots for RMSE and R (40 realizations), for SVRs and the
proposed M-SVR, and for different rates of training pixels. (a) 50% and
(b) 80% of pixels in train.

B. Experimental Setup

The ESU data set, along with the CHRIS measurements,
was divided into different training and testing sets. Spectra
were normalized with respect to the maximum NIR shoulder
reflectance. Biophysical parameters were reduced to standard
scores. Two experiments were conducted using 50% and 80%
of the data points for training and the rest for testing the model
robustness. To cover the entire variability of the biophysical
parameters to be predicted, the training data were selected by
regular sampling in the Chl/LAI/fCover-space cube. In addi-
tion, in order to avoid skewed results, each model was run
40 times using randomized training/testing data. The model’s
performance was evaluated with the root-mean-square error
(RMSE) and the mean absolute error (MAE) to assess the ac-
curacy. Pearson’s correlation coefficient R was used to account
for the goodness of fit. Model parameters were optimized using
sixfold cross validation in the ranges σ = {10−1, . . . , 10}, C =
{1, . . . , 100}, and ε = {10−6, 10−3}, and the best combination
was selected according to the least RMSE. In all cases, we
compare the single SVR with the proposed M-SVR.

IV. RESULTS AND DISCUSSION

A. Numerical Comparison

The numerical results for both the SVR and M-SVR models
are compared in Table I for the three variables jointly, while
boxplots of the distribution of the RMSE, the MAE, and the
R value for each individual variable are illustrated in Fig. 1.
The M-SVR shows an overall improvement of the SVR per-

Fig. 2. Histograms of the average errors for single and multiple SVRs for
(left) 50% and (right) 80% training data.

Fig. 3. Covariance matrices of (top) predictions ŷ and actual y signals and
(bottom) residuals for the SVR and the M-SVR in a representative run.

formance with a decrease of 0.03 in the RMSE, 0.03 in the
MAE, and an increase of 0.01 in the correlation. Slightly lower
improvements are obtained when using 50% of the data for
training. Regarding the single outputs, the M-SVR improves
the results for the LAI and the fCover, whereas there is a slight
decrease in the performance for the Chl (see Fig. 1). This may
be related to the fact that, in the M-SVR, all the biophysical
parameters share the same model’s parameters, whereas in the
SVR, each one has been separately optimized. This way, if one
of the parameters is not related with the others, its separate
optimization may lead to a better solution. The distribution of
the results over the 40 realizations of the experiments is shown
in Fig. 2, where histograms of the average distance between
predictions ŷ and outputs y are illustrated; for both settings,
the M-SVR results in smaller average distances, with a mode at
0.25 versus 0.3 for both experimental settings.

B. Statistical Comparison

The M-SVR exploits nonlinear relations between variables
and hence provides a more consistent nonredundant solution.
The relationships between the outputs are actually better de-
scribed and closer to the one observed in the test data. Fig. 3
illustrates the covariance matrices for the obtained output pre-
dictions and residuals with the SVR and the M-SVR. The
Hilbert–Schmidt norm of the covariance matrices of predic-
tions and residuals, i.e., ‖C‖HS =

√
trace(C�C), summarizes

the degree of second-order dependences and shows that the
M-SVR provides more independent and uncorrelated residuals
(0.24 versus 0.29 for the SVR). For higher order dependence
estimation, we considered the Hilbert–Schmidt independence
criterion (HSIC) proposed by Gretton et al. [19], [20]. The
HSIC exploits kernels to estimate cross covariances in higher
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Fig. 4. Prediction maps of the M-SVR for the three biophysical parameters using 80% of available train pixels. (Left) Chl [μg/cm−2]; (middle) LAI [m2/m2];
(right) fCover [%].

dimensional spaces. In all cases, the radial-basis-function ker-
nel with σ estimated with the average mean distance was used.
Here, HSIC values are higher for the M-SVR (77.24) than for
the SVR (75.55), thus showing higher nonlinear dependences
with respect to the true outputs.

C. Visual Comparison

Fig. 4 illustrates the prediction maps derived from the 12 July
2003 CHRIS image for the three biophysical parameters. The
maps clearly show the irrigated crops (the circles in orange
red), the natural areas (light blue), and the bare soil areas
(dark blue). A simple visual comparison of the maps shows
that the M-SVR is useful for mapping vegetation properties
of heterogeneous surface types. While the three parameters
show somewhat similar patterns, one can also note the variable-
dependent differences, e.g., within the irrigated circles. The
low values obtained in the center of the image are due to the
presence of dry barley, harvested barley, and bright bare soils,
which were underrepresented in the training data, and thus, the
model cannot extrapolate to this unknown classes.

V. CONCLUSION

We have proposed the use of the M-SVR for the joint
estimation of different biophysical parameters. The method
outperforms the single-output SVR by taking into account the
nonlinear relations not only between features but also among
the biophysical parameters themselves. This is particularly
noticeable when output variables are correlated. The model
improves the accuracy but also yields less dependent residuals.
The M-SVR model roughly uses the same number of support
vectors as the single SVR, but since they are used just once
in the prediction phase, the computational load is roughly
divided by the number of variables in our experiments. The
model is thus accurate and fast. These characteristics make
them a convenient alternative for nonparametric biophysical
parameter estimation and model inversion, particularly in the
common setting of correlated output variables.

s t
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