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A New Family of Nonredundant Transforms Using
Hybrid Wavelets and Directional Filter Banks

Ramin Eslami, Member, IEEE, and Hayder Radha, Senior Member, IEEE

Abstract—We propose a new family of nonredundant geomet-
rical image transforms that are based on wavelets and directional
filter banks. We convert the wavelet basis functions in the finest
scales to a flexible and rich set of directional basis elements by em-
ploying directional filter banks, where we form a nonredundant
transform family, which exhibits both directional and nondirec-
tional basis functions. We demonstrate the potential of the pro-
posed transforms using nonlinear approximation. In addition, we
employ the proposed family in two key image processing applica-
tions, image coding and denoising, and show its efficiency for these
applications.

Index Terms—Directional filter banks (DFBs), geometrical
image transforms, image coding, image denoising, nonlinear
approximation (NLA), wavelet transform (WT).

I. INTRODUCTION

RECENTLY, there have been several studies showing that
separable 2-D wavelets fail to represent images optimally

[28], [40]. It is well known that the wavelet transform provides
efficient approximation of 1-D piecewise smooth signals; nev-
ertheless, since natural images possess 1-D singularities in the
form of regular edges, approximation behavior of 2-D wavelets
for images indicates the need for further improvement [8], [40].
As a means to offset this deficiency to some extent, most image
processing systems utilizing the wavelet transform, for instance
coding and denoising systems, usually take advantage of a post-
processing stage to treat the inter- and intrascale dependencies
amongst the wavelet coefficients [34]–[36]. However, this ap-
proach alone does not necessarily eliminate the demand and
need for more efficient image transforms.

To construct an efficient image transform, the following cri-
teria are critical. First, the transform should provide a good non-
linear approximation (NLA) [28] behavior. This requires the
transform to be direction sensitive (or geometric) in addition
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to being able to provide perfect reconstruction, multiresolution
representation, and localized analysis. Other important features
include the transform performance in terms of introducing a
minimum level of ringing artifacts during NLA. The second
criterion is that the transform should incur reasonable compu-
tational complexity. In the light of this property, fixed-proce-
dure transforms are more desirable in contrast to the adaptive
transforms, which normally impose more computations. Finally,
being nonredundant is a requirement in some image processing
tasks, most notably image coding.

In this paper, we introduce a new family of image transforms
fulfilling the aforementioned criteria, study their properties
and show their applications to coding and denoising of natural
images. This family is one of the first nonadaptive directional
approaches that is employed for image coding. The proposed
transform family is constructed using hybrid wavelets and
directional filter banks (HWD); thus, we refer to them as the
HWD transforms.

Other nonredundant geometrical image transforms include
bandelets [26], CRISP-contourlets [27], directionlets [39],
nonredundant complex wavelets [22], and multiresolution
direction filter banks [29]. A primary difference between
our proposed transform family and the other nonredundant
transforms mentioned above is the following. While HWD is
nonadaptive, it possesses a rich set of directions, and provides
an efficient NLA by taking advantage of the wavelet transform
in its construction, and, thus, it could be directly employed in
key image processing applications such as coding. We should
also note that there have been a few attempts in the past to
increase the directionality of wavelets using checkerboard filter
bank [3], [10]. Although these transforms provide nonadaptive
directional extension of wavelets, they are limited to a small
number of directions and do not have flexibility when compared
with our proposed scheme.

The paper is organized as follows. In the next section, we
briefly present background material and the notations required
for developing the proposed scheme. In Section III, we explain
the construction of the proposed HWD transform family. In Sec-
tion IV, we provide multiresolution analysis and efficient re-
alization of the transforms. The applications of the proposed
family as well as the experimental results are given in Section V,
followed by our main conclusions in Section VI.

II. BACKGROUND

A. Motivation

It is known that the wavelet transform (WT) fails to provide
optimal NLA decay for images containing regular regions of

(i.e., -order continuously differentiable regions)
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Fig. 1. (a) Two-dimensional separable wavelet transform. (b) The frequency partitioning of the separable wavelets. (c) Some basis functions corresponding to
Horizontal, Vertical, and Diagonal subbands of biorthogonal 9/7 wavelets (from left to right). Note that only positive values are shown.

separated by regular discontinuities (or edges) of . While
the optimal decay rate of NLA is of where is the
number of retained coefficients during NLA, wavelets provide
a decay rate of [26], [28]. This low decay rate is due
to the fact that the discontinuities in images yield many wavelet
coefficients of large magnitude. That is, the regularity over the
edges remains unseen from the WT. It turns out that there is
quite ample room to further improve the NLA decay rate of
wavelets.

In this paper, we attempt to pass wavelet coefficients through
a filter bank in order to combine the large wavelet coefficients
around discontinuities to achieve a more sparse representation.
Although it is possible to construct a totally different basis from
wavelets, we believe that improving wavelet basis has some key
advantages.

• The discrete wavelet transform can be realized using a crit-
ically sampled filter bank and, consequently, provides a
nonredundant image decomposition.

• Wavelets are popular in the image processing community
and there exists numerous algorithms and procedures uti-
lizing wavelets for image processing applications; hence,
one can benefit from these algorithms by cleverly adapting
them to the proposed transform family.

• Wavelet packets is an alternative to handle the problem
adaptively. One can also enjoy this feature of wavelets
when extending it for the proposed transforms.

Other leading approaches such as curvelets [8], [9] and con-
tourlets [15] use a similar idea of combining large transform
coefficients around discontinuities. The curvelet transform has
been proposed in the continuous domain, and, therefore, imple-
menting it in the discrete domain is challenging. The contourlet
transform employs a Laplacian pyramid [6] to extract edges of
an image and applies directional filter banks (DFB) [4] to all
bandpass outputs of the pyramid with decreasing number of di-
rections when moving to the coarser pyramid subbands. The
DFB stage attempts to decorrelate the dependencies found over
the edges in the bandpass outputs of the pyramid. The reason
for choosing the Laplacian pyramid as the first stage is that be-
cause its highpass channels are not subject to downsampling,
and, thus, there is no frequency scrambling for these channels.
This construction, however, leads to the existing redundancy of

the contourlet scheme, which makes this transform unsuitable
for image coding.

Below we outline the notations we use in the paper. Then we
very briefly present key aspects of the 2-D wavelet transform
and DFB, which are required for the realization of the HWD
family.

Notation: We denote a discrete -dimensional signal by
where , and its -transform as

, where is a
complex vector and . We also define as

, where is a
integer matrix with as its th column.

B. Two-Dimensional Separable Wavelets

The 2-D separable wavelet transform [28] is obtained from
the tensor product of the corresponding 1-D wavelets. Suppose
that and are 1-D lowpass and highpass
decomposition filters, then the lowpass and three highpass
channels corresponding to the Horizontal, Vertical, and Di-
agonal subbands for 2-D wavelets are obtained as Fig. 1(a)
illustrates. In this work, we denote the sampling matrix as

. Fig. 1(b) shows how the WT1 partitions the
frequency space. Since the WT uses a separable construction,
the basis functions are merely aligned in two horizontal and
vertical directions [see Fig. 1(c)]. As a result, wavelets have
poor directionality.

C. Directional Filter Banks

Bamberger and Smith introduced directional filter banks
(DFB) using quincunx and parallelogram filter banks [2], [4].
An improved version of the DFB using tree-structured filter
banks was developed recently [31]. In an -level DFB, the
frequency space is divided into wedge-shaped subbands [see
Fig. 2(a)]. The overall sampling matrices for channels

of such a DFB is [31]

for
for

1From hereafter, we mention 2-D separable wavelet transform as wavelet
transform (WT).
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Fig. 2. (a) Frequency response of a (full-tree) DFB decomposed in three levels.
(b) An example of the vertical directional filter bank (VDFB) using three levels.
(c) An example of the horizontal directional filter bank (HDFB) using three
levels.

where the channels correspond to the mostly
horizontal subbands and the channels indicate
the mostly vertical subbands.

We can also construct half-tree DFBs by just decomposing
the mostly vertical directions or the mostly horizontal direc-
tions, where we call the resulting schemes vertical DFB (VDFB)
and horizontal DFB (HDFB) as Fig. 2 depicts [18]. In VDFB
(HDFB), we stop iterating at subband after one level
and do not decompose the signal horizontally (vertically) fur-
ther. We call the subbands and as pseudodirectional sub-
bands.

The first level of the DFB is a simple quincunx filter bank
(QFB) with fan filters. Therefore, the overall sampling matrices
for VDFB and HDFB are

for subband '`
for

and

for
for subband '`

where is a quincunx sampling matrix. Note that we number
the directional channels in the half-tree DFBs similar to a
regular DFB. Moreover, we denote the overall reconstruction
filters by , for the DFB subband , and also
directional subbands in VDFB and HDFB with appropriate .
We also denote the synthesis fan filters resulting in subbands

and by and , respectively. Then, the func-
tions (and similarly

and in

VDFB and HDFB, where '`
and '` ) provide a directional
basis for . Note that if we utilize orthogonal fan filters
in the DFBs,2 the basis functions are orthogonal in the corre-
sponding DFB [14].

2By DFBs, we sometimes mean both full-tree and half-tree DFBs depending
on the context.

Since we use quincunx sampling at the first level, the shape
of subbands and in the spatial domain is diamond. We can
change the shape into a rectangle using a unimodular matrix and
shifting, as explained in [18].

III. HYBRID WAVELETS AND DFB

A. Construction

We propose to extend the directionality of the WT by em-
ploying the DFBs to the highpass channels of the WT. There-
fore, we use the name hybrid wavelets and directional filter
banks (HWD) transform family. Before describing the construc-
tion, we elaborate further regarding the proper use of the DFBs
in this scheme.

A major drawback of employing DFB is the pseudo-Gibbs
phenomena artifacts introduced when some of the transform co-
efficients are set to zero during NLA, coding [20], and denoising
[17]. Since in the DFB we need to use long filters for better di-
rectional resolution and since the basis functions are directional,
it turns out that the issue of ringing artifacts will be severer for
the DFB when compared with other subband schemes such as
WT. Do and Vetterli attempted to address this issue by applying
the DFB to the Laplacian pyramid in which the highpass chan-
nels are free from frequency scrambling [14], [15].

In previous work [20], [21], we applied DFBs to all the high-
pass channels of WT, which resulted in introducing many ar-
tifacts in the smooth regions during NLA and coding. In this
work, we address the problem as described below.

Conjecture 1: The main reason for the creation of ringing
artifacts when applying the DFB to the WT highpass channels
is employing the DFB to the coarser wavelet subbands.

This conjecture is based on the following reasons.
1) The human visual system is more sensitive to the low-fre-

quency portions of images. Consequently, the ringing arti-
facts resulting from the coarser wavelet scales due to ap-
plying DFBs render more irritant distortions. In addition,
smooth regions have nonzero transform coefficients mainly
in the coarser scales of the WT and are best represented by
wavelet basis functions. Therefore, it is crucial to retain
coarser wavelet subbands and do not change their basis el-
ements.

2) Although the frequency scrambling exists in all the levels
of wavelet highpass channels, it is worse for coarser levels
due to the lower frequency content of these subbands.

3) Suppose that a line segment of support size of ex-
ists in the input image and we apply a -level WT (we as-
sign level one to the finest resolution). Then the support
size of the line at a level is approximately

for the diagonal sub-
band (a similar expression is obtained for other subbands),
where is the length of the 1-D highpass filter .
Observe that the line segment becomes thicker in coarser
scales. Since we would also have larger directional basis
elements if we apply DFB to the coarser scales, we expect
introducing more distortion during nonlinear approxima-
tion.

4) Since large-size fan filters are employed in the DFB, the
size of coarser subbands usually becomes less than the size
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of the DFB filters applied to them. In this case, we take ad-
vantage of the periodic extension3 of the signal as we see
in the following example. Assume a 1-D -point signal

and a filter with length are given.
To obtain a filtered signal with size , we can concate-
nate two copies of to obtain . Now we can use

-point discrete Fourier transform (DFT) [30] to obtain
the filtered output and find as the first -point
of . One can prove that the -point DFT of
is expressed as

for
for

where is the -point
DFT of . Therefore, is proportional to the
concatenation of two copies of where the odd
samples are set to zero. It turns out that a distorted ver-
sion of the input signal is employed in filtering, which
makes the output distorted.

Now we explain how to construct the HWD transform family.
Since, in the WT, we already have horizontal and vertical sub-
bands, different paradigms could be considered to apply DFBs
to the finest subbands of wavelets. We propose two
types of HWD transforms.

• HWD Using Both Full-Tree and Half-Tree DFBs
(HWD-H).
1) Apply HDFBs with levels to vertical wavelet sub-

bands at levels . We denote these subbands
by '` .

2) Apply VDFBs with levels to horizontal wavelet sub-
bands at levels . We denote these subbands
by '` .

3) Apply (full-tree) DFBs with levels to diagonal
wavelet subbands at levels . We denote
these subbands by .

• HWD Using Full-Tree DFBs (HWD-F):4

Apply (full-tree) DFBs with levels to all three highpass
subbands of wavelets at levels . We denote the
subbands by , , and

corresponding to the vertical, horizontal, and
diagonal wavelet subbands to which we applied the DFBs.

A schematic diagram of the HWD-H transform is illustrated
in Fig. 3. Using the noble identities [38], we can move the DFB
filters before downsampling by in the WT. Consequently, we
can find the frequency partitioning by the HWD family as Fig. 4
demonstrates.

Remark 1 (Directional Subbands): In HWD-H, since we
apply VDFB to wavelet horizontal subband and HDFB to
wavelet vertical subband, we convert wavelet horizontal and
vertical subbands to mostly vertical and horizontal directional
subbands, respectively. However, in HWD-F, we have all set
of directions at each wavelet highpass subbands in the finest
scales.

3Note that if we use linear-phase filters, we can benefit from symmetric ex-
tension yielding less border artifact.

4We formerly called HWD-F and HWD-H as HWD type 3 and HWD type 2,
respectively [19].

Fig. 3. Schematic plot of the HWD-H transform using l = 3 directional
levels.

Similar to the DFB, the major direction represented by each
directional subband in HWD is perpendicular to the major axis
passing through the subband (in the Fourier domain) as Fig.
5 shows. As seen, a directional subband in the wavelet ver-
tical subband represents a mostly horizontal direction (see also
Fig. 7).

Remark 2 (Frequency Scrambling): Since our objective is the
construction of a critically sampled scheme, we cannot avoid
subsampling in the wavelet stage of the HWD transforms. As a
result, frequency scrambling in the wavelet highpass subbands
is inevitable. That is, the frequency regions of wavelet high-
pass subbands are subject to stretching and displacement due to
downsampling by . For instance, as Fig. 6 shows, the high-fre-
quency regions (frequencies near ) of the horizontal
wavelet subband are mapped to low-frequency regions (frequen-
cies near ) after downsampling. Therefore, to decrease
the aliasing due to downsampling, in HWD-H we decompose
horizontal wavelet subbands (at finest scales) into mostly ver-
tical directions (see Fig. 6) and vertical wavelet subbands into
mostly horizontal directions. Nonetheless, for some images with
a large amount of textures and oscillatory patterns, taking ad-
vantage of full-tree DFBs in all wavelet finest subbands as in
HWD-F, yields better results indicating the minor impact of the
frequency scrambling in this case.

In Fig. 7, we show some basis functions of the HWD family in
both the space and Fourier domains (note that the Fourier trans-
form of a basis function corresponds to its relevant subband).
As a matter of fact, in the HWD family, we convert the wavelet
basis functions at a few finest scales to more directional basis
elements. We also show a few basis functions of the DFB in
Fig. 7(c).

Remark 3: Note that under HWD-F, since some of the DFB
filters are oriented similar to the wavelet subbands, we have
more aliasing. Additionally, from Fig. 7(b) last row, we can see
that since the wavelet filters fail to perfectly separate frequency
regions, we have more leakage to low-frequency region in those
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Fig. 4. Frequency partitioning in the HWD family using l = 3 directional
levels.

Fig. 5. Directional subband of HWD (VD ). The shaded regions show the
frequency support of the subband and the solid line indicate its major direction
in the space domain.

subbands. Therefore, there exists a rather significant frequency
aliasing in some of the directional subbands of HWD-F where it
is a major cause of artifacts during applications when a number
of coefficients are set to zero.

Remark 4: As mentioned in Remark 1, the major direction
represented by each directional subband in HWD is the same as
the direction of the DFB subband that is employed in the HWD
subband. As a result, all three directional subbands , ,

and represent the same direction as subband of the DFB
stands for (see Fig. 2). We can see this fact from Fig. 7 when we
compare (a) and (c).

Note that both stages utilized in the HWD family (i.e., the
WT and DFB) are nonredundant and we can use any number of
directions in this construction. Consequently, the HWD trans-
forms provide a family of nonredundant, flexible, and rich direc-
tional and nondirectional basis elements leading to good NLA
decay for natural images, as we demonstrate in Section V.

B. HWD for Quincunx Wavelets

Similar to the HWD, we can add directionality to the quin-
cunx wavelet transform (QWT) to construct hybrid quincunx
wavelets and directional filter banks (HQWD). In contrast to
the WT, the QWT uses nonseparable diamond filters and has
just one highpass channel at each level. As a result, we propose
the HQWD transform as follows [see Fig. 8(a)].

Fig. 6. Effect of downsampling on the wavelet highpass subband which gives
rise to frequency scrambling. By applying VDFB to horizontal subband in the
HWD-H scheme, one can avoid inputting low-frequency regions of the wavelet
subband to the directional decomposition.

• HQWD:
Apply (full-tree) DFBs with levels to the highpass sub-
bands of quincunx wavelets at levels . We
denote the resulting subbands by .

Again, after using the noble identities, the frequency span of
the HQWD is obtained as Fig. 8(b) shows. A few basis functions
are depicted in Fig. 8(c). We consider the following quincunx
sampling matrices for odd and even QWT levels, respectively

and

In this case, at even levels (i.e., , ) we have the
equivalent overall sampling of .

C. Scaling Law and DFB Levels

Suppose that, in HWD, we apply -level DFBs to the high-
pass subbands of level in the WT. Then a transform coeffi-
cient in the directional subbands of the HWD will have support
size of about after the DFB reconstruction, where
the maximum size of the fan filter pair of the DFB are assumed

. Now, to obtain the basis element, we pass the resulting
coefficients through -level WT synthesis bank. Therefore, we
have an upsampling by , which expands the size of the input
by followed by filtering by the overall synthesis filters of
size about . As a result, the support size
of the basis elements in the directional subbands of the HWD
family is about , where are con-
stants.

Consequently, similar to contourlets, we can hold the para-
bolic scaling law of [8], [15] through de-
creasing the directional levels at every other coarser wavelet
scales up to level , for levels

.
Note that, in the case of the HQWD, the QWT synthesis bank

involves upsampling by that is equal to . Hence, the
support size of the basis elements in HQWD is about
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Fig. 7. (a) Some directional basis functions of the HWD-H (first two rows of which the last column corresponds to the pseudodirectional subbands) and HWD-F
(all except the pseudodirectional ones) when l = 3 (only positive values are shown). (b) The corresponding magnitudes of the Fourier transform of the basis
functions in (a). (c) Four basis functions of the DFB with l = 3.

Fig. 8. (a) HQWD transform. (b) The frequency partitioning in the HQWD with l = l = 3 directional levels. (c) Left: A basis function of the QWT. Right:
Some directional basis functions of HQWD.

. It follows that for the HQWD transform,
we should enforce the scaling rule

The number of directions in the DFB stage and the
number of finest wavelet scales that should be employed
in the HWD are dependent on the image size and the amount
of textures in the image. For texture images and images with

a significant amount of texture regions we use larger values
of directional levels. To satisfy item 3 in Conjecture 1 for a
given image of size and fan filter pair of the DFB with
maximum support size of , we should have

where is assumed 2 (the minimum number of directional
levels). Note that, for HQWD, we have .
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IV. ANALYSIS AND REALIZATION

A. Multiresolution Analysis

Having the multiresolution framework for 2-D separable
wavelets, we extend it to a new system to account for the
proposed schemes.

Suppose that we construct 2-D wavelets from 1-D scaling and
wavelet functions ( and ) as [28]

and

which form an orthonormal basis of . The 2-D multires-
olution is defined as , , where
denotes the corresponding 1-D approximation space and we
have the detail space connected to the approximation space
as the orthogonal component of . The
approximation spaces have the inclusion property of

, . Defining the 1-D wavelet at scale as
, the family is an or-

thonormal basis of . Note that we can also define the detail
orthogonal subspaces , ,
and , where .

Now, for instance, we consider the HWD-H transform, where
we apply -level DFBs to the detail multiresolution
space as (see Section II-C)

for

for

and

for or

Therefore, by using orthogonal DFBs, we span the detail sub-
spaces , , and into the following
orthogonal directional subspaces:

and

For the other levels in HWD-H, we have the same
functions as wavelets .

Remark 5: The family
provides an

orthonormal basis for . In addition, each

individual family , , and

provides an orthonormal basis for the detail

subspaces , , and , respectively.
Proof of the above statement is similar to that of the quad-

tree decomposition in wavelet packets [28]. Since we use or-
thonormal filters in the DFBs, we divide ,
into orthogonal detail subspaces after each directional level. As
a result, the proof is achieved through induction.

Remark 6: The family
together

with provide an orthonormal

basis for .
We can derive similar analyses for HWD-F and also HQWD.

B. Approximation

Owing to the similar structure of the proposed HWD-F to
contourlets [15], one can prove a similar NLA rate of decay for
HWD-F for a class of signals. In particular, it can be shown that
an image containing regions separated by curves when
decomposed by an HWD-F transform, follows the NLA decay
of

where is the reconstructed image using largest-magni-
tude transform coefficients and is a positive constant. Note
that the directional subbands in the HWD-F transform should
have as many directional vanishing moments as possible (ide-
ally have perfect flat passbands and are zero elsewhere) and the
wavelet scaling function should satisfy .

The proof is similar to the one provided for the contourlet
transform’s approximation decay [15]; however, we must em-
phasize a few points.

1) Generally, the curves in the image will have components
in all three wavelet highpass subbands where they are sub-
ject to being directionally decomposed by the DFBs. Thus,
each segment of curve will have just significant compo-
nents when it intersects a directional basis function ori-
ented alongside the curve. The fact that we have three high-
pass channels in the WT stage of HWD as opposed to the
one highpass subband of the pyramid stage of contourlets,
only changes the constant in the NLA decay rate.

2) The scales (wavelet subbands) in HWD-F mostly
stand for the smooth regions and the wavelet highpass sub-
bands furnish sufficient angular resolution for the curve
components (we assume that is large enough to cover
all fine scales of the WT).

3) Unlike the contourlet transform, since HWD take advan-
tage of wavelets with horizontal and vertical vanishing
moments and good NLA decay when compared with the
Laplacian pyramid in contourlets, HWD practically shows
better NLA decay in comparison to the contourlet trans-
form (see Section V-A).

In the next section, we provide an efficient realization for the
proposed transform family.
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Fig. 9. Left: Analysis bank of the triplet QFB. Right: The synthesis bank.

Fig. 10. Top: Fan filter pair using triplet filter bank [1]. Bottom: The fan filter pair using double-halfband filter bank [32].

C. Efficient Realization

While the WT canbe implemented efficientlyusing1-D filters,
the DFBs in the HWD need to be treated carefully. Although the
quincunx filter bank [38], which is the major building block of
a DFB, is a nonseparable filter bank system, it is possible to im-
plement it using ladder network and, hence, benefiting from low
computational cost similar to 2-D separable filtering.

Phoong et al. [32] proposed a two-channel filter bank using a
pair of halfband filters, which can be realized in the polyphase
domain using ladder network. This scheme, however, has some
restrictions. Ansari et al. [1] proposed a two-channel filter bank
using a triplet of halfband filters, where they could address the
restrictions in double-halfband filter bank. We use this scheme
to construct the DFBs.

The equivalent analysis band of the quincunx filter bank
(QFB) scheme using diamond filter is shown in Fig. 9. The
parameter is set to , to ensure that the 1-D lowpass
and highpass filters have the same magnitude of at

; a condition not achieved using the double-halfband
filter bank. To have the maximum regularity of the filters, we
use the Lagrange coefficients in the FIR 1-D -filter [1]

, where

To have a QFB with diamond filter pair, we use the transfor-
mation , whereas we use time-re-
versed versions of the -filters to obtain a QFB with fan fil-
ters: . The resulting filter pair
will have support sizes of and

.
Fig. 10 depicts the frequency responses of the fan filter pairs

using both double-halfband [with support size of (23, 23) and
(45, 45)] and triple-halfband [with support size of (29, 29) and
(43, 43)] ladder structures. It is clear that the triplet filter bank
yields smoother fan filters and consequently introduces less vis-
ible ringing artifacts when employed in the DFBs.

One of the issues affecting the efficiency of a transform is
the regularity of its filters [24]. Since HWD is composed of two
filter bank stages, its regularity is dependent on the regularity of
both wavelets and DFBs. While the regularity of DFBs needs a
comprehensive treatment, here we resort to performing a simple
test. The largest first-order difference of the coefficients of the
iterated filter bank in the lowpass channel (which leads to an
approximate of the scaling function) is an indication of the reg-
ularity [24], [25]. Here we measure the largest first-order differ-
ence when we apply an -level DFB to the wavelet scaling func-
tion. We approximate by seven iterations of the Daubecheis
9/7 analysis filter and apply both double- and tipple-halfband
DFBs with normalized filters and levels to . Table I shows
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TABLE I
LARGEST FIRST-ORDER DIFFERENCE OF THE DFB WHEN APPLIED TO '

DFB using normalized triple-halfband filters
DFB using normalized double-halfband filters

the maximum value of the first-order differences obtained for
all the DFB subbands in the and directions. As seen and
expected, it is clear that the DFB with triple-halfband filters has
more regularity.

In what follows, we examine the complexities of the proposed
schemes.

D. Complexity

Since the HWD transforms are composed of two stages, we
first express the complexities of wavelets and DFBs. Here we
evaluate the complexities of the analysis banks; similar expres-
sions for the synthesis banks can be derived.

1) WT: Suppose that we use analysis 1-D filters of a same even
length, , in the 2-D WT. Then the complexity of a single-
level WT is multiplications per input sample (MPS) and

additions per input sample (APS). If we use linear-
phase filters, we have MPS and APS in the WT.
For an octave-band WT, the complexity will be up to 4/3
times the complexity of a single-level WT [41].

2) DFB: Regarding the ladder network shown in Fig. 9, the
complexity of the QFB is evaluated as follows. Since at
each channel we decrease the number of samples by 2 and
we have three levels of separable convolution with 1-D

-filters having a length of , the complexity of the QFB
is MPS and APS. For the linear-phase
maximally flat filters that we use in this work, we have

MPS and APS for the
QFB. For a -level octave-band QWT, we have
times the complexity of the QFB.
The complexity of an -level DFB is times that of the QFB
(note that after each level the size of the signal is halved). A
half-tree DFB needs times the operations required
for the QFB.

3) HWD: Suppose that in the HWD (considering linear-phase
filters), we apply -level DFBs to the
th highpass channels of the WT. Then the complexity of

HWD-F is about

and

In the case of HWD-H, the complexity is about

and

and for the HQWD, we have

and

V. APPLICATIONS AND RESULTS

In this section, we show examples of the HWD transforms
and then present potential applications of the proposed trans-
forms. Particularly, we examine their applications in nonlinear
approximation, image coding, and image denoising.

Fig. 11 depicts two examples of the HWD transforms of the
Barbara and Boats images. In Fig. 11, the wavelet subbands are
separated with white lines and the directional subbands at the
two finest wavelet subbands are separated with gray lines. The
transform coefficients are clipped for better visualization.

A. Nonlinear Approximation

Nonlinear approximation (NLA) is an efficient approach to
measure the capability of a transform in sparse representation
of a signal. Having a good NLA behavior, a transform would
have potential in several signal processing applications such as
coding, denoising, and feature extraction.

We tested our proposed transforms using a variety of im-
ages and compared them with other transforms such as the WT
and contourlets [15]. We used five decomposition levels in all
methods and employed Daubechies 9/7 filters for the WT. For
the HWD transforms we set . For contourlets, we used

( corresponds to the finest
scale) directional levels. Fig. 12 shows two examples of the
NLA PSNR results versus the number of retained coefficients.
For the Barbara image, we used HWD-F with di-
rectional levels, while for the Peppers image (and other images
that contain less texture), we used HWD-H with .

The proposed HWD transform shows promising results for
the Barbara image (and other images with significant texture
content) where it consistently outperforms both wavelets and
contourlets. In particular, it achieves up to 1.6 dB (1.2 dB) im-
provement over the WT (contourlet transform). In the case of the
Peppers image, the HWD transform provides comparable result
to that of wavelets. Note that for many other images such as
Boats, Fingerprint, GoldHill, Mandrill, and texture images our
experiments indicated that HWD always provides better NLA
performance.

Some numerical values for the NLA of the Barbara image are
also given in Table II. To demonstrate the effect of employing
regular fan filters in HWD, we also provided the HWD results
when using double-halfband filters. The superior results espe-
cially for large values of are clear for the HWD transform
using maximally flat triple-halfband fan filters.

Fig. 13 shows the visual results of NLA of the Barbara image
when . As seen, the proposed HWD method provides
better detail in conjunction with an acceptable level of artifacts
in the result.
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Fig. 11. Left: HWD-F transform of the Barbara image. Here, J = 3, J = 2, and l = l = 3. Right: HWD-H transform of the Boats image with J = 3,
J = 2, and l = l = 2.

Fig. 12. Examples of the nonlinear approximation PSNR results. Left: NLA results for the Barbara image. Right: NLA results for the Peppers image.

TABLE II
PSNR VALUES OF THE NLA EXPERIMENT FOR THE BARBARA IMAGE

HWD using triple-halfband filters for the DFB
HWD using double-halfband filters for the DFB

Our experiments implied that the HWD-H is more appro-
priate for images that are mostly smooth, whereas HWD-F pro-
vides very good performance for images containing a significant
amount of fine textures.

We also performed NLA for the HQWD transform and
compared it with the quincunx wavelet transform. Table III
shows the PSNR values obtained for the Barbara image. As
seen, HQWD provides a growing improvement in the PSNR
values as the number of retained coefficients increases. In this

experiment, we used ten wavelet levels, and for the HQWD, we
used and .

B. Image Coding

Due to the good NLA performance of the HWD family, and
since this transform family is nonredundant, a potential key ap-
plication for the proposed transforms is image coding.

Although the NLA decay rate of wavelets for images is sub-
optimal, one can benefit from tree-based coding schemes to im-
prove this decay rate [11]. The SPIHT algorithm is an efficient
tree-based wavelet coding scheme [35]. In this scheme, inter-
scale dependencies are considered through the parent–children
relationships existing among the wavelet coefficients. Note that
although there are other superior schemes such as space-fre-
quency quantization [43] and WSFQ [42], since the scope of
this paper is not image coding, we just provide our preliminary
results using SPIHT coding algorithm.

To take advantage of the SPIHT scanning algorithm for the
HWD transform coefficients, a new parent–children relationship
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Fig. 13. Example of the NLA visual results for the Barbara image whenM = 8192.

TABLE III
PSNR VALUES OF THE NLA EXPERIMENT FOR

THE BARBARA IMAGE (QUINCUNX CASE)

should be considered. Suppose that we have an HWD trans-
form with levels. For the levels , we have
the same relationship as the one in the WT, and for the levels

, for each subband , , and we can
use a similar parent–children relationship as the one consid-
ered for the contourlet coefficients [33]. The problem appears
when we attempt to define the children of coefficients lying at
level . By applying DFBs to level , we almost re-
move the interscale dependencies that existed between wavelet
levels and . Nevertheless, we employ a suboptimal
but simple rearrangement algorithm to be able to apply a sim-
ilar SPIHT scanning algorithm as the one we use for wavelets
(seeAppendix I for details).

Although the described procedure is not optimal, we will
show that the low bit-rate SPIHT coding results are rather
promising for images with high amount of textures and details,
where we could capture more details in the HWD coded images
when compared with the wavelet coder. In our coding simu-
lation, we used the image Barbara and an image composed
of 16 textures [5]. For both images we used HWD-F with five
wavelet levels and , where for the Barbara image we
used directional levels and directional
levels for the Texture16 image. The number of directional levels
is handy optimized.

Fig. 14. Coding performance of the wavelet and HWD coders using SPIHT
algorithm in terms of PSNR versus the rate for the Barbara image.

In Fig. 14, we show the RD curves of the wavelet and pro-
posed coding schemes for the Barbara image. As seen, our
method provides better or comparable result for a wide range
of low bitrate when compared with the wavelet SPIHT coder.
Remarkably, unlike the NLA performance of HWD in compar-
ison to that of wavelets, the coding performance does not show
significant improvement, which indicates a need for more so-
phisticated algorithms that we would address later.

Fig. 15 shows visual coding results of the Barbara image at
0.25 bpp and the results for Texture16 at 0.1 bpp are depicted in
Fig. 16. As can be seen from the figures, more directional fea-
tures are retained when using the HWD transform (for example
table cover and chair in Fig. 15). Further, we have improved
PSNR values compared with those of the wavelet coder.
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Fig. 15. Coding results of the Barbara image at rate 0.25 bpp.

Fig. 16. Coding results of the Texture16 image at rate 0.1 bpp.

C. Image Denoising

Image denoising is another application of the HWD trans-
forms. We tested the proposed transforms for denoising of noisy
images corrupted with additive white Gaussian noise. For the
first part of simulation, we used a simple hard-thresholding rule
to shrink the transform coefficients. This way, we can observe
to what extent the transform is efficient without the use of more
complex shrinkage schemes. The threshold is selected as
[28] where is the standard deviation of the input noise and
is estimated using robust median estimator [16]. We also mirror
extended the images to remedy boundary artifacts. Although the
sizes of the noisy images are rather large, the PSNR values of
the denoising results change slightly (usually up to 0.1 dB)
when we use a different noise instance. Hence, to obtain more
accurate PSNR values, we repeated each denoising experiment
ten times and found the average PSNR values. We also clipped
the noisy images to set the pixel values in the allowable range
of 0 to 255.

Since the HWD transforms are shift variant, they introduce
many artifacts in the denoising results. Therefore, we also con-
structed translation-invariant HWD (TIHWD) transforms by
removing subsampling operations to improve the results. A del-
icate point in developing the TIHWD schemes, is that we should

not change the frequency partitioning of the HWD transforms
(see Fig. 4). As a result, we first upsample the DFB filters at
level by , where and
then remove the sampling operations using the generalized al-
gorithme à trous introduced in [17]. The redundancy ratio of
the TIHWD-F is and that of the

TIHWD-H is found to be .
In addition to the proposed methods, we also employed

the wavelet transform (WT), contourlet transform (CT) [15],
and adaptive wiener filter using “wiener2” function in Matlab.
Moreover, we used the curvelet transform via frequency wrap-
ping (CuTFW) with curvelets at the finest scale [7] (where we
found that it gives better denoising results than curvelets via un-
equispaced FFT approach), translation-invariant WT (TIWT)
[12], dual-tree complex wavelet transform (DTCWT) [23], and
translation-invariant CT (TICT) [17] using hard thresholding
for the sake of comparison. Except for the Barbara image
that we used HWD-F with , for the other images,
we used HWD-H with . Similar to the NLA
experiment, for contourlets we used
directional levels.

The left part of Table IV shows the PSNR values of the de-
noising results for different images and noise levels using hard
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Fig. 17. Denoising results of the Peppers image when � = 20.

TABLE IV
PSNR VALUES OF THE DENOISING EXPERIMENTS LEFT PART: DIFFERENT TRANSFORMS

WITH HARD THRESHOLDING. RIGHT PART: DIFFERENT DENOISING METHODS

thresholding. As seen, the HWD transform yields better PSNR
values than the CT. Moreover, for the Barbara image it achieves
superior results when compared with the WT. In the case of
translation-invariant (TI) denoising, we see that the proposed
TIHWD denoising scheme almost always provides better re-
sults (improvements up to 1.80 dB) when compared with the
TIWT and DTCWT schemes. Moreover, it outperforms curvelet
(CuTFW) denoising scheme.

As an example of the visual results for this part of denoising,
in Fig. 17, we show the TI denoising results of the Peppers
image when . We see that the TIHWD scheme provides
less visible artifacts in the denoised image.

In the second part of denoising experiment, we took advan-
tage of the bivariate shrinkage (BS) scheme with local variance
estimation [37] for TIHWD, where we also used this approach
for semi-translation invariant contourlet transform (STICT) in
[17]. For TIHWD (BS), we used a window size equal to (17,
17) for estimation of local variance whereas we used a window
with size (5, 5) for STICT (BS). We also compared our method
to some other leading denoising approaches: DTCWT (BS) [37]

and Bayes least squares using Gaussian scales mixtures (BLS-
GSM) [34].

The right part of Table IV shows PSNR values resulting
from the above methods. We see that for the image Barbara,
our TIHWD (BS) denoising scheme provides better results
whereas for other images it shows comparable performance
(within 0.25 dB). Our results are also comparable to those
reported in [13] for nonsubsampled contourlet transform using
local adaptive shrinkage (NSCT-LAS).

Fig. 18 demonstrates a visual example for this part for the
Barbara image and noise level of . It clearly shows
the superior performance of the TIHWD in retaining details
along with introducing fewer (or comparable) artifacts in the
result.

VI. CONCLUSION

We proposed a new family of nonredundant geometrical
image transforms by employing wavelets and directional filter
banks. We showed that, to avoid artifacts introduced during
nonlinear approximation (and, thus, coding and denoising),
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Fig. 18. Denoising results of the Barbara image when � = 40.

Fig. 19. Schematic diagram of the directional subbands using l levels (“S” is “H” or “V,” and d = 2 ). Left: Subbands obtained by applying HDFB to a wavelet
highpass channel. Middle: Subbands obtained by applying VDFB. Right: Subbands obtained by applying full-tree DFB.

we should change the wavelet basis functions in only a few
finest wavelet scales. This way, we take advantage of both
directional and nondirectional basis functions to efficiently
represent natural images. The proposed family benefit from
a number of essential characteristics. They are nonredundant
and at the same time provide promising nonlinear approxi-
mation behavior for natural images especially those having a
significant amount of periodic texture. Consequently, they have
potential for image coding. In the experiments, we employed
the proposed transform family in nonlinear approximation,
image coding, and image denoising and demonstrated their
efficiency in these applications.

APPENDIX I

The Rearrangement Algorithm: For each of the three types of
the subbands in the levels , we utilize its individual
algorithm described as follows (see Fig. 19).

1) For subbands to which a HDFB is applied: Suppose we
decompose a wavelet subband of size , into

horizontal directional subbands ( ,
“ ” is either “ ” or “ ”), each having a size of ,
where , and . Now we combine
these directional subbands columnwise to form as:

, where de-
notes the column of subband . To form a subband
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almost similar to a wavelet subband, we combine the re-
sulting matrix with row-wise to obtain

, where denotes the row of sub-
band and denotes the transpose operation.

2) For subbands to which a VDFB is applied: Here, we use the
dual procedure of the one we used to rearrange the HDFB
subbands. That is, we first combine the vertical directional
subbands row-wise, and then we interlace the resulting ma-
trix with , columnwise to obtain .

3) For subbands to which a full DFB is applied: In this
case, we first combine the horizontal subbands to
obtain .
Now we divide the vertical subbands into two
parts and combine each part row-wise separately
as , and

, where
. Interlacing the resulting matrices colum-

nwise, we obtain , which is the same size as
. Finally,

we interlace and row-wise and obtain
.
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