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Compressive Sensing via Nonlocal
Low-Rank Regularization

Weisheng Dong, Guangming Shi, Senior Member, IEEE, Xin Li, Yi Ma, Fellow, IEEE, and Feng Huang

Abstract— Sparsity has been widely exploited for exact
reconstruction of a signal from a small number of random mea-
surements. Recent advances have suggested that structured or
group sparsity often leads to more powerful signal reconstruction
techniques in various compressed sensing (CS) studies. In this
paper, we propose a nonlocal low-rank regularization (NLR)
approach toward exploiting structured sparsity and explore its
application into CS of both photographic and MRI images.
We also propose the use of a nonconvex log det(X) as a smooth
surrogate function for the rank instead of the convex nuclear
norm and justify the benefit of such a strategy using extensive
experiments. To further improve the computational efficiency of
the proposed algorithm, we have developed a fast implementation
using the alternative direction multiplier method technique.
Experimental results have shown that the proposed NLR-CS
algorithm can significantly outperform existing state-of-the-art
CS techniques for image recovery.

Index Terms— Compresses sensing, low-rank approximation,
structured sparsity, nonconvex optimization, alternative direction
multiplier method.
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I. INTRODUCTION

THE theory of compressive sensing (CS) [1], [2]
has attracted considerable research interests from sig-

nal/image processing communities. By achieving perfect
reconstruction of a sparse signal from a small number of
random measurements, generated with either random Gaussian
matrices or partial Fourier measurement matrices, the the-
ory has the potential of significantly improving the energy
efficiency of sensors in real-world applications. For instance,
several CS-based imaging systems have been built in recent
years, e.g., the single-pixel camera [3], compressive spectral
imaging system [4], and high-speed video camera [5]. Among
those rapidly-growing applications of the CS theory, the com-
pressive sensing Magnetic Resonance Imaging (CS-MRI) [6]
is arguably among the high-impact ones because of its promise
in significantly reducing the acquisition time of MRI scan-
ning. Since long acquisition time remains one of the primary
obstacles in the clinical practice of MRI, any technology
related to faster scanning could be valuable. Moreover, the
combination of CS-MRI with conventional fast MRI methods
(e.g. SMASH [35], SENSE [33], etc.) for further speed-up has
drawn increasingly more attention from the MRI field.

Since exploiting a prior knowledge of the original signals
(e.g., sparsity) is critical to the success of CS theory, numerous
studies have been performed to build more realistic models
for real-world signals. Conventional CS recovery exploits the
l1-norm based sparsity of a signal and the resulting convex
optimization problems can be efficiently solved by the class
of surrogate-function based methods [7]–[9]. More recently,
the concept of sparsity has evolved into various sophisticated
forms including model-based or Bayesian [18], nonlocal spar-
sity [10], [11], [21] and structured/group sparsity [19], [20],
where exploiting higher-order dependency among sparse coef-
ficients has shown beneficial to CS recovery. On the other
hand, several experimental studies have shown that nonconvex
optimization based approach toward CS [22], [23] often leads
to more accurate reconstruction than their convex counter-
part though at the cost of higher computational complexity.
Therefore, it is desirable to pursue computationally more
efficient solutions that can exploit the benefits of both high-
order dependency among sparse coefficients and non-convex
optimization.

In [12] we have shown an intrinsic relationship between
simultaneous sparse coding (SSC) [20] and low-rank approx-
imation. Such connection has inspired us to solve the
challenging SSC problem by the singular-value threshold-
ing (SVT) method [24], leading to state-of-the-art image

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



DONG et al.: CS VIA NONLOCAL LOW-RANK REGULARIZATION 3619

denoising results. In this paper, we propose a unified vari-
ational framework for nonlocal low-rank regularization of
CS recovery. To exploit the nonlocal sparsity of natural or
medical images, we propose to regularize the CS recovery
by patch grouping and low-rank approximation. Specifically,
for each exemplar image patch we group a set of similar
image patches to form a data matrix X . Since each patch
contain similar structures, the rank of this data matrix X
is low implying a useful image prior. To more efficiently
solve the problem of rank minimization, we propose to use
the log det(X) as a smooth surrogate function for the rank
(instead of using the convex nuclear norm), which lends itself
to iterative singular-value thresholding. Experimental results
on both natural images and complex-valued MRI images
show that our low-rank approach is capable of achieving
dramatically more accurate reconstruction (PSNR gain over
> 2d B) than other competing approaches. To the best of
our knowledge, this work represents the current state-of-the-
art in making the CS theory to work for the class of images
containing diverse and realistic structures.

II. BACKGROUND

In the theory of CS , one seeks the perfect reconstruction of
a signal x ∈ CN from its M randomized linear measurements,
i.e., y = �x, y ∈ CM , where � ∈ CM×N , M < N is
the measurement matrix. Since M < N , the matrix � is
rank-deficient, there generally exists more than one x ∈ Cn

that can yield the same measurements y. The CS theory
guarantees perfect reconstruction of a sparse (or compres-
sive) signal x if � satisfies the so called restricted isometry
property (RIP) [1], [2]. It has been known that a large class
of random matrices have the RIP with high probabilities.
To recover x from the measurement y, prior knowledge of x is
needed. Standard CS method recovers the unknown signal by
pursuing the sparsest signal x that satisfies y = �x, namely

x = argmin
x

‖x‖0, s.t. y = �x, (1)

where ‖ · ‖0 is a pseudo norm counting the number of non-
zero entries of x. In theory a K -sparse signal can be perfectly
recovered from as low as M = 2K measurements [1].

However, since ‖ · ‖0 norm minimization is a difficult
combinatorial optimization problem, solving Eq.(1) directly is
both NP-hard and unstable in the presence of noise. For this
reason, it has been proposed to replace the nonconvex l0 norm
by its convex l1 counterpart - i.e.,

x = argmin
x

‖x‖1, s.t. y = �x, (2)

It has been shown in [1] that solving this l1 norm opti-
mization problem can recover a K -sparse signal from M =
O(Klog(N/K )) random measurements. The optimization
problem in Eq.(2) is convex and corresponds to linear pro-
gramming known as basis pursuit [1], [2]. By selecting an
appropriate regularization parameter λ, Eq.(2) is equivalent to
the following unconstrained optimization problem:

x = argmin
x

‖y − �x‖2
2 + λ‖x‖1, (3)

The above l1-minimization problem can be efficiently solved
by various methods, such as iterative shrinkage algorithm [7],

Bregman Split algorithm [9] and alternative direction mul-
tiplier method (ADMM) [13]. Recent advances have also
shown that better CS recovery performance can be obtained by
replacing the l1 norm with a non-convex l p(0 < p < 1) norm
though at the price of higher computational complexity [22].

In addition to the standard l p(0 ≤ p ≤ 1) sparsity, recent
advances in CS theory use structured sparsity to model a
richer class of signals. By modeling high-order dependency
among sparse coefficients, one can greatly reduce the uncer-
tainty about the unknown signal leading to more accurate
reconstruction [18]. Structured sparsity is particularly impor-
tant to the modeling of natural signals (e.g., photographic
images) that often exhibit rich self-repetitive structures.
Exploiting the so-called nonlocal self-similarity has led to
the well-known nonlocal means methods [10], block-matching
3D denoising [21] and simultaneous sparse coding (SSC) [20].
Most recently, a clustering-based structured sparse model is
proposed in [15], which unified the local sparsity and nonlocal
sparsity into a variational framework. Both [15] and [20] have
shown state-of-the-art image restoration results. However, their
effectiveness in CS applications has not been documented
in the open literature to the best of our knowledge. In this
paper, we will present a unified variational framework for
CS recovery exploiting the nonlocal structured sparsity via
low-rank approximation.

III. NONLOCAL LOW-RANK REGULARIZATION

FOR CS RECOVERY

In this Section, we present a new model of nonlocal low-
rank regularization for CS recovery. The proposed regular-
ization model consists of two components: patch grouping
for characterizing self-similarity of a signal and low-rank
approximation for sparsity enforcement. The basic assumption
underlying the proposed approach is that self-similarity is
abundant in signals of our interest. Such assumption implies
that a sufficient number of similar patches can be found for
any exemplar patch of size

√
n ×√

n at position i denoted by
x̂i ∈ Cn . For each exemplar patch x̂i , we perform a variant of
k-nearest-neighbor search within a local window (e.g., 40×40)
- i.e.,

Gi = {i j |‖x̂i − x̂i j ‖ < T }, (4)

where T is a pre-defined threshold, and Gi denotes the
collection of positions corresponding to those similar patches.
After patch grouping, we obtain a data matrix Xi =
[xi0, xi1 , . . . , xim−1 ], Xi ∈ Cn×m for each exemplar patch xi ,
where each column of Xi denotes a patch similar to xi

(including xi itself).
Under the assumption that these image patches have similar

structures, the formed data matrix Xi has a low-rank property.
In practice, Xi may be corrupted by some noise, which could
lead to the deviation from the desirable low-rank constraint.
One possible solution is to model the data matrix Xi as: Xi =
Li +Wi , where Li and Wi denote the low-rank matrix and the
Gaussian noise matrix respectively. Then the low-rank matrix
Li can be recovered by solving the following optimization
problem:

Li = argmin
Li

rank(Li ), s.t. ‖Xi − Li‖2
F ≤ σ 2

w, (5)
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Fig. 1. Comparison of L(x, ε), rank(x) = ‖x‖0 and the nuclear norm = ‖x‖1
in the case of a scalar.

where ‖ · ‖2
F denotes the Frobenious norm and σ 2

w denotes
the variance of additive Gaussian noise. In general, the
rank-minimization is an NP-hard problem; hence we cannot
solve Eq.(5) directly. To obtain an approximated solution, the
nuclear norm ‖ · ‖∗ (sum of the singular values) can be used
as a convex surrogate of the rank. Using the nuclear norm,
the rank minimization problem can be efficiently solved by the
technique of singular value thresholding (SVT) [24]. Despite
good theoretical guarantee of the correctness [16], we conjec-
ture that non-convex optimization toward rank minimization
could lead to better recovery results just like what has been
observed in the studies of l p-optimization.

In this paper, we consider a smooth but non-convex surro-
gate of the rank rather than the nuclear norm. It has been
shown in [17] that for a symmetric positive semidefinite
matrix X ∈ Rn×n , the rank minimization problem can be
approximately solved by minimizing the following functional:

E(X, ε)
.= log det(X + ε I), (6)

where ε denotes a small constant value. Note that this function
E(X, ε) approximates the sum of the logarithm of singular
values (up to a scale). Therefore, the function E(X, ε) is
smooth yet non-convex. The logdet as a non-convex surrogate
for the rank has also be more carefully justified from an
information-theoretic perspective such as in [34]. Fig. 1 shows
the comparison of a non-convex surrogate function, the rank,
and the nuclear norm in the scalar case. It can be seen
from Fig. 1 that the surrogate function E(X, ε) can better
approximate the rank than the nuclear norm.

For a general matrix Li ∈ C
n×m , n ≤ m that is neither

square nor positive semidefinite, we slightly modify Eq.(6) into

L(Li , ε)
.= log det((Li L�

i )1/2 + ε I)

= log det(U�1/2U−1 + ε I)

= log det(�1/2 + ε I), (7)

where � is the diagonal matrix whose diagonal elements
are eigenvalues of matrix Li L�

i , i.e., Li L�
i = U�U−1, and

�1/2 is the diagonal matrix whose diagonal elements are
the singular values of the matrix Li . Therefore, we can see
that L(Li , ε) is a logdet(·) surrogate function of rank(Li )
obtained by setting X = (Li L�

i )1/2. We then propose the
following low-rank approximation problem for solving Li

Li = argmin
Li

L(Li , ε) s.t. ‖Xi − Li‖2
F ≤ σ 2

w. (8)

In practice, this constrained minimization problem can be
solved in its Lagragian form, namely

Li = argmin
Li

‖Xi − Li‖2
F + λL(Li , ε). (9)

Eq.(9) is equivalent to Eq.(8) by selecting a proper λ. For
each exemplar image patch, we can approximate the matrix
Xi with a low-rank matrix Li by solving Eq.(9).

How to use the patch-based low-rank regularization model
for CS image recovery? The basic idea is to enforce the low-
rank property over the sets of nonlocal similar patches for
each extracted exemplar patch along with the constraint of lin-
ear measurements. With the proposed low-rank regularization
term, we propose the following global objective functional for
CS recovery:

(x̂, L̂i ) = argmin
x,Li

‖y − �x‖2
2 + η

∑

i

{‖R̃i x − Li‖2
F

+λL(Li , ε)}, (10)

where R̃i x
.= [Ri0 x, Ri1 x, . . . , Rim−1 x] denotes the matrix

formed by the set of similar patches for every exemplar
patch xi . The proposed nonlocal low-rank regularization can
exploit both the group sparsity of similar patches and noncon-
vexity of rank minimization; thus achieve better recovery than
previous methods. In the next Section, we will show that the
proposed objective functional can be efficiently solved by the
method of alternative minimization.

IV. OPTIMIZATION ALGORITHM FOR

CS IMAGE RECOVERY

The proposed objective functional can be solved by alterna-
tively minimizing the objective functional with respect to the
whole image x and low-rank data matrices Li .

A. Low-Rank Matrix Optimization via Iterative
Single Value Thresholding

With an initial estimate of the unknown image, we first
extract exemplar patches xi at every l pixels along each
direction and group a set of similar patches for each xi ,
as described in Section III. Then, we propose to solve the
following minimization problem for each Li :

Li = argmin
Li

η‖R̃x − Li‖2
F + λL(Li , ε). (11)

Since L(Li , ε) is approximately the sum of the logarithm of
singular values (up to a scale), Eq.(11) can be rewritten as

min
Li

‖Xi − Li‖2
F + λ

η

n0∑

j=1

log(σ j (Li ) + ε). (12)

where Xi = R̃i x, n0 = min{n, m}, and σ j (Li ) denotes the
j th singular value of Li . For simplicity, we use σ j to denote
the j th singular value of Li . Though

∑n
j=1 log(σ j +ε) is non-

convex, we can solve it efficiently using a local minimization
method (a local minimum will be sufficient when an annealing
strategy is used - please refer to Algorithm 1). Let f (σ ) =
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Algorithm 1 CS via Low-Rank Regularization

∑n
j=1 log(σ j +ε). Then f (σ ) can be approximated using first-

order Taylor expansion as

f (σ ) = f (σ (k)) + 〈∇ f (σ (k)), σ − σ (k)〉, (13)

where σ (k) is the solution obtained in the kth iteration.
Therefore, Eq.(12) can be solved by iteratively solving

L(k+1)
i = argmin

Li

‖Xi − Li‖2
F + λ

η

n0∑

j=1

σ j

σ
(k)
j + ε

, (14)

where we have used the fact that ∇ f (σ (k)) = ∑n0
j=1

1
σ

(k)
j +ε

and ignored the constants in Eq.(13). For convenience, we
can rewrite Eq. (14) into

L(k+1)
i = argmin

Li

1

2
‖Xi − Li‖2

F + τϕ(Li ,w
(k)), (15)

where τ = λ/(2η) and ϕ(Li ,w) = ∑n0
j w

(k)
j σ j denotes the

weighted nuclear norm with weights w
(k)
j = 1/(σ

(k)
j + ε).

Notice that since the singular values σ j are ordered in a
descending order, the weights are ascending.

It is known that in the case of a real matrix, the weighted
nuclear norm is a convex function only if the weights are
descending, and the optimal solution to (15) is given by a
weighted singular value thresholding operator, known as the
proximal operator. In our case, the weights are ascending
hence (15) is not convex. So we do not expect to find its
global minimizer. In addition, we are dealing with a complex
matrix. Nevertheless, one could still show that the weighted
singular value thresholding gives one (possible local) mini-
mizer to (15):

Fig. 2. PSNR curves of the three variants of the proposed CS methods
on Monarch image at sensing rate 0.2N (random subsampling). NLR-CS-
baseline denotes the proposed CS method using the standard nuclear norm;
NLR-CS-without-WarmStart denotes the proposed logdet based CS method
that does not include the warm start step (by setting K0 = 0); NLR-CS-with-
WarmStart denotes the proposed logdet based CS method that includes the
warm start step (i.e., K0 = 45).

Theorem 1 (Proximal Operator of Weighted Nuclear Norm):
For each X ∈ Cn×m and 0 ≤ w1 ≤ · · · ≤ wn0 ,
n0 = min{m, n}, a minimizer to

min
L

1

2
‖X − L‖2

F + τϕ(L,w) (16)

is given by the weighted singular value thresholding operator
Sw,τ (X):

Sw,τ (X) := U(� − τdiag(w))+V �, (17)

where U�V � is the SVD of X and (x)+ = max{x, 0}.
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Fig. 3. Test photographic images used for compressive sensing experiments. (a) Barbara. (b) boats. (c) Girl. (d) foreman. (e) house. (f) lena256. (g) Monarch.
(h) Parrots.

Fig. 4. CS recovered Barbara images with 0.05N measurements (random sampling). (a) Original image; (b) MARX-PC recovery [27] (24.11 dB);
(c) BM3D-CS recovery [25] (24.34 dB); (d) Proposed NLR-CS-baseline recovery (27.59 dB) (e) Proposed NLR-CS recovery (29.79 dB).

Fig. 5. CS recovered Boats images with 0.1N measurements (random sampling). (a) Original image; (b) MARX-PC recovery [27] (32.12 dB); (c) BM3D-CS
recovery [25] (32.09 dB); (d) Proposed NLR-CS-baseline recovery (32.68 dB); (e) Proposed NLR-CS recovery (35.33 dB).

The detailed proof of the Theorem 1 is given in the
Appendix. Based on this theorem, the reconstructed matrix
in the (k + 1)th iteration is then obtained by

L(k+1)
i = U(�̃ − τdiag(w(k)))+V �, (18)

where U�̃V � is the SVD of Xi and w
(k)
j = 1/(σ

(k)
j + ε).

Notice that even though the weighted thresholding is only
a local minimizer, it always leads to a decreasing in the
objective function value. In our implementation, we set
w(0) = [1, 1, . . . , 1]� and the first iteration is equiva-
lent to solving an unweighted nuclear norm minimization
problem.

When Li is a vector, the log det(·) leads to the well-known
reweighted �1-norm [28]. In [28] it has been shown that the
reweighted �1-norm performs much better than �1-norm in

approximating the �0-norm and often leads to superior image
recovery results. Similarly, our experimental results in the next
Section show that the log det(·) can lead to better CS recovery
results than the nuclear norm.

B. Image Recovery via Alternative Direction
Multiplier Method

After solving for each Li , we can reconstruct the whole
image by solving the following minimization problem:

x = argmin
x

‖y − �x‖2
2 + η

∑

i

‖R̃i x − Li‖2
F . (19)

Eq.(19) is a quadratic optimization problem admitting a
closed-form solution - i.e.,

x = (�H� + η
∑

i

R̃�
i R̃i )

−1(�H y + η
∑

i

R̃�
i Li ), (20)
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Fig. 6. CS recovered Parrots images with pseudo radial subsampling (20 radial lines, i.e., 0.08N measurements). (a) Original image; (b) MARX-PC
recovery [27] (24.80 dB); (c) BM3D-CS recovery [25] (25.04 dB); (d) Proposed NLR-CS-baseline recovery (25.79 dB); (e) Proposed NLR-CS recovery
(28.05 dB).

Fig. 7. CS recovered Barbara images with pseudo radial subsampling (35 radial lines, i.e., 0.13N measurements). (a) Original image; (b) MARX-PC
recovery [27] (22.99 dB); (c) BM3D-CS recovery [25] (24.38 dB); (d) Proposed NLR-CS-baseline recovery (26.99 dB); (e) Proposed NLR-CS recovery
(28.07 dB).

Fig. 8. Sub-sampling masks and test MR images. (a) random sub-sampling mask; (b) pseudo-radial sub-sampling mask; (c) Head MR image; (d) Brain MR
image.

where the superscript H denotes the Hermitian transpose oper-
ation and R̃�

i Li
.= ∑m−1

r=0 R�
r xir and R̃�

i R̃i
.= ∑m

r=0 R�
r Rr .

In Eq.(20), the matrix to be inverted is large. Hence, directly
solving Eq.(20) is not possible. In practice, Eq.(20) can be
computed by using a conjugate gradient (CG) algorithm.

When the measurement matrix � is a partial Fourier trans-
form matrix that has important applications in high speed MRI,
we can derive a much faster algorithm for solving Eq.(19)
by using the alternative direction multiplier method (ADMM)
technique [13], [29]. The advantage of ADMM is that we can
split Eq.(19) into two sub-problems that both admit closed-
form solutions. By applying ADMM to Eq.(19), we obtain

(x, z,μ) = argmin
x

‖y − �x‖2
2 + β‖x − z + μ

2β
‖2

2

+η
∑

i

‖R̃i z − Li‖2
F , (21)

where z ∈ CN is an auxiliary variable, μ ∈ CN

is the Lagrangian multiplier, and β is a positive scalar.

The optimization of Eq.(21) consists of the following
iterations:

z(l+1) = argmin
z

β(l)‖x(l)− z+ μ(l)

2β(l)
‖2

2+η
∑

i

‖R̃i z−Li‖2
F ,

x(l+1) = argmin
x

‖y − �x‖2
2 + β(l)‖x − z(l+1) + μ(l)

2β(l)
‖2

2,

μ(l+1) = μ(l) + β(l)(x(l+1) − z(l+1)),

β(l+1) = ρβ(l), (22)

where ρ > 1 is a constant. For fixed x(l), μ(l) and β(l), z(l+1)

admits a closed-form solution:

z(l+1) =(η
∑

i

R̃�
i R̃i +β(l) I)−1(β(l)x(l)+ μ(l)

2
+η

∑

i

R̃i Li ).

(23)

Note that the term
∑

i R̃�
i R̃i is a diagonal matrix. Each of the

entries in the diagonal matrix corresponds to an image pixel
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Fig. 9. Reconstructed Head MR images using 0.2N k−space samples (5 fold under-sampling, random sampling). (a) original MR image (magnitude);
(b) SparseMRI method [32] (22.45 dB); (c) ReTV method [28] (27.31 dB) (d) proposed NLR-CS-baseline method (30.84 dB); (e) proposed NLR-CS method
(33.31 dB).

Fig. 10. Reconstructed Brain MR images using 0.2N k−space samples (5 fold under-sampling, random sampling). (a) original MR image (magnitude);
(b) SparseMRI method [32] (30.20 dB); (c) ReTV method [28] (33.49 dB) (d) proposed NLR-CS-baseline (35.39 dB); (e) proposed NLR-CS method
(36.34 dB).

Fig. 11. Reconstruction of Head MR images from 45 radial lines (pseudo-radial sampling, 6.0 fold under-sampling). (a) original MR image (magnitude);
(b) SparseMRI method [32] (24.02 dB); (c) ReTV method [28] (27.09 dB) (d) proposed NLR-CS-baseline (27.97 dB) (e) proposed NLR-CS method
(29.67 dB).

location, and its value is the number of overlapping patches
that cover the pixel location. The term

∑
i R̃i Li denotes the

patch average result - i.e., averaging all of the collected similar
patches for each exemplar patch. Therefore, Eq.(23) can easily
computed in one step. For fixed z(l+1), μ(l) and β(l), the
x−subproblem can be solved by computing:

(�H� + β(l) I)x = (�H y + β(l)z(l+1) − μ(l)

2
). (24)

When � is a partial Fourier transform matrix � = D F,
where D and F denotes the down-sampling matrix and Fourier
transform matrix respectively, Eq.(24) can be easily solved by
transforming the problem from image space into Fourier space.
By substituting � = D F into Eq.(24) and applying Fourier
transform to each side of Eq.(24), we can obtain

F((D F)H D F + β(l) I)FH Fx

= F(D F)H y + F(β(l)z(l+1) − μ(l)

2
) (25)

The above equation can be simplified as

Fx = (D� D + β(l))−1(D� y + F(β(l)z(l+1) − μ(l)

2
)), (26)

where the matrix to be inverted is a diagonal matrix (so it
can be computed easily). Then, x(l+1) can be computed by
applying inverse Fourier transform to the right hand side of
Eq. (26)- i.e.,

x(l+1)= FH {(D� D+β(l))−1(D� y+ F(β(l)z(l+1)− μ(l)

2
))}
(27)

With updated x and z, μ and β can be readily computed
according to Eq.(22)

After obtaining an improved estimate of the unknown
image, the low-rank matrices Li can be updated by Eq.(18).
The updated Li is then used to improve the estimate of x by
solving Eq.(19). Such process is iterated until the convergence.
The overall procedure is summarized below as Algorithm 1.
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Fig. 12. CS-MRI reconstruction of Brain MR images from 35 radial lines (pseudo-radial sampling, 7.62 fold under-sampling). (a) original MR image;
(b) SparseMRI method [32] (29.03 dB); (c) ReTV method [28] (30.48 dB) (d) proposed NLR-CS-baseline (32.05 dB) (e) proposed NLR-CS method
(33.46 dB).

Fig. 13. PSNR results as sampling rates varies. (a)-(b) Cartesian random sampling; (c)-(d) pseudo-radial sampling.

In Algorithm 1, we use the global threshold τ to solve
an unweighted nuclear norm minimization in the first K0
(K0 = 45 in our implementation) iterations to obtain a starting
point (which we call “warm start”) for the proposed nonconvex
logdet based CS method. As shown in Fig. 2, we can see
that the use of the warm start step improves the convergence
speed and leads to better CS reconstruction. After the first
K0 iterations, we compute the adaptive weights wi based
on σ

(k)
i obtained in the previous iteration. We use ADMM

technique to solve Eq.(19) when the measurement matrix is a
partial Fourier transform matrix. For other CS measurement
matrices, we can use CG algorithm to solve Eq.(19). To save

computational complexity, we update the patch grouping
in every T iterations. Empirically, we have found that
Algorithm 1 converges even when the inner loops only exe-
cutes one iteration (larger J values do not lead to noticeable
PSNR gain). Hence, by setting J = 1 and L = 1 we can save
much computational complexity of the proposed CS algorithm.

V. EXPERIMENTAL RESULTS

In this Section, we report the experimental results of
the proposed low-rank based CS recovery method. Here we
generate the CS measurements by randomly sampling the
Fourier transform coefficients of test images. However, the
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Fig. 14. PSNRs of the reconstructed images from noisy measurements. (a)-(b) Random subsampling (0.2N ); (c)-(d) pseudo-radial sampling (65 lines).

Fig. 15. Reconstruction of Monarch images from 0.2N noisy CS measurements (SNR=17.5 dB). (a) original image; (b) ReTV recovery [28] (26.73 dB);
(c) BM3D-CS recovery [25] (26.00 dB); (c) proposed NLR-CS-baseline recovery (27.99 dB); (d) proposed NLR-CS recovery (28.70 dB).

proposed CS recovery method can also be used for other
CS sampling schemes. The number of compressive measure-
ments M is measured in terms of the percentages of total
number of image pixels N or Fourier coefficients. In our
experiments, both the natural images and simulated MR
images (complex-valued) are used to verify the performance
of the proposed CS method. The main parameters of the
proposed algorithms is set as follows: patch size - 6 × 6
(i.e., n = 36); total m = 45 similar patches are selected
for each exemplar patch. For better CS recovery performance,
the regularization parameter λ is tuned separately for each
sensing rate. To reduce the computational complexity, we
extract exemplar image patch in every 5 pixels along both
horizontal and vertical directions. Both natural images and

complex-valued MRI images are used in our experiments
(the eight test natural images used in our experiment are shown
in Fig. 3). Both source codes and test images accompany-
ing this paper can be downloaded from the following web-
site: http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm.
We first present the experimental results for noiseless
CS measurements and then report the results using noisy
CS measurements.

A. Experiments on Noiseless Data

Let NLR-CS denote the proposed nonlocal low-rank
regularization based CS method. To verify the effectiveness
of the logdet function for rank minimization, we have
implemented a variant of the proposed NLR-CS method that
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Fig. 16. PSNR of the reconstructed MR image Head from noisy measurements. (a) random subsampling (ratio 0.4); (b) pseudo-radial sampling (65 lines).

Fig. 17. Reconstruction of Head MR images from 65 noisy radial lines (SNR=15.42 dB). (a) original MR image (magnitude); (b) SparseMRI method [32]
(28.73 dB); (c) ReTV method [28] (30.88 dB) (d) proposed NLR-CS-baseline (31.34 dB) (e) proposed NLR-CS method (32.41 dB).

uses the standard nuclear norm, denoted as NLR-CS-baseline.
NLR-CS-baseline can be implemented by slightly modifying
Algorithm 1. To verify the performance of the proposed non-
local low-rank regularization based CS methods, we compare
them with several competitive CS recovery methods including
the total variation (TV) method [30], the iterative reweighted
TV method [28] that performs better than TV method,
the BM3D based CS recovery method [25] (denoted as
BM3D-CS) and a recently proposed MARX-PC method [27].
Note that BM3D is a well-known image restoration method
that delivers state-of-the-art denoising results; MARX-PC
exploits both the local and nonlocal image dependencies and
is among the best CS methods so far. The source codes of
all benchmark methods [25], [27], [30] were obtained from
the authors’ websites. To make a fair comparison among the
competing methods, we have carefully tuned their parameters
to achieve the best performance. The TV method [30]
and ReTV method [28] are implemented based on the
well-known l1-magic software. It has been found that the
CS reconstruction performances of TV and ReTV methods
are not sensitive to their parameters. We have also carefully
tuned the parameters of the BM3D-CS method for each
CS sensing rates and subsampling scheme for the purpose
of hopefully achieving the best possible performance. The
MARX-PC method in [27] is our previous CS reconstruction
method, whose parameters have already been optimized on
the set of test images for each sensing rate.

In the first experiment, we generate CS measurements by
randomly sampling the Fourier transform coefficients of input

images [30], [31]. The PSNR comparison results of recovered
images by competing CS recovery methods are shown in
Table I. From Table I, one can see that 1) ReTV [28] per-
forms better than conventional TV on almost all test images;
2) MARX-PC outperforms both TV and ReTV for most test
images and sensing rates; 3) BM3D-CS only beats MARX-PC
method on high sensing rates. On the average, the proposed
NLR-CS-baseline method outperforms all previous benchmark
methods (e.g., NLR-CS-baseline can outperform BM3D-CS
by up to 1.5 dB). By using the nonconvex logdet surrogate
of the rank, the proposed NLR-CS method performs much
better than the NLR-CS-baseline method on all test images
and sensing rates. The average gain of NLR-CS over
NLR-CS-baseline is up to 2.24 dB; the PSNR gains of
NLR-CS over TV, ReTV, MARX-PC, and BM3D-CS can
be as much as 11.45 dB, 11.30 dB, 5.49 dB, and 6.36 dB
respectively on Barbara image - the most favorable situation
for nonlocal regularization. In many cases, the proposed
NLR-CS can produce higher PSNRs than other competing
methods using 0.1N-0.2N less CS measurements. To facilitate
the evaluation of subjective qualities, parts of reconstructed
images are shown in Figs.4 and 5. Apparently, the proposed
NLR-CS achieves the best visual quality among all competing
methods - it can not only perfectly reconstruct large-scale
sharp edges but also well recover small-scale fine structures.

Next, we generate CS measurements by pseudo-radial
subsampling of the Fourier transform coefficients of test
images. An example of the radial subsampling mask is shown
in Fig.8. Unlike random subsampling that generates incoherent
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TABLE I

THE PSNR (dB) RESULTS OF TEST CS RECOVERY METHODS WITH RANDOM SUBSAMPLING SCHEME [31]

aliasing artifacts, pseudo-radial subsampling produces streak-
ing artifacts, which are more difficult to remove. The
PSNR results of reconstructed images from the pseudo-radial
CS measurements are included in Table II. One can see
that the proposed NLR-CS method produces the high-
est PSNRs on all test images and CS measurement rates
(except for three cases where NLR-CS slightly falls behind
NLR-CS-baseline). The average PSNR improvements over
BM3D-CS and NLR-CS-baseline are about 1.99 dB and
1.55 dB, respectively. Subjective justification about the supe-
riority of the proposed NLR-CS method on the pseudo-radial
subsampling case can be found in Figs.6 and 7.

Due to the potential applications of CS for MRI in reducing
the scanning time, we have also conducted experiments on
some complex-valued real-world MR images. Two sets of
brain images with size of 256×256 acquired on a 1.5T Philips
Achieva system are used in this experiment. The magnitude
of these MR images are normalized to have the maximum
value of 1. The k−space samples are simulated by applying
2D discrete Fourier transform to those MR images. The
CS-MRI acquisition processes are simulated by sub-sampling
the k−space data. Two sub-sampling strategies including
random sub-sampling [23] and pseudo-radial sampling are
used here. Two examples of test MR images and associated
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TABLE II

THE PSNR (dB) RESULTS OF DIFFERENT CS RECOVERY METHODS WITH PSEUDO RADIAL SUBSAMPLING SCHEME

sub-sampling masks are shown in Fig. 8. We have com-
pared the proposed method against the conventional CS-MRI
method of [32] (denoted as SparseMRI), the TV method,
the reweighted TV (denoted as ReTV) method [28], and
the baseline zero-filling reconstruction method. The source
code of [32] was downloaded from the authors’ website. The
TV and ReTV method are implemented using the iterative
reweighted least square (IRLS) approach. For a fair
comparison, we have tried our best to tune the parameters of
the SparseMRI method to achieve the highest PSNR results.

In Figs.9 and 10, we compare the reconstructed MR
magnitude images by the test CS-MRI recovery methods
for variable density 2D random sampling. In Figs.9 and 10,
the sampling rate is 0.2N , i.e., 5-fold undersampling of the
k−space data. We can see that the SparseMRI method cannot
preserve the sharp edges and fine image details. The ReTV
method outperforms the SparseMRI method in terms of PSNR;
however, visual artifacts can still be clearly observed.
By contrast, the proposed NLR-CS-baseline preserves the
edges and local structures better than ReTV method;
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and the proposed NLR-CS can further dramatically
outperforms the NLR-CS-baseline. Figs.11 and 12 show
the results for the pseudo-radial sampling scheme. The
sub-sampling rates are 0.16N and 0.13N (i.e., 6.0 fold
and 7.62 fold undersampling), respectively. We can see
that the proposed NLR-CS-baseline and NLR-CS methods
both significantly outperform the SparseMRI method. In
Fig.13 we plot the PSNR curves as a function of sensing
rates for both random sampling and pseudo-radial sampling
schemes. It can be seen from Fig.13 that the PSNR results
of the proposed NLR-CS are much higher than all other
competing methods at very low sensing rates, which implies
that the proposed NLR-CS can better remove the artifacts and
preserve important image structures more effectively even
when the undersampling factor is high (i.e., large speed-up
factor).

B. Experiments on Noisy Data

In this subsection, we conduct similar experiments with
noisy CS measurements to demonstrate the robustness of the
proposed NLR-CS to noise. A significant amount of complex-
valued additive Gaussian noise was added to the CS mea-
surements. For natural images the subsampling ratios of the
Fourier coefficients are fixed with 0.2 (randomly subsampling)
and 0.24 (65 radial lines). The standard derivations of additive
noise vary to generate the signal-to-noise ratio (SNR) between
11.5 dB and 35.0 dB. In this experiment, the MARX method
is not included since it is sensitive to noise. The PSNR
comparison of the reconstructed images are shown in Fig. 14.
One can observe that 1) TV and ReTV outperform BM3D-CS
in the cases of low SNRs while it goes the other way round
when SN R > 21d B; 2) the proposed NLR-CS outperforms
other competing methods in all situations. Cropped portions
of the reconstructed Monarch image from 0.2N noisy CS
measurements (SNR=17.5 dB) are shown in Fig. 15. For
complex-valued MR images, we fix the subsampling ratio
of the k-space data to be 0.4 (randomsubsampling) and 0.24
(65 radial lines). The SNRs of the noisy CS measurements are
still between 11.9 dB and 39.5 dB. The PSNR and subjective
quality comparison results are shown in Fig. 16 and Fig. 17
respectively, which clearly shows the proposed NLR-CS is the
best among all competing methods.

VI. CONCLUDING REMARKS

In this paper, we have presented a new approach toward
CS based on nonlocal low-rank regularization and alternative
direction multiplier method. Nonlocal low-rank regularization
enables us to exploit both the group sparsity of similar patches
and the nonconvexity of rank minimization; alternative direc-
tion multiplier method offers a principled and computation-
ally efficient solution to image reconstruction from recovered
patches. When compared against existing CS techniques in
the open literature, our NLR-CS is mostly favored in terms
of both subjective and objective qualities. Moreover, it shows
significant performance improvements over a wide range of
images including photographic and real-world complex-valued
MR ones. One of the open issues remaining to be addressed

is the modeling of data term (or likelihood function) in the
CS-MRI. How the proposed nonlocal low-rank regularization
works with the real-world (not simulated) k-space data seems
a natural next step in our effort of pushing CS from theory to
practice. Meantime, how nonlocally-regularized image recon-
struction algorithm jointly works with parallel MRI - such as
SENSE and SMASH - deserves further study.

APPENDIX

In order to prove Theorem 1, we first show the following
theorem for the proximal operator of weighted nuclear norm
for real-valued matrices. Then, we extend the result to prove
Theorem 1 for complex-valued matrices. It has been shown
in [37] and [38] that if the weights w are in a non-descending
order, the weighted nuclear norm is concave and a fixed-
point solution can be obtained by weighted singular value
thresholding operator [37], [38]. The following theorem is an
extension of [24, Th. 2.1].

Theorem 2 (Proximal Operator for the Real Case): For
X ∈ Rn×m and 0 ≤ w1 ≤ · · · ≤ wn0 , where n0 = min{m, n},
one minimizer to

min
L

1

2
‖X − L‖2

F + τϕ(L,w) (28)

is given by the weighted singular value thresholding operator
Sw,τ (X):

Sw,τ (X) := U(� − τdiag(w))+V �, (29)

where U�V � is the SVD of X and (x)+ = max{x, 0}.
Proof: For fixed weights w, h(L) := 1

2‖X − L‖2
F +

τϕ(L,w), L∗ minimizes h if and only if it satisfies the
following optimal condition, i.e.,

0 ∈ X − L∗ + τ∂ϕ(L∗,w) (30)

where ∂ϕ(L∗,w) is the set of subgradients of the weighted
nuclear norm. Let matrix L ∈ Rn×m and its SVD be U�V �.
It is known from [36] that the subgradient of ϕ(L,w) can be
derived as

∂ϕ(L,w) = {UWr V � + Z : Z ∈ R
n×m , U� Z = 0,

ZV = 0, σ j (Z) ≤ wr+ j , j = 1, . . . , n0 − r}, (31)

where r is the rank of L and Wr is the diagonal matrix
composed by the first r rows and r columns of the diagonal
matrix diag(w). To show that L∗ satisfies Eq. (31), we
rewritten the SVD of X as X = U0�0V� + U1�1V �

1 , where
U0, V0 (resp. U1, V1) are the singular vectors associated with
the singular values greater than τw j (resp. smaller than or
equal to τw j ). Let L∗ = Sw,τ (X). Then, we have

L∗ = U0(�0 − τ Wr )V �
0 . (32)

Therefore,

X − L∗ = U0(τ Wr )V �
0 + U1�1V �

= τ (U0Wr V �
0 + U1(τ

−1�1)V �
1 )

= τ (U0Wr V �
0 + Z), (33)

where Z = U1(τ
−1�1)V �

1 . By definition, U�
0 Z = 0,

ZV0 = 0. Since the diagonal elements of �1 are smaller
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than τw j+r , it is easy to verify that σ j (Z) ≤ wr+ j , j =
1, 2, . . . , n0 − r . Therefore, X − L∗ ∈ τ∂ϕ(L∗,w), which
concludes the proof.

Proof of Theorem 1: Let X = (X1 + i X2) ∈ Cn×m be an
arbitrary complex-valued matrix and its SVD be X = (U +
i P)�(V + i Q)�, where X1 ∈ Rn×m , X2 ∈ Rn×m , U ∈ Rn×n ,
P ∈ Rn×n , � ∈ Rn0×n0 , V ∈ Rm×m , Q ∈ Rm×m , and n0 =
min{n, m}. Then, it is easy to verify that the SVD of the matrix

A =
[

X1 X2
−X2 X1

]
, A ∈ R

2n×2m (34)

can be expressed as

A =
[

U P
−P U

] [
�

�

] [
V − Q
Q V

]�
. (35)

Let L = (Y1 + iY2) ∈ Cn×m and the functions h1 and h2 be

h1(L) = 1

2
‖X − L‖2

F + τϕ(L,w),

h2(B) = 1

4
‖A − B‖2

F + τ

2
ϕ(A, w̃). (36)

where w̃ = [w�,w�]� ∈ R
2n0+ and the matrix B ∈ R2n×2m is

defined as

B =
[

Y1 Y2
−Y2 Y1

]
. (37)

Using the equality expressed in Eq.(35), it is can be verified
that h1(L) = h2(B). According to Theorem 2, one minimizer
to the following minimization problem

min
B

1

4
‖A − B‖2

F + τ

2
ϕ(A, w̃) (38)

is given by B∗ = Sw̃,τ (A). Since h1(L) = h2(B), the function
h2(B∗) has the same minimum value as h1(L∗) with L∗ =
Sw,τ (X). �
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