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Abstract In image processing, sparse coding has been
known to be relevant to both variational and Bayesian
approaches. The regularization parameter in variational
image restoration is intrinsically connected with the shape
parameter of sparse coefficients’ distribution in Bayesian
methods. How to set those parameters in a principled yet
spatially adaptive fashion turns out to be a challenging prob-
lem especially for the class of nonlocal image models. In
this work, we propose a structured sparse coding framework
to address this issue—more specifically, a nonlocal exten-
sion of Gaussian scale mixture (GSM) model is developed
using simultaneous sparse coding (SSC) and its applications
into image restoration are explored. It is shown that the vari-
ances of sparse coefficients (the field of scalar multipliers of
Gaussians)—if treated as a latent variable—can be jointly
estimated along with the unknown sparse coefficients via the
method of alternating optimization. When applied to image
restoration, our experimental results have shown that the pro-
posed SSC–GSM technique can both preserve the sharpness
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of edges and suppress undesirable artifacts. Thanks to its
capability of achieving a better spatial adaptation, SSC–GSM
based image restoration often delivers reconstructed images
with higher subjective/objective qualities than other compet-
ing approaches.

Keywords Simultaneous sparse coding · Gaussian scale
mixture · Structured sparsity · Alternative minimization ·
Variational image restoration

1 Introduction

1.1 Background and Motivation

Sparse representation of signals/images has been widely
studied by signal and image processing communities in the
past decades. Historically, sparsity dated back to the idea of
variable selection studied by statisticians in late 1970s (Hock-
ing 1976) and coring operator invented by RCA researchers
in early 1980s (Carlson et al. 1985). The birth of wavelet
(Daubechies 1988) (a.k.a. filter bank theory (Vetterli 1986) or
multi-resolution analysis (Mallat 1989) in late 1980s rapidly
sparkled the interest in sparse representation, which has
found successful applications into image coding (Shapiro
1993; Said and Pearlman 1996; Taubman and Marcellin
2001) and denoising (Donoho and Johnstone 1994; Mih-
cak and Ramchandran 1999; Chang et al. 2000). Under the
framework of sparse coding, a lot of research have been
centered at two related issues: basis functions (or dictio-
nary) and statistical modeling of sparse coefficients. Exem-
plar studies of the former are the construction of direc-
tional multiresolution representation (e.g., contourlet (Do
and Vetterli 2005)) and over-complete dictionary learning
from training data (e.g., K-SVD (Aharon et al. 2012; Elad
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and Aharon 2012), multiscale dictionary learning (Mairal
et al. 2008), online dictionary learning (Mairal et al. 2009a)
and the non-parametric Bayesian dictionary learning (Zhou
et al. 2009)); the latter includes the use of Gaussian mix-
ture models (Zoran and Weiss 2011; Yu et al. 2012), vari-
ational Bayesian models (Ji et al. 2008; Wipf et al. 2011),
universal models (Ramirez and Sapiro 2012), and central-
ized Laplacian model (Dong et al. 2013b) for sparse coeffi-
cients.

More recently, a class of nonlocal image restoration tech-
niques (Buades et al. 2005; Dabov et al. 2007; Mairal et al.
2009b; Katkovnik et al. 2010; Dong et al. 2011, 2013a, b)
have attracted increasingly more attention. The key moti-
vation behind lies in the observation that many important
image structures in natural images including edges and tex-
tures can be characterized by the abundance of self-repeating
patterns. Such observation has led to the formulation of
simultaneous sparse coding (SSC) (Mairal et al. 2009b).
Our own recent works (Dong et al. 2011, 2013a) have con-
tinued to demonstrate the potential of exploiting SSC in
image restoration. However, a fundamental question remains
open: how to achieve (local) spatial adaptation within the
framework of nonlocal image restoration? This question is
related to the issue of regularization parameters in a vari-
ational setting or shape parameters in a Bayesian one; but
the issue becomes even more thorny when it is tangled with
nonlocal regularization/sparsity. To the best of our knowl-
edge, how to tune those parameters in a principled man-
ner remains an open problem (e.g, please refer to (Ramirez
and Sapiro 2012) and its references for a survey of recent
advances).

In this work, we propose a new image model named SSC–
GSM that connectsGaussian scalemixture (GSM)with SSC.
Our idea is to model each sparse coefficient as a Gaussian
distribution with a positive scaling variable and impose a
sparse distribution prior (i.e., the Jeffrey prior (Box and Tiao
2011) used in this work) over the positive scaling variables.
We show that the maximum a posterior (MAP) estimation
of both sparse coefficients and scaling variables can be effi-
ciently calculated by the method of alternating minimiza-
tion. By characterizing the set of sparse coefficients of sim-
ilar patches with the same prior distribution (i.e., the same
non-zeromeans and positive scaling variables), we can effec-
tively exploit both local and nonlocal dependencies among
the sparse coefficients, which have been shown important for
image restoration applications (Dabov et al. 2007; Mairal
et al. 2009b; Dong et al. 2011). Our experimental results
have shown that SSC–GSM based image restoration can
deliver images whose subjective and objective qualities are
often higher than other competing methods. Visual quality
improvements are attributed to better preservation of edge
sharpness and suppression of undesirable artifacts in the
restored images.

1.2 Relationship to Other Competing Approaches

The connection between sparse coding and Bayesian infer-
ence has been previously studied in sparse Bayesian learn-
ing (Tipping 2001; Wipf and Rao 2004, 2007) and more
recently in Bayesian compressive sensing (Ji et al. 2008),
latent variable Bayesianmodels for promoting sparsity (Wipf
et al. 2011). Despite offering a generic theoretical foundation
as well as promising results, the Bayesian inference tech-
niques along this line of research often involve potentially
expensive sampling (e.g., approximated solutions for some
choice of prior are achieved in Wipf et al. (2011)). By con-
trast, our SSC–GSM approach is conceptually much simpler
and admits analytical solutions involving iterative shrink-
age/filtering operators only. The other works closely related
to the proposed SSC–GSM are group sparse coding with a
Laplacian scale mixture (LSM) (Garrigues and Olshausen
2010)and field-of-GSM (Lyu and Simoncelli 2009). In (Gar-
rigues and Olshausen 2010), a LSM model with Gamma
distribution imposed over the scaling variables was used
to model the sparse coefficients. Approximated estimates
of the scale variables were obtained using the Expectation-
Maximization (EM) algorithm. Note that the scale vari-
ables derived in LSM (Garrigues and Olshausen 2010) is
very similar to the weights derived in the reweighted l1-
norm minimization (Candes et al. 2008). In contrast to
those approaches, a GSM model with nonzero means and
a noninformative sparse prior imposed over scaling vari-
ables are used to model the sparse coefficients here. Instead
of using the EM algorithm for an approximated solution,
our SSC–GSM offers an efficient inference of both scal-
ing variables and sparse coefficients via alternating opti-
mization method. In Lyu and Simoncelli (2009), a field of
FSM (FoGSM) model was constructed using the product
of two independent homogeneous Gaussian Markov ran-
dom fields (hGMRFs) to exploit the dependencies among
adjacent blocks. Despite similar motivations to exploit the
dependencies between the scaling variables, the techniques
used in Lyu and Simoncelli (2009) is significantly different
and requires a lot more computations than our SSC–GSM
formulation.

The proposed work is related to non-parametric Bayesian
dictionary learning (Zhou et al. 2012) or solving inverse
problems with piecewise linear estimators (Yu et al. 2012)
but ours is motivated by the connection between non-
local SSC strategy and local parametric GSM model.
When compared with previous works on image denois-
ing (e.g., K-SVD denoising (Elad and Aharon 2012), spa-
tially adaptive singular-value thresholding (Dong et al.
2013a) and Expected Patch Log Likelihood (EPLL) (Zoran
and Weiss 2011)), SSC–GSM targets at a more general
framework of combining adaptive sparse inference with
dictionary learning. SSC–GSM based image deblurring
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has also been experimentally shown superior to existing
patch-based methods (e.g., Iterative Decoupled Deblurring
BM3D (IDD-BM3D) (Danielyan et al. 2012) and Nonlo-
cal centralized sparse representation (NCSR) (Dong et al.
2013b)) and the gain in terms of ISNR is as much as
1.5dB over IDD-BM3D (Danielyan et al. 2012) for some
test images (e.g., butter f ly image - please refer to Fig.
5).

The reminder of this paper is organized as follows. In
Sect. 2, we formulate the sparse coding problem with GSM
model and generalize it into the new SSC–GSM model. In
Sect. 3, we elaborate on the details of how to solve SSC–
GSM by alternative minimization and emphasize the ana-
lytical solutions for both subproblems. In Sect. 4, we study
the application of SSC–GSM into image restoration and dis-
cuss efficient implementation of SSC–GSM based image
restoration algorithms. In Sect. 5, we report our experimen-
tal results in image denoising, image deblurring and image
super-resolution as supporting evidence for the effective-
ness of SSC–GSM model. In Sect. 6, we make some con-
clusions about the relationship of sparse coding to image
restoration as well as perspectives about the future direc-
tions.

2 Simultaneous Sparse Coding via Gaussian Scale
Mixture Modeling

2.1 Sparse Coding with Gaussian Scale Mixture Model

The basic idea behind sparse coding is to represent a signal
x ∈ R

n (n is the size of image patches) as the linear com-
bination of basis vectors (dictionary elements) Dα where
D ∈ R

n×K , n ≤ K is the dictionary and the coefficients
α ∈ R

K satisfies some sparsity constraint. In view of the
challenge with l0-optimization, it has been suggested that
the original nonconvex optimization is replaced by its l1-
counterpart:

α = argmin
α

‖x − Dα‖22 + λ‖α‖1, (1)

which is convex and easier to solve. Solving the l1-norm
minimization problem corresponds to the MAP inference of
α with an identically independent distributed (i.i.d) Lapla-

cian prior P(αi ) = 1
2θi

e
− |αi |

θi , wherein θi denotes the stan-
dard derivation of αi . It is easy to verify that the regulariza-
tion parameter should be set as λi = 2σ 2

n /θi when the i.i.d
Laplacian prior is used, where σ 2

n denotes the variance of
approximation errors. In practice, the variances θi ’s of each
αi are unknown and may not be easy to accurately estimated
from the observation x considering that real signal/image are
non-stationary and may be degraded by noise and blur.

In this paper we propose to model sparse coefficients α

with a GSM (Andrews and Mallows 1974) model. The GSM
model decomposes coefficient vector α into the point-wise
product of a Gaussian vector β and a hidden scalar multiplier
θ -i.e., αi = θiβi , where θi is the positive scaling variable
with probability P(θi ). Conditioned on θi , a coefficient αi is
Gaussian with the standard derivation of θi . Assuming that
θi are i.i.d and independent of βi , the GSM prior of α can be
expressed as

P(α) =
∏

i

P(αi ), P(αi ) =
∫ ∞

0
P(αi |θi )P(θi )dθi . (2)

As a family of probabilistic distributions, the GSMmodel
can contain many kurtotic distributions (e.g., the Laplacian,
Generalized Gaussian, and student’s t-distribution) given an
appropriate P(θi ).

Note that for most of choices of P(θi ) there is no analyti-
cal expression of P(αi ) and thus it is difficult to compute the
MAP estimates of αi . However, such difficulty can be over-
come by joint estimation of (αi , θi ). For a given observation
x = Dα + n, where n ∼ N (0, σ 2

n ) denotes the additive
Gaussian noise, we can formulate the following MAP esti-
mator

(α, θ) = argmax log P(x|α, θ)P(α, θ)

= argmax log P(x|α) + log P(α|θ) + log P(θ), (3)

where P(x|α) is the likelihood term characterized by
Gaussian function with variance σ 2

n . The prior term P(α|θ)

can be expressed as

P(α|θ)=
∏

i

P(αi |θi )=
∏

i

1

θi
√
2π

exp
(

− (αi − μi )
2

2θ2i

)
.

(4)

Instead of assuming the mean μi = 0, we propose to use
a biased-mean μi for αi here inspired by our previous work
NCSR (Dong et al. 2013b) (its estimation will be elaborated
later).

The adoption of GSM model allows us to generalize the
sparsity from statistical modeling of sparse coefficients α to
the specification of sparse prior P(θ). It has been suggested in
the literature that noninformative prior (Box and Tiao 2011)
P(θi ) ≈ 1

θi
—a.k.a. Jeffrey’s prior—is often the favorable

choice. Therefore, we have also adopted this option in this
work, which translates Eq. (3) into

(α, θ) = argmin
α,θ

1

2σ 2
n

‖x − Dα‖22 +
∑

i

log(θi
√
2π)

+
∑

i

(αi − μi )
2

2θ2i
+

∑

i

log θi , (5)

where we have used P(θ) = ∑
i P(θi ). Noting that Jeffrey’s

prior is unstable as θi → 0; sowe replace log θi by log(θi+ε)
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Fig. 1 Denoising performance comparison between the variants of the
proposed method. (a) Noisy image (σn = 20); (b) KSVD (Elad and
Aharon 2012) (PSNR=29.90dB); (c) the proposed method (without

nonlocal extension) uses the model of Eq. (7) (PSNR=30.18dB); (d)
the proposed SSC–GSM method (PSNR=30.84dB)

Table 1 Parameters setting for each experiment

Denoising Deblurring Super-resolution

Unifor. blur Gauss. blur Noiseless Noisy

η 0.35 0.11 0.12 0.05 1.25

where ε is a small positive number for numerical stability
and rewrite

∑
i log(θi + ε) into log(θ + ε) for notational

simplicity. The above equation can then be further translated
into the following sparse coding problem

(α, θ) = argmin
α,θ

‖x − Dα‖22 + 4σ 2
n log(θ + ε)

+σ 2
n

∑

i

(αi − μi )
2

θ2i
. (6)

Note that the matrix form of original GSM model is α =
Λβ andμ = Λγ whereΛ = diag(θi ) ∈ R

K×K is a diagonal
matrix characterizing the variance field for a chosen image
patch. Accordingly, the sparse coding problem in Eq. (6) can
be translated from (α,μ) domain to (β, γ ) domain as follows

(β, θ) = argmin
β,θ

‖x − DΛβ‖22 + 4σ 2
n log(θ + ε)

+σ 2
n ‖β − γ ‖22. (7)

In other words, the sparse coding formulation of GSM
model boils down to the joint estimation of β and θ . But
unlike (Portilla et al. 2003) that treats the multiplier as a hid-
den variable and cancel it out through integration (i.e., the
derivation of Bayes Least-Square estimate), we explicitly use
the field ofGaussian scalarmultiplier to characterize the vari-
ability and dependencies among local variances. Such sparse
coding formulation of GSM model is appealing because it
allows us to further exploit the power of GSM by connecting
it with structured sparsity as we will detail next.

2.2 Exploiting Structured Sparsity for the Estimation
of the Field of Scalar multipliers

A key observation behind our approach is that for a collection
of similar patches, their corresponding sparse coefficientsα’s
should be characterized by the same prior i.e., the probabil-
ity density function with the same θ and μ. Therefore, if one
considers the SSC of GSMmodels for a collection ofm sim-
ilar patches, the structured/group sparsity based extension of
Eq. (7) can be written as

(B, θ) = argmin
B,θ

‖X − DΛB‖2F + 4σ 2
n log(θ + ε)

+σ 2
n ‖B − Γ ‖2F , (8)

where X = [x1, ..., xm] denotes the collection of m sim-
ilar patches1, A = ΛB is the group representation of
GSM model for sparse coefficients and their correspond-
ing first-order and second-order statistics are characterized
by Γ = [γ 1, ..., γm] ∈ R

K×m and B = [β1, ...,βm] ∈
R

K×m respectively, wherein γ j = γ , j = 1, 2, . . . ,m.
Given a collection of m similar patches, we have adopted
the nonlocal means approach (Buades et al. 2005) for
estimating μ

μ =
m∑

j=1

w jα j , (9)

where w j ∼ exp(−‖x − x j‖22/h)) is the weighting coef-
ficient based on patch similarity. It follows from μ = Λγ

that

γ =
m∑

j=1

w jΛ
−1α j =

m∑

j=1

w jβ j . (10)

1 Throughout this paper, we will use subscript/superscript to denote
column/row vectors of a matrix respectively.
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Table 2 The PSNR (dB) results by different denoising methods

σw 5 10 15 20 50 100

Lena 38.86 38.68 36.07 35.83 34.43 34.14 33.20 32.88 29.07 28.95 25.37 25.96

38.70 38.85 35.81 35.96 34.09 34.23 32.92 33.08 28.42 29.05 25.66 25.91

Monarch 38.69 38.53 34.74 34.48 32.46 32.15 30.92 30.58 26.28 25.59 22.31 21.82

38.49 38.74 34.57 34.82 32.34 32.52 30.69 30.84 25.68 26.02 22.05 22.52

Barbara 38.38 38.44 35.07 34.95 33.27 32.96 31.97 31.53 27.51 27.13 23.05 23.56

38.36 38.65 34.98 35.27 33.02 33.32 31.72 32.06 27.10 27.60 23.30 24.05

Boat 37.50 37.34 34.10 33.99 32.29 32.17 31.02 30.87 26.89 26.76 23.71 23.94

37.35 37.42 33.90 33.95 32.03 32.11 30.74 30.82 26.60 26.79 23.64 23.90

C. Man 38.54 38.24 34.52 34.14 32.31 31.96 30.86 30.54 26.59 26.36 22.91 23.14

38.17 38.39 34.12 34.28 31.99 32.03 30.48 30.50 26.16 26.29 22.89 23.23

Couple 37.60 37.41 34.13 33.96 32.20 32.06 30.83 30.70 26.48 26.31 23.19 23.34

37.44 37.51 33.94 33.94 31.95 31.98 30.56 30.63 26.21 26.41 23.22 23.36

F. Print 36.67 36.71 32.65 32.57 30.46 30.31 28.97 28.78 24.53 24.21 21.07 21.18

36.81 36.84 32.70 32.63 30.46 30.36 28.99 28.87 24.53 24.50 21.29 21.54

Hill 37.31 37.16 33.84 33.68 32.06 31.89 30.85 30.71 27.13 26.99 24.10 24.30

37.17 37.23 33.69 33.70 31.86 31.89 30.61 30.69 26.86 27.05 24.13 24.24

House 40.13 40.00 37.06 37.05 35.31 35.32 34.03 34.16 29.53 29.90 25.20 25.63

39.91 40.02 36.80 36.79 35.11 35.03 33.97 34.00 29.63 30.36 25.65 26.70

Man 37.99 37.84 34.18 34.03 32.12 31.98 30.73 30.60 26.84 26.72 23.86 24.00

37.78 37.91 33.96 34.06 31.89 31.99 30.52 30.60 26.60 26.76 23.97 24.02

Peppers 38.30 38.15 34.94 34.80 33.01 32.87 31.61 31.47 26.94 26.87 23.05 23.14

38.06 38.22 34.66 34.83 32.70 32.87 31.26 31.41 26.53 26.82 22.64 23.34

Straw 35.81 35.92 31.46 31.39 29.13 28.95 27.52 27.36 22.79 22.67 19.42 19.50

35.87 36.04 31.50 31.56 29.13 29.16 27.50 27.51 22.48 22.84 19.23 19.52

Average 37.98 37.87 34.40 34.24 32.42 32.23 31.04 30.85 26.71 26.54 23.10 23.29

37.84 37.98 34.22 34.32 32.21 32.29 30.83 30.92 26.44 26.71 23.14 23.53

In each cell, the results of the four denoising methods are reported in the following order: top left-BM3D-SAPCA (Katkovnik et al. 2010); top
right-LSSC (Mairal et al. 2009b); bottom left-NCSR (Dong et al. 2013b); bottom right-proposed SSC-GSM. The highest PSNR values among four
are highlighted in bold in each cell

A practical issue of Eq. (10) is that the original patches x j

and x, as well as the sparse codes α j and α are not available,
and thus we cannot directly compute γ using the Eq. (10). To
avoid such difficulty, we can treat γ as another optimization
variable and jointly estimate it with the sparse coefficients
as

(B, θ , γ ) = argmin
B,θ ,γ

‖X − DΛB‖2F + 4σ 2
n log(θ + ε)

+σ 2
n ‖B − Γ ‖2F , s. t. γ = Bw, (11)

where the weights w = [w1, . . . , wm]T are pre-computed
using the initial estimate of the image. Using the alternative
directional multiplier method (ADMM) (Boyd et al. 2011),
Eq. (11) can be approximately solved. However, the com-
putational complexity for solving the sub-problem of γ is
high. Alternatively, we can overcome such difficulty by iter-
atively estimating γ from the current estimates of the sparse
coefficients without any sacrifice of the performance. Let

β j = β̂ j + e j , wherein e j denotes the estimation error of β j
and is assumed to beGaussian and zero-mean. Then, Eq. (10)
can be re-expressed as

γ =
m∑

j=1

w j β̂ j +
m∑

j=1

e j = γ̂ + nw, (12)

where nw denotes the estimation error of γ . As e j is assumed
to be zero-mean Gaussian, nw would be small. Thus, γ can
be readily obtained from the estimates of representation coef-
ficients β j . In practice, we recursively compute γ using the
previous estimates of β j after each iteration.

We call such new formulation in Eq. (8) Simultaneous
Sparse Coding for Gaussian Scalar Mixture (SSC–GSM)
and propose to develop computationally efficient solution to
this problem in the next section. Note that here the formu-
lation of SSC–GSM in Eq. (8) is for a given dictionary D.
However, the dictionary D can also be optimized for a fixed
pair of (B, θ) such that both dictionary learning and statisti-
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Fig. 2 Denoising performance comparison on the Lena image with
moderate noise corruption. (a) Original image; (b) Noisy image
(σn = 20); denoised images by (c) BM3D-SAPCA (Katkovnik et al.
2010) (PSNR=33.20dB, SSIM=0.8803); (d) LSSC (Mairal et al.

2009b) (PSNR=32.88dB, SSIM=0.8742); (e) NCSR (Dong et al.
2013b) (PSNR=32.92dB, SSIM=0.8760); (f) Proposed SSC–GSM
(PSNR=33.08, SSIM=0.8787)

cal modeling of sparse coefficients can be unified within the
framework of Eq. (8). Figure1 shows the denoising results
by the two proposed methods that use the model of Eqs. (7)
and (8), respectively. Both the two proposed methods use the
same dictionary D and γ . From Fig. 1 we can see that the
proposed method without nonlocal extension outperforms
the KSVD method (Elad and Aharon 2012). With the non-
local extension, the denoising performance of the proposed
method is significantly improved.

3 Solving Simultaneous Sparse Coding via Alternating
Minimization

In this section, we will show how to solve the optimization
problem in Eq. (8) by alternatively updating the estimates of
B and θ . The key observation lies in that the two subproblems
- minimization of B for a fixed θ and minimization of θ for
a fixed B - both can be efficiently solved. Specifically, both
subproblems admits closed-form solutions when the dictio-
nary is orthogonal.

3.1 Solving θ for a Fixed B

For a fixed B, the first subproblem simply becomes

θ = argmin
θ

‖X − DΛB‖2F + 4σ 2
n log(θ + ε), (13)

which can be rewritten as

θ = argmin
θ

‖X −
K∑

i=1

diβ iθi‖2F + 4σ 2
n log(θ + ε)

= argmin
θ

‖x̃ − D̃θ‖22 + 4σ 2
n log(θ + ε), (14)

where the long vector x̃ ∈R
nm denotes the vectorization of

the matrix X, the matrix D̃ = [d̃1, d̃2, . . . , d̃K ] ∈ R
mn×K

whose each column d̃ j denotes the vectorization of the rank-
one matrix diβ i , and β i ∈ R

m denotes the i-th row of matrix
B. For optimizing the nonconvex log penalty in Eq. (14), the
principled difference of convex functions (DC) programming
approach canbeused for a localminimum(Gasso et al. 2009).
It has also been shown in Candes et al. (2008) that the log
penalty can be linearly approximated and thus a local min-
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Fig. 3 Denoising performance comparison on the House image with
strong noise corruption. (a) Original image; (b) Noisy image (σn =
100); denoised images by (c) BM3D-SAPCA (Katkovnik et al.
2010) (PSNR=35.20dB, SSIM=0.6767); (d) LSSC (Mairal et al.

2009b) (PSNR=25.63dB, SSIM=0.7389); (e) NCSR (Dong et al.
2013b) (PSNR=25.65dB, SSIM=0.7434); (f) Proposed SSC–GSM
(PSNR=26.70, SSIM=0.7430)

imum of the nonconvex objective function can be obtained
by iteratively solving a weighted �1-penalized optimization
problem.

However, the optimization of Eq. (13) can bemuch simpli-
fied when the dictionary D is orthogonal (e.g., DCT or PCA
basis). In the case of orthogonal dictionary, Eq. (13) can be
rewritten as

θ = argmin
θ

‖A − ΛB‖2F + 4σ 2
n log(θ + ε), (15)

where we have used X = DA. For expression convenience,
we can rewrite Eq. (15) as

θ = argmin
θ

∑

i

aiθ
2
i + biθi + c log θi + ε, (16)

where ai = ‖β i‖22, bi = −2αi (β i )T and c = 4σ 2
n . Hence,

Eq. (16) can be decomposed into a sequence of scalar mini-
mization problem, i.e.,

θi = argmin
θi

aiθ
2
i + biθi + c log(θi + ε), (17)

which can be solved by taking d f (θi )
dθi

= 0, where f (θi )
denotes the right hand side of Eq. (17). We derive

g(θi ) = d f (θi )

dθi
= 2aiθi + bi + c

θi + ε
. (18)

By solving g(θi ) = 0, we obtain the following two sta-
tionary points of f (θi ), i.e.,

θi,1 = − bi
4ai

+
√
b2i
16

− c

2ai
, θi,2 = − bi

4ai
−

√
b2i
16

− c

2ai
,

(19)

when b2i /(16a
2
i ) − c/(2ai ) ≥ 0. Then, the global minimizer

of f (θi ) can be obtained by comparing f (0), f (θi,1) and
f (θi,2).
When b2i /(16a

2
i ) − c/(2ai ) < 0, there does not exist any

stationary points in the range of [0,∞). As ε is a small posi-
tive constant, g(0) = bi +c/ε is always positive. Thus, f (0)
is the globalminimizer for this case. In summary, the solution
to Eq. (17) can be written as
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Table 3 PSNR(dB) and SSIM results of the deblurred images

Images 9 × 9 uniform blur, σn = √
2

Butterfly Boats C. Man Starfish Parrot Lena Barbara Peppers Leaves House Average

FISTA (Beck and Teboulle 2009) 28.37 29.04 26.82 27.75 29.11 28.33 25.75 28.43 26.49 31.99 28.21

0.9058 0.8355 0.8278 0.8200 0.8750 0.8274 0.7440 0.8134 0.9023 0.8490 0.8400

IDD-BM3D (Danielyan et al. 2012) 29.21 31.20 28.56 29.48 31.06 29.70 27.98 29.62 29.38 34.44 30.06

0.9216 0.8820 0.8580 0.8640 0.9041 0.8654 0.8225 0.8422 0.9418 0.8786 0.8780

NCSR (Dong et al. 2013b) 29.68 31.08 28.62 30.28 31.95 29.96 28.10 29.66 29.98 34.31 30.36

0.9273 0.8810 0.8574 0.8807 0.9103 0.8676 0.8255 0.8402 0.9485 0.8755 0.8814

Proposed SSC-GSM 30.45 31.36 28.83 30.58 32.05 30.11 28.78 29.79 30.83 34.31 30.71

0.9377 0.8918 0.8669 0.8862 0.9145 0.8783 0.8465 0.8491 0.9582 0.8748 0.8904

Gaussian blur with standard deviation 1.6, σn = √
2

FISTA (Beck and Teboulle 2009) 30.36 29.36 26.80 29.65 31.23 29.47 25.03 29.42 29.33 31.50 29.22

0.9374 0.8509 0.8241 0.8878 0.9066 0.8537 0.7377 0.8349 0.9480 0.8254 0.8606

IDD-BM3D (Danielyan et al. 2012) 30.73 31.68 28.17 31.66 32.89 31.45 27.19 29.99 31.40 34.08 30.92

0.9469 0.9036 0.8705 0.9156 0.9319 0.9103 0.8231 0.8806 0.9639 0.8820 0.9029

NCSR (Dong et al. 2013b) 30.84 31.49 28.34 32.27 33.39 31.26 27.91 30.16 31.57 33.63 31.09

0.9476 0.8968 0.8591 0.9229 0.9354 0.9009 0.8304 0.8704 0.9648 0.8696 0.8998

Proposed SSC–GSM 31.12 31.78 28.40 32.26 33.30 31.52 28.42 30.18 32.02 34.65 31.37

0.9522 0.9054 0.8719 0.9245 0.9377 0.9109 0.8462 0.8770 0.9693 0.8834 0.9079

θi =
{
0, if b2i /(16a

2
i ) − c/(2ai ) < 0,

vi , otherwise
(20)

where

vi = argmin
θi

{ f (0), f (θi,1), f (θi,2)}. (21)

3.2 Solving B for a Fixed θ

The second subproblem is in fact even easier to solve. It takes
the following form

B = argmin ‖X − DΛB‖2F + σ 2
n ‖B − Γ ‖2F . (22)

Since both terms are l2, the closed-form solution to Eq. (22)
is essentially the classical Wiener filtering

B =
(
D̂
T
D̂ + σ 2

n I
)−1 (

D̂
T
X + Γ

)
, (23)

where D̂ = DΛ. Note that when D is orthogonal, Eq. (23)
can be further simplified into

B =
(
ΛTΛ + σ 2

n I
)−1 (

ΛTA + Γ
)

, (24)

where ΛTΛ + σ 2
n I is a diagonal matrix and therefore its

inverse can be easily computed.
By alternatively solving both subproblems of Eqs. (13)

and (22) for the estimates of Λ and B, the image data matrix
X can then be reconstructed as

X̂ = DΛ̂B̂, (25)

where Λ̂ and B̂ denotes the final estimates of Λ and B.

4 Application of Bayesian Structured Sparse Coding
into Image Restoration

In the previous sections, we have seen how to solve SSC–
GSM problem for a single image data matrix X (a col-
lection of image patches similar to a chosen exemplar).
In this section, we generalize such formulation to whole-
image reconstruction and study the applications of SSC–
GSM into image restoration including image denoising,
image deblurring and image superresolution. The standard
image degradation model is used here: y = Hx + w where
x ∈ R

N , y ∈ R
M denotes the original and degraded images

respectively, H ∈ R
N×M is the degradation matrix and

w is additive white Gaussian noise observing N (0, σ 2
n ).

The whole-image reconstruction problem can be formulated
as

(x, {Bl}, {θ l}) = argmin
x,{Bl },{θ l }

‖ y − Hx‖22

+
L∑

l=1

{η‖R̃x − DΛlBl‖2F

+ σ 2
n ‖B − Γ ‖2F + 4σ 2

n log(θ l + ε)}, (26)
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Fig. 4 Deblurring performance comparison on the Starfish image.
(a) Original image; (b) Noisy and blurred image (9 × 9 uniform
blur, σn = √

2); deblurred images by (c) FISTA (Beck and Teboulle
2009) (PSNR=27.75dB, SSIM=0.8200); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR=29.48 dB, SSIM=0.8640); (e) NCSR (Dong et al.
2013b) (PSNR=30.28dB, SSIM=0.8807); (f) Proposed SSC–GSM
(PSNR=30.58dB, SSIM=0.8862)

where R̃l x
.= [Rl1x,Rl2x, . . . ,Rlm x] ∈ R

n×m denotes
the data matrix formed by a group of image patches sim-
ilar to the l-th exemplar patch xl (including xl itself),
Rl ∈ R

n×N denotes a matrix extracting the l-th patch xl
from x, and L is the total number of exemplars extracted
from the reconstructed image x. For a given exemplar
patch xl , we search similar patches by performing k-
nearest-neighbor search within a large local window (e.g.,
40 × 40). As the original image is not available, we use
the current estimate of original image for patch matching,
i.e.,

S = {l j | ‖x̂l − x̂l j ‖22 < T }, (27)

where T denotes the pre-selected threshold and S denotes the
collection of positions of those similar patches. Alternatively,
we can form the sample set S by selecting the patches that are
within the first m (m = 40 in our implementation) closest to
x̂l . Invoking the principle of alternative optimization again,
we propose to solve thewhole-image reconstruction problem
in Eq. (26) by alternating the solutions to the following two
subproblems.

4.1 Solving x for a Fixed {Bl}, {θ l}

Let X̂l = DΛlBl . When {Bl} and {θ l} are fixed, so is {X̂l}.
Therefore, Eq. (26) reduces to the following l2-optimization
problem

x = argmin
x

‖ y − Hx‖22 +
L∑

l=1

η‖Rxl − X̂l‖2F , (28)

which admits the following closed-form solution

x=
(
HTH+η

L∑

l=1

R̃
T
l R̃l

)−1 (
HT y + η

L∑

l=1

R̃
T
l X̂l

)
, (29)

where R̃
T
l R̃l

.= ∑m
j=1 R

T
j R j , R̃

T
l X̂l

.= ∑m
j=1 R

T
j x̂l j and x̂l j

denotes the j-th column of matrix X̂l . Note that for image
denoising applicationwhereH = I - thematrix to be inversed
in Eq. (29)—is diagonal, and its inverse can be computed eas-
ily. Similar to the K-SVD approach, Eq. (29) can be com-
puted by weighted averaging each reconstructed patches sets
X̃l . For image deblurring and super-resolution applications,
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Fig. 5 Deblurring performance comparison on the Butterfly image.
(a) Original image; (b) Noisy and blurred image (9 × 9 uniform
blur, σn = √

2); deblurred images by (c) FISTA (Beck and Teboulle
2009) (PSNR=28.37dB, SSIM=0.9058); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR=29.21 dB, SSIM=0.9216); (e) NCSR (Dong et al.
2013b) (PSNR=29.68dB, SSIM=0.9273); (f) Proposed SSC–GSM
(PSNR=30.45dB, SSIM=0.9377)

Eq. (29) can be computed by using a conjugate gradient (CG)
algorithm.

4.2 Solving {Bl}, {θ l} for a Fixed x

When x is fixed, the first term in Eq. (26) goes away and the
subproblem boils down to a sequence of patch-level SSC–
GSM problems formulated for each exemplar - i.e.,

(Bl , θ l) = argmin
Bl ,θ l

‖Xl − DΛlBl‖2F + σ 2
n

η
‖B − Γ ‖2F

+4σ 2
n

η
log(θ l + ε), (30)

where we useXl = R̃l x. This is exactly the problemwe have
studied in the previous section.

One important issue of the SSC–GSM-based image
restoration is the selection of the dictionary. To adapt to the
local image structures, instead of learning an over-complete
dictionary for each dataset Xl as in Mairal et al. (2009b),

we learn the principle component analysis (PCA) based dic-
tionary for each dataset here (similar to NCSR (Dong et al.
2013b)). The use of the orthogonal dictionary much sim-
plifies the Bayesian inference of SSC–GSM. Putting things
together, a complete image restoration based on SSC–GSM
can be summarized as follows.

In Algorithm 1 we update Dl in every k0 to save compu-
tational complexity. We also found that Algorithm 1 empir-
ically converges even when the inner loop executes only one
iteration (i.e., J = 1). We note that the above algorithm can
lead to a variety of implementations depending the choice
of degradation matrix H. When H is an identity matrix,
Algorithm 1 is an image denoising algorithm using itera-
tive regularization technique (Xu and Osher 2007). When
H is a blur matrix or reduced blur matrix, Eq. (26) becomes
the standard formulation of non-blind image deblurring or
image super-resolution problem. The capability of capturing
rapidly-changing statistics in natural images - e.g., through
the use of GSM - canmake patch-based nonlocal imagemod-
els even more powerful.
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Algorithm 1 SSC–GSM based Image Restoration
• Initialization:

(a) set the initial estimate as x̂ = y for image denoising and
deblurring; or initialize x̂ by bicubic interpolation for image super-
resolution;

(b) Set parameters η;
(c) Obtain data matrices {Xl }’s from x̂ (though kNN search) for

each exemplar and compute the PCA basis {Dl } for each Xl .
• Outer loop (solve Eq. (26) by alternative optimization): Iterate on
k = 1, 2, . . . , kmax

(a) Image-to-patch transformation: obtain data matrices {Xl }’s for
each exemplar;

(b) Estimate biased means γ using Eq. (10) for each Xl ;
(c) Inner loop (solve Eq. (30) for each data Xl ): iterate on J =

1, 2, . . . , J ;
(I) update θ l for fixed Bl using Eq. (20);
(II) update Bl for fixed θ l using Eq. (24);

End for
(d) Reconstruct Xl ’s from θ l and Bl using Eq. (25);
(e) If mod(k, k0) = 0, update the PCA basis {Dl } for each Xl ;
(f) Patch-to-image transformation: obtain reconstructed x̂(k+1)

from {Xl }’s by solving Eq. (29);
End for

• Output: x̂(k+1).

5 Experimental Results

In this section, we report our experimental results of apply-
ing SSC–GSM based image restoration into image denois-
ing, image deblurring and super-resolution. The experimen-
tal setup of this work is similar to that in our previous work
on NCSR (Dong et al. 2013b). The basic parameter setting
of SSC–GSM is as follows: patch size—6 × 6, number of
similar blocks— K = 44; kmax = 14, k0 = 1 for image
denoising, and kmax = 450, k0 = 40 for image deblur-
ring and super-resolution. The regularization parameter η is
empirically set. Its values are shown in Table 1. To eval-
uate the quality of restored images, both PSNR and SSIM
(Wang et al. 2004) metrics are used. However, due to lim-
ited page space, we can only show part of the experimen-
tal results in this paper. More detailed comparisons and
complete experimental results are available at the follow-
ing website: http://see.xidian.edu.cn/faculty/wsdong/SSC_
GSM.htm.

Fig. 6 Deblurring performance comparison on the Barbara image.
(a) Original image; (b) Noisy and blurred image (Gaussian blur,
σn = √

2); deblurred images by (c) FISTA (Beck and Teboulle
2009) (PSNR=25.03dB, SSIM=0.7377); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR=27.19dB, SSIM=0.8231); (e) NCSR (Dong et al.
2013b) (PSNR=27.91dB, SSIM=0.8304); (f) Proposed SSC–GSM
(PSNR=28.42dB, SSIM=0.8462)
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Table 4 PSNR(dB) and SSIM results(luminance components) of the reconstructed HR images

Images Noiseless

Butterfly Parrot Plants Hat flower Raccoon Bike Pathenon Girl Average

TV (Marquina and Osher 2008) 26.56 27.85 0.8797 29.20 27.51 27.54 23.66 26.00 31.24 27.88

0.9000 0.8900 0.8909 0.8483 0.8148 0.7070 0.7582 0.7232 0.7880 0.8121

Sparsity (Yang et al. 2010) 24.70 28.70 31.55 29.63 27.87 28.51 23.23 26.27 32.87 28.15

0.8170 0.8823 0.8715 0.8288 0.7963 0.7273 0.7212 0.7025 0.8017 0.7943

NCSR (Dong et al. 2013b) 28.10 30.50 34.00 31.27 29.50 29.28 24.74 27.19 33.65 29.80

0.9156 0.9144 0.9180 0.8699 0.8558 0.7706 0.8027 0.7506 0.8273 0.8472

Proposed SSC–GSM 28.45 30.65 34.33 31.51 29.73 29.38 24.77 27.37 33.65 29.97

0.9272 0.9190 0.9236 0.8753 0.8638 0.7669 0.8062 0.7556 0.8236 0.8512

Noisy

TV (Marquina and Osher 2008) 25.49 27.01 29.70 28.13 26.57 26.74 23.11 25.35 29.86 26.88

0.8477 0.8139 0.8047 0.7701 0.7557 0.6632 0.7131 0.6697 0.7291 0.7519

Sparsity (Yang et al. 2010) 23.61 27.15 29.57 28.31 26.60 27.22 22.45 25.40 30.71 26.78

0.7532 0.7738 0.7700 0.7212 0.7052 0.6422 0.6477 0.6205 0.7051 0.7043

NCSR (Dong et al. 2013b) 26.86 29.51 31.73 29.94 28.08 28.03 23.80 26.38 32.03 28.48

0.8878 0.8768 0.8594 0.8238 0.7934 0.6812 0.7369 0.6992 0.7637 0.7914

Proposed SSC–GSM 27.00 29.59 31.93 30.21 28.03 28.02 23.82 26.56 32.00 28.57

0.8978 0.8853 0.8632 0.8354 0.7966 0.6747 0.7405 0.7066 0.7600 0.7956

5.1 Image Denoising

We have compared SSC–GSM based image denoising
method against three current state-of-the-art methods includ-
ing BM3D Image Denoising with Shape-Adaptive PCA
(BM3D-SAPCA) (Katkovnik et al. 2010) (it is an enhanced
version of BM3D denoising (Dabov et al. 2007) in which
local spatial adaptation is achieved by shape-adaptive PCA),
learned simultaneous sparse coding (LSSC) (Mairal et al.
2009b) and nonlocally centralized sparse representation
(NCSR) denoising (Dong et al. 2013b). As can be seen from
Table2, the proposed SSC–GSM has achieved highly com-
petitive denoising performance to other leading algorithms.
For the collection of 12 test images, BM3D-SAPCA and
SSC–GSM are mostly the best two performing methods - on
the average, SSC–GSM falls behind BM3D-SAPCA by less
than 0.2dB for three out of six noise levels but deliver at
least comparable for the other three. We note that the com-
plexity of BM3D-SAPCA is much higher than that of the
original BM3D; by contrast, our pureMatlab implementation
of SSC–GSM algorithm (without any C-coded optimization)
still runs reasonably fast. It takes around 20s to denoise a
256× 256 image on a PC with an Intel i7-2600 processor at
3.4GHz.

Figures. 2 and 3 include the visual comparison of denois-
ing results for two typical images (lena and house) at
moderate (σw = 20) and heavy (σw = 100) noise lev-

els respectively. It can be observed from Fig. 2 that BM3D-
SAPCA and SSC–GSM seem to deliver the best visual qual-
ity at the moderate noise level; by contrast, restored images
by LSSC and NCSR both suffer from noticeable artifacts
especially around the smooth areas close to the hat. When
the noise contamination is severe, the superiority of SSC–
GSM to other competing approaches is easier to justify—
as can be seen from Fig. 3, SSC–GSM achieves the most
visually pleasant restoration of the house image especially
when one inspects the zoomed portions of roof regions
closely.

5.2 Image Deblurring

We have also compared SSC–GSM based image deblur-
ring and three other competing approaches in the litera-
ture: constrained total variation image deblurring (denoted
by FISTA), Iterative Decoupled Deblurring BM3D (IDD-
BM3D) (Danielyan et al. 2012) and nonlocally centralized
sparse representation (NCSR) denoising (Dong et al. 2013b).
Note that the IDD-BM3D and NCSR are two recently devel-
oped state-of-the-art non-blind image deblurring approaches.
In our comparative study, two commonly-used blur kernal
i.e., 9× 9 uniform and 2D Gaussian with standard deviation
of 1.6; blurred images are further corrupted by additive white
Gaussian noise with variance of σn = √

2. Table 3 includes
the PSNR/SSIM comparison results for a collection of 11
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Fig. 7 Image super-resolution performance comparison on the Plant
image (scaling factor 3, σn = 0). (a) Original image; (b) Low-
resolution image; reconstructed images by (c) TV (Marquina and Osher
2008) (PSNR=31.34dB, SSIM=0.8797); (d) Sparsity-based (Yang

et al. 2010) (PSNR=31.55dB, SSIM=0.8964); (e) NCSR (Dong et al.
2013b) (PSNR=34.00dB, SSIM=0.9369); (f) Proposed SSC–GSM
(PSNR=34.33dB, SSIM=0.9236)

images among four competing methods. It can be observed
that SSC–GSM clearly outperforms all other three for 10
out of 11 images (the only exception is the house image
for which IDD-BM3D slightly outperforms SSC–GSM by
0.13dB). The gains are mostly impressive for butter f ly and
barbara imageswhich contain abundant strong edges or tex-
tures. One possible explanation is that SSC–GSM is capable
of striking a better tradeoff between exploiting local and non-
local dependencies within those images.

Figures 4, 5 and 6 show the visual comparison of deblur-
ring results for three test images: star f ish, butter f ly and
barbara respectively. For star f ish, it can be observed that
IDD-BM3D and NCSR achieve deblurred images with sim-
ilar quality (both noticeably better than FISTA); restored
image by SSC–GSM is arguably the most preferred when
compared against the original one (even though the PSNR
gain is impressive). For butter f ly and barbara, visual
quality improvements achieved by SSC–GSM are read-
ily observable—SSC–GSM is capable of both preserve the
sharpness of edges and suppress undesirable artifacts. Such

experimental findings clearly suggest that the SSC–GSM
model is a stronger prior for the class of photographic images
containing strong edges/textures.

5.3 Image Superresolution

In our study on image super-resolution, simulated LR images
are acquired from first applying a 7 × 7 uniform blur to the
HR image, then down-sampling the blurred image by a factor
of 3 along each dimension, and finally addingwhiteGaussian
noise with σ 2

n = 25 to the LR images. For color images, we
work with the luminance channel only; simple bicubic inter-
polationmethod is applied to the upsampling of chrominance
channels. Table 4 includes the PSNR/SSIM comparison for
a set of 9 test images among four competing approaches. It
can be seen that SSC–GSM outperforms others in most situ-
ations. Visual quality comparison as shown in Figs. 7 and 8
also justifies the superiority of SSC–GSM to other SR tech-
niques.
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Fig. 8 Image super-resolution performance comparison on the Hat
image (scaling factor 3, σn = 5). (a) Original image; (b) Low-
resolution image; reconstructed images by (c) TV (Marquina and Osher
2008) (PSNR=28.13dB, SSIM=0.7701); (d) Sparsity-based (Yang

et al. 2010) (PSNR=28.31dB, SSIM=0.7212); (e) NCSR (Dong et al.
2013b) (PSNR=29.94dB, SSIM=0.8238); (f) Proposed SSC–GSM
(PSNR=30.21dB, SSIM=0.8354)

Table 5 Running time (sec) and the number of iterations (in parenthesis) of the test methods on a 256× 256 test image on Intel Core i7-3770 CPU

Denoising
LSSC (Mairal et al. 2009b) NCSR (Dong et al. 2013b) BM3D-SAPCA (Katkovnik et al. 2010) SSC–GSM

− 179.0 127.7 19.0

(27) (−) (4)

Deblurring

FISTA (Beck and Teboulle 2009) NCSR (Dong et al. 2013b) BM3D-IDD (Danielyan et al. 2012) SSC–GSM

5.0 139.6 93.8 501.0

(120) (720) (200) (520)

Superresolution

TV (Marquina and Osher 2008) Sparsity (Yang et al. 2010) NCSR (Dong et al. 2013b) SSC–GSM

25.4 55.6 264.1 573.2

(−) (−) (760) (400)
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5.4 Running Time

The proposed SSC–GSM algorithm was implemented under
Matlab. The running time of the proposed method with com-
parison to other competing methods is reported in Table 5.
The LSSC method is implemented in other platform and
thus we don’t report its running time. For image denois-
ing, the proposed SSC–GSM method is about 6–9 times
faster than the NCSR and BM3D-SAPCA methods. For
image deblurring and superresolution, the proposed SSC–
GSM method is much slower than other competing meth-
ods, as it requires more than four hundreds iterations.
Since the patch grouping and the SSC for each exemplar
patch can be implemented in parallel, the proposed SSC–
GSM method can be much speeded up by using paral-
lel computation techniques (e.g., GPU). Another way to
accelerate the proposed method is to improve the conver-
gence speed of Algorithm 1, which we remain it as future
work.

6 Conclusions

In this paper, we proposed a new image model named SSC–
GSM that connects SSC with GSM and explore its applica-
tions into image restoration. The proposed SSC–GSMmodel
attempts to characterize both the biased-mean (like inNCSR)
and spatially-varying variance (like in GSM) of sparse coef-
ficients. It is shown that the formulated SSC–GSM problem,
thanks to the power of alternating direction method of mul-
tipliers - can be decomposed into two subproblems both of
which admit closed-form solutions when orthogonal basis is
used. When applied to image restoration, SSC–GSM leads
to computationally efficient algorithms involving iterative
shrinkage/filtering only.

Extensive experimental results have shown that SSC–
GSM can both preserve the sharpness of edges and suppress
undesirable artifacts more effectively than other competing
approaches. This work clearly shows the importance of spa-
tial adaptation regardless the underlying imagemodel is local
or nonlocal; in fact, local variations and nonlocal invariance
are two sides of the same coin - one has to take both of them
into account during the art of image modeling.

In addition to image restoration, SSC–GSM can also be
further studied along the line of dictionary learning. In our
current implementation, we use PCA basis for its facilitating
the derivation of analytical solutions. For non-unitary dictio-
nary, we can solve the SSC–GSM problem by reducing it to
iterative reweighted l1-minimization problem (Candes et al.
2008). It is also possible to incorporate dictionary D into
the optimization problem formulated in Eq. (5); and from
this perspective, we can view SSC–GSM as a generalization
of K-SVD algorithm. Joint optimization of dictionary and

sparse coefficients is a more difficult problem and deserves
more study. Finally, it is interesting to explore the relation-
ship of SSC–GSM to the ideas in Bayesian nonparametrics
(Polson and Scott 2010; Zhou et al. 2012) as well as the idea
of integrating over hidden variacles like BLS-GSM (Portilla
et al. 2003).

Acknowledgments The authors would like to thank Zhouchen Lin
of Peking University for helpful discussion. They would also like to
thank the three anonymous reviewers for their valuable comments and
constructive suggestions that have much improved the presentation of
this paper. This work was supported in part by the Major State Basic
Research Development Program of China (973 Program) under Grant
2013CB329402, in part by the Natural Science Foundation (NSF) of
China under Grant 61471281, Grant 61227004 and Grant 61390512,
in part by the Program for New Scientific and Technological Star of
Shaanxi Province under Grant 2014KJXX-46, in part by the Funda-
mental Research Funds of the Central Universities of China under Grant
BDY081424 and Grant K5051399020, and in part by NSF under Award
ECCS-0968730.

References

Aharon, M., Elad, M., & Bruckstein, A. (2012). The K-SVD: An algo-
rithm for designing of overcomplete dictionaries for sparse rep-
resentations. IEEE Transactions on Signal Processing, 54(11),
4311–4322.

Andrews, D. F., & Mallows, C. L. (1974). Scale mixtures of normal
distributions. Journal of the Royal Statistical Society. Series B
(Methodological), 36(1), 99–102.

Beck, A., & Teboulle, M. (2009). Fast gradient-based algorithms for
constrained total variation image denoising and deblurring prob-
lems. IEEE Transactions on Image Processing, 18(11), 2419–
2434.

Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical
analysis (Vol. 40). New York: Wiley.

Boyd, S., Parikh, N., Chu, E., Peleato, B., &Eckstein, J. (2011). Distrib-
uted optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends in Machine
Learning, 3(1), 1–122.

Buades, A., Coll, B., & Morel, J.-M. (2005). A non-local algorithm for
image denoising. CVPR, 2, 60–65.

Candes, E., Wakin, M., & Boyd, S. (2008). Enhancing sparsity by
reweighted l1 minimization. Journal ofFourierAnalysis andAppli-
cations, 14(5), 877–905.

Carlson, C., Adelson, E., &Anderson, C. (Jun 1985). System for coring
an image-representing signal. US Patent 4,523,230.

Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresh-
olding for image denoising and compression. IEEE Transactions
on Image Processing, 9(9), 1532–1546.

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image
denoising by sparse 3-d transform-domain collaborative filtering.
IEEE Transactions on Image Processing, 16(8), 2080–2095.

Danielyan, A., Katkovnik, V., & Egiazarian, K. (2012). Bm3d frames
and variational image deblurring. IEEE Transactions on Image
Processing, 21(4), 1715–1728.

Daubechies, I. (1988). Orthonormal bases of compactly supported
bases. Communications On Pure and Applied Mathematics, 41,
909–996.

Do,M. N., &Vetterli, M. (2005). The contourlet transform: An efficient
directional multiresolution image representation. IEEE Transac-
tions on Image Processing, 14(12), 2091–2106.

123



232 Int J Comput Vis (2015) 114:217–232

Dong, W., Li, X., Zhang, L., & Shi, G. (2011). Sparsity-based image
denoising via dictionary learning and structural clustering. In:
IEEE Conference on Computer Vision and Pattern Recognition.

Dong, W., Shi, G., & Li, X. (2013a). Nonlocal image restoration with
bilateral variance estimation: a low-rank approach. IEEE Transac-
tions on Image Processing, 22(2), 700–711.

Dong, W., Zhang, L., Shi, G., & Li, X. (2013b). Nonlocally centralized
sparse representation for image restoration. IEEE Transactions on
Image Processing, 22(4), 1620–1630.

Donoho, D., & Johnstone, I. (1994). Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81, 425–455.

Elad, M., & Aharon, M. (2012). Image denoising via sparse and redun-
dant representations over learned dictionaries. IEEE Transactions
on Image Processing, 21(9), 3850–3864.

Garrigues, P., & Olshausen, B. A. (2010). Group sparse coding with a
laplacian scale mixture prior. In: Advances in neural information
processing systems, (pp. 676–684).

Gasso, G., Rakotomamonjy, A., & Canu, S. (2009). Recovering sparse
signals with a certain family of nonconvex penalties and DC
programming. IEEE Transactions on Signal Processing, 57(12),
4686–4698.

Hocking, R. R. (1976). A biometrics invited paper: The analysis
and selection of variables in linear regression. Biometrics, 32(1),
1–49.

Ji, S., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE
Transactions on Signal Processing, 56(6), 2346–2356.

Katkovnik, V., Foi, A., Egiazarian, K., & Astola, J. (2010). From local
kernel to nonlocal multiple-model image denoising. International
Journal of Computer Vision, 86(1), 1–32.

Lyu, S., & Simoncelli, E. (2009). Modeling multiscale subbands of
photographic images with fields of gaussian scale mixtures. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 31(4),
693–706.

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009a). Online dictio-
nary learning for sparse coding. In: 2009 IEEE 26th International
Conference on Machine Learning, (pp. 689–696).

Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009b).
Non-local sparsemodels for image restoration. In: 2009 IEEE 12th
International Conference on Computer Vision, (pp. 2272–2279).

Mairal, J., Sapiro, G., & Elad, M. (2008). Learning multiscale sparse
representation for image and video restoration. SIAM Multiscale
Modeling and Simulation, 7(1), 214–241.

Mallat, S. (1989). Multiresolution approximations and wavelet ortho-
normal bases of l2(r). Transactions of the AmericanMathematical
Society, 315, 69–87.

Marquina, A., & Osher, S. J. (2008). Image super-resolution by tv-
regularization and bregman iteration. Journal of Scientific Com-
puting, 37(3), 367–382.

Mihcak, I. K. M.K., & Ramchandran, K. (1999). Local statistical mod-
eling of wavelet image coefficients and its application to denois-
ing. In: IEEE International Conference on Acoust. Speech Signal
Processing, (pp. 3253–3256).

Polson, N. G., & Scott, J. G. (2010). Shrink globally, act locally: sparse
bayesian regularization and prediction.Bayesian Statistics,9, 501–
538.

Portilla, J., Strela, V., Wainwright, M., & Simoncelli, E. (2003). Image
denoising using scalemixtures of gaussians in the wavelet domain.
IEEE Transactions on Image Processing, 12, 1338–1351.

Ramirez, I.,&Sapiro,G. (2012).Universal regularizers for robust sparse
coding and modeling. IEEE Transactions on Image Processing,
21(9), 3850–3864.

Said, A., & Pearlman, W. A. (1996). A new fast and efficient image
codec based on set partitioning in hierarchical trees. IEEE Trans-
actions on Circuits and Systems for Video Technology, 6, 243–250.

Shapiro, J. M. (1993). Embedded image coding using zerotrees of
wavelet coefficients. EEE Transactions on Acoustics, Speech and
Signal Processing, 41(12), 3445–3462.

Taubman, D., & Marcellin, M. (2001). JPEG2000: Image compression
fundamentals, standards, and practice. Norwell: Kluwer.

Tipping, M. (2001). Sparse bayesian learning and the relevance vector
machine. The Journal of Machine Learning Research, 1, 211–244.

Vetterli, M. (1986). Filter banks allowing perfect reconstruction. Signal
Processing, 10(3), 219–244.

Wang, Z., Bovik, A. C., Sheikh, H. R.,&Simoncelli, E. P. (2004). Image
quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4), 600–612.

Wipf, D. P., & Rao, B. D. (2004). Sparse bayesian learning for basis
selection. IEEE Transactions on Signal Processing, 52(8), 2153–
2164.

Wipf, D. P., & Rao, B. D. (2007). An empirical Bayesian strategy
for solving the simultaneous sparse approximation problem. IEEE
Transactions on Signal Processing, 55(7), 3704–3716.

Wipf,D. P., Rao,B.D.,&Nagarajan, S. (2011). Latent variable bayesian
models for promoting sparsity. IEEE Transactions on Information
Theory, 57(9), 6236–6255.

Xu, J., &Osher, S. (2007). Iterative regularization and nonlinear inverse
scale space applied towavelet-based denoising. IEEETransactions
on Image Processing, 16(2), 534–544.

Yang, J.,Wright, J., Huang, T., &Ma, Y. (2010). Image super-resolution
via sparse representation. IEEETransactions on ImageProcessing,
19(11), 2861–2873.

Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems
with piecewise linear estimators: from gaussian mixture models
to structured sparsity. IEEE Transactions on Image Processing,
21(5), 2481–2499.

Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., & Carin, L. (2009).
Non-parametric bayesian dictionary learning for sparse image rep-
resentation. In: Advances in neural information processing sys-
tems, (pp. 2295–2303).

Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., et al. (2012).
Nonparametric bayesian dictionary learning for analysis of noisy
and incomplete images. IEEE Transactions on Image Processing,
21(1), 130–144.

Zoran, D., & Weiss, Y. (2011). From learning models of natural image
patches to whole image restoration. In: Proceedings of ICCV.

123


	Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture
	Abstract 
	1 Introduction
	1.1 Background and Motivation
	1.2 Relationship to Other Competing Approaches

	2 Simultaneous Sparse Coding via Gaussian Scale Mixture Modeling
	2.1 Sparse Coding with Gaussian Scale Mixture Model
	2.2 Exploiting Structured Sparsity for the Estimation of the Field of Scalar multipliers

	3 Solving Simultaneous Sparse Coding via Alternating Minimization
	3.1 Solving theta for a Fixed B
	3.2 Solving B for a Fixed theta

	4 Application of Bayesian Structured Sparse Coding into Image Restoration
	4.1 Solving X for a Fixed B l, theta l
	4.2 Solving B l, theta l  for a Fixed X

	5 Experimental Results
	5.1 Image Denoising
	5.2 Image Deblurring
	5.3 Image Superresolution
	5.4 Running Time

	6 Conclusions
	Acknowledgments
	References




