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Abstract

The heavy-tailed distribution of gradients in natural scenes have proven effective
priors for a range of problems such as denoising, deblurringand super-resolution.
These distributions are well modeled by a hyper-Laplacian

(

p(x) ∝ e−k|x|α
)

, typ-
ically with 0.5 ≤ α ≤ 0.8. However, the use of sparse distributions makes the
problem non-convex and impractically slow to solve for multi-megapixel images.
In this paper we describe a deconvolution approach that is several orders of mag-
nitude faster than existing techniques that use hyper-Laplacian priors. We adopt
an alternating minimization scheme where one of the two phases is a non-convex
problem that is separable over pixels. This per-pixel sub-problem may be solved
with a lookup table (LUT). Alternatively, for two specific values ofα, 1/2 and2/3
an analytic solution can be found, by finding the roots of a cubic and quartic poly-
nomial, respectively. Our approach (using either LUTs or analytic formulae) is
able to deconvolve a 1 megapixel image in less than∼3 seconds, achieving com-
parable quality to existing methods such as iteratively reweighted least squares
(IRLS) that take∼20 minutes. Furthermore, our method is quite general and can
easily be extended to related image processing problems, beyond the deconvolu-
tion application demonstrated.

1 Introduction

Natural image statistics are a powerful tool in image processing, computer vision and computational
photography. Denoising [14], deblurring [3], transparency separation [11] and super-resolution [20],
are all tasks that are inherently ill-posed. Priors based onnatural image statistics can regularize these
problems to yield high-quality results. However, digital cameras now have sensors that record im-
ages with tens of megapixels (MP), e.g. the latest Canon DSLRs have over 20MP. Solving the above
tasks for such images in a reasonable time frame (i.e. a few minutes or less), poses a severe challenge
to existing algorithms. In this paper we focus on one particular problem: non-blind deconvolution,
and propose an algorithm that is practical for very large images while still yielding high quality
results.

Numerous deconvolution approaches exist, varying greatlyin their speed and sophistication. Simple
filtering operations are very fast but typically yield poor results. Most of the best-performing ap-
proaches solve globally for the corrected image, encouraging the marginal statistics of a set of filter
outputs to match those of uncorrupted images, which act as a prior to regularize the problem. For
these methods, a trade-off exists between accurately modeling the image statistics and being able to
solve the ensuing optimization problem efficiently. If the marginal distributions are assumed to be
Gaussian, a closed-form solution exists in the frequency domain and FFTs can be used to recover the
image very quickly. However, real-world images typically have marginals that are non-Gaussian, as
shown in Fig. 1, and thus the output is often of mediocre quality. A common approach is to assume
the marginals have a Laplacian distribution. This allows a number of fastℓ1 and related TV-norm
methods [17, 22] to be deployed, which give good results in a reasonable time. However, studies
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Figure 1: A hyper-Laplacian with exponentα = 2/3 is a better model of image gradients than
a Laplacian or a Gaussian.Left: A typical real-world scene.Right: The empirical distribution
of gradients in the scene (blue), along with a Gaussian fit (cyan), a Laplacian fit (red) and a hyper-
Laplacian withα = 2/3 (green). Note that the hyper-Laplacian fits the empirical distribution closely,
particularly in the tails.

of real-world images have shown the marginal distributionshave significantly heavier tails than a
Laplacian, being well modeled by a hyper-Laplacian [4, 10, 18]. Although such priors give the best
quality results, they are typically far slower than methodsthat use either Gaussian or Laplacian pri-
ors. This is a direct consequence of the problem becoming non-convex for hyper-Laplacians with
α < 1, meaning that many of the fastℓ1 or ℓ2 tricks are no longer applicable. Instead, standard
optimization methods such as conjugate gradient (CG) must be used. One variant that works well
in practice is iteratively reweighted least squares (IRLS)[19] that solves a series of weighted least-
squares problems with CG, each one anℓ2 approximation to the non-convex problem at the current
point. In both cases, typically hundreds of CG iterations are needed, each involving an expensive
convolution of the blur kernel with the current image estimate.

In this paper we introduce an efficient scheme for non-blind deconvolution of images using a hyper-
Laplacian image prior for0 < α ≤ 1. Our algorithm uses an alternating minimization scheme where
the non-convex part of the problem is solved in one phase, followed by a quadratic phase which can
be efficiently solved in the frequency domain using FFTs. We focus on the first phase where at each
pixel we are required to solve a non-convex separable minimization. We present two approaches to
solving this sub-problem. The first uses a lookup table (LUT); the second is an analytic approach
specific to two values ofα. For α = 1/2 the global minima can be determined by finding the
roots of a cubic polynomial analytically. In theα = 2/3 case, the polynomial is a quartic whose
roots can also be found efficiently in closed-form. Both IRLSand our approach solve a series of
approximations to the original problem. However, in our method each approximation is solved by
alternating between the two phases above a few times, thus avoiding the expensive CG descent used
by IRLS. This allows our scheme to operate several orders of magnitude faster. Although we focus
on the problem of non-blind deconvolution, it would be straightforward to adapt our algorithm to
other related problems, such as denoising or super-resolution.

1.1 Related Work
Hyper-Laplacian image priors have been used in a range of settings: super-resolution [20], trans-
parency separation [11] and motion deblurring [9]. In work directly relevant to ours, Levinet al. [10]
and Joshiet al. [7] have applied them to non-blind deconvolution problems using IRLS to solve for
the deblurred image. Other types of sparse image prior include: Gaussian Scale Mixtures (GSM)
[21], which have been used for image deblurring [3] and denoising [14] and student-T distributions
for denoising [25, 16]. With the exception of [14], these methods use CG and thus are slow.

The alternating minimization that we adopt is a common technique, known as half-quadratic split-
ting, originally proposed by Geman and colleagues [5, 6]. Recently, Wanget al. [22] showed how it
could be used with a total-variation (TV) norm to deconvolveimages. Our approach is closely re-
lated to this work: we also use a half-quadratic minimization, but the per-pixel sub-problem is quite
different. With the TV norm it can be solved with a straightforward shrinkage operation. In our
work, as a consequence of using a sparse prior, the problem isnon-convex and solving it efficiently
is one of the main contributions of this paper.

Chartrand [1, 2] has introduced non-convex compressive sensing, where the usualℓ1 norm on the
signal to be recovered is replaced with aℓp quasi-norm, wherep < 1. Similar to our approach, a
splitting scheme is used, resulting in a non-convex per-pixel sub-problem. To solve this, a Huber
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approximation (see [1]) to the quasi-norm is used, allowingthe derivation of a generalized shrinkage
operator to solve the sub-problem efficiently. However, this approximates the original sub-problem,
unlike our approach.

2 Algorithm

We now introduce the non-blind deconvolution problem.x is the original uncorrupted linear
grayscale image ofN pixels; y is an image degraded by blur and/or noise, which we assume to
be produced by convolvingx with a blur kernelk and adding zero mean Gaussian noise. We as-
sume thaty andk are given and seek to reconstructx. Given the ill-posed nature of the task, we
regularize using a penalty function|.|α that acts on the output of a set of filtersf1, . . . , fj applied
to x. A weighting termλ controls the strength of the regularization. From a probabilistic perspec-
tive, we seek the MAP estimate ofx: p(x|y,k) ∝ p(y|x,k)p(x), the first term being a Gaussian
likelihood and second being the hyper-Laplacian image prior. Maximizing p(x|y,k) is equivalent
to minimizing the cost− log p(x|y,k):

min
x

N
∑

i=1





λ

2
(x ⊕ k − y)2i +

J
∑

j=1

|(x ⊕ fj)i|α


 (1)

wherei is the pixel index, and⊕ is the 2-dimensional convolution operator. For simplicity, we
use two first-order derivative filtersf1 = [1 -1] andf2 = [1 -1]T , although additional ones can
easily be added (e.g. learned filters [13, 16], or higher order derivatives). For brevity, we denote
F j

i x ≡ (x ⊕ fj)i for j = 1, .., J .

Using the half-quadratic penalty method [5, 6, 22], we now introduce auxiliary variablesw1
i andw2

i

(together denoted asw) at each pixel that allow us to move theF j
i x terms outside the|.|α expression,

giving a new cost function:

min
x,w

∑

i

(

λ

2
(x ⊕ k − y)2i +

β

2

(

‖F 1
i x − w1

i ‖2
2 + ‖F 2

i x − w2
i ‖2

2

)

+ |w1
i |α + |w2

i |α
)

(2)

whereβ is a weight that we will vary during the optimization, as described in Section 2.3. As
β → ∞, the solution of Eqn. 2 converges to that of Eqn. 1. Minimizing Eqn. 2 for a fixedβ can
be performed by alternating between two steps, one where we solve for x, given values ofw and
vice-versa. The novel part of our algorithm lies in thew sub-problem, but first we briefly describe
thex sub-problem and its straightforward solution.

2.1 x sub-problem

Given a fixed value ofw from the previous iteration, Eqn. 2 is quadratic inx. The optimalx is thus:
(

F 1T

F 1 + F 2T

F 2 +
λ

β
KT K

)

x = F 1T

w1 + F 2T

w2 +
λ

β
KT y (3)

whereKx ≡ x ⊕ k. Assuming circular boundary conditions, we can apply 2D FFT’s which diago-
nalize the convolution matricesF 1, F 2,K, enabling us to find the optimalx directly:

x = F−1

(F(F 1)∗ ◦ F(w1) + F(F 2)∗ ◦ F(w2) + (λ/β)F(K)∗ ◦ F(y)

F(F 1)∗ ◦ F(F 1) + F(F 2)∗ ◦ F(F 2) + (λ/β)F(K)∗ ◦ F(K)

)

(4)

where∗ is the complex conjugate and◦ denotes component-wise multiplication. The division is also
performed component-wise. Solving Eqn. 4 requires only 3 FFT’s at each iteration since many of
the terms can be precomputed. The form of this sub-problem isidentical to that of [22].

2.2 w sub-problem

Given a fixedx, finding the optimalw consists of solving2N independent 1D problems of the form:

w∗ = arg min
w

|w|α +
β

2
(w − v)2 (5)

wherev ≡ F j
i x. We now describe two approaches to findingw∗.

2.2.1 Lookup table

For a fixed value ofα, w∗ in Eqn. 5 only depends on two variables,β andv, hence can easily be
tabulated off-line to form a lookup table. We numerically solve Eqn. 5 for 10, 000 different values
of v over the range encountered in our problem (−0.6 ≤ v ≤ 0.6). This is repeated for differentβ
values, namely integer powers of

√
2 between1 and256. Although the LUT gives an approximate

solution, it allows thew sub-problem to be solved very quickly for anyα > 0.
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2.2.2 Analytic solution

For some specific values ofα, it is possible to derive exact analytical solutions to thew sub-problem.
For α = 2, the sub-problem is quadratic and thus easily solved. Ifα = 1, Eqn. 5 reduces to a 1-D
shrinkage operation [22]. For some special cases of1 < α < 2, there exist analytic solutions [26].
Here, we address the more challenging case ofα < 1 and we now describe a way to solve Eqn. 5
for two special cases ofα = 1/2 andα = 2/3. For non-zerow, setting the derivative of Eqn. 5 w.r.t
w to zero gives:

α|w|α−1sign(w) + β(w − v) = 0 (6)
Forα = 1/2, this becomes, with successive simplification:

|w|−1/2sign(w) + 2β(w − v) = 0 (7)

|w|−1 = 4β2(v − w)2 (8)

w3 − 2vw2 + v2w − sign(w)/4β2 = 0 (9)

At first sight Eqn. 9 appears to be two different cubic equations with the±1/4β2 term, however we
need only consider one of these asv is fixed andw∗ must lie between0 andv. Hence we can replace
sign(w) with sign(v) in Eqn. 9:

w3 − 2vw2 + v2w − sign(v)/4β2 = 0 (10)
For the caseα = 2/3, using a similar derivation, we arrive at:

w4 − 3vw3 + 3v2w2 − v3w +
8

27β3
= 0 (11)

there being no sign(w) term as it conveniently cancels in this case. Hencew∗, the solution of Eqn. 5,
is either0 or a root of the cubic polynomial in Eqn. 10 forα = 1/2, or equivalently a root of the
quartic polynomial in Eqn. 10 forα = 2/3. Although it is tempting to try the same manipulation
for α = 3/4, this results in a 5th order polynomial, which can only be solved numerically.

Finding the roots of the cubic and quartic polynomials: Analytic formulae exist for the roots
of cubic and quartic polynomials [23, 24] and they form the basis of our approach, as detailed in
Algorithms 2 and 3. In both the cubic and quartic cases, the computational bottleneck is the cube
root operation. An alternative way of finding the roots of thepolynomials Eqn. 10 and Eqn. 11 is
to use a numerical root-finder such as Newton-Raphson. In ourexperiments, we found Newton-
Raphson to be slower and less accurate than either the analytic method or the LUT approach (see
[8] for futher details).

Selecting the correct roots: Given the roots of the polynomial, we need to determine whichone
corresponds to the global minima of Eqn. 5. Whenα = 1/2, the resulting cubic equation can have:
(a) 3 imaginary roots; (b)2 imaginary roots and1 real root, or (c)3 real roots. In the case of (a),
the |w|α term means Eqn. 5 has positive derivatives around0 and the lack of real roots implies the
derivative never becomes negative, thusw∗ = 0. For (b), we need to compare the costs of the single
real root andw = 0, an operation that can be efficiently performed using Eqn. 13below. In (c)
we have3 real roots. Examining Eqn. 7 and Eqn. 8, we see that the squaring operation introduces
a spurious root abovev whenv > 0, and belowv whenv < 0. This root can be ignored, since
w∗ must lie between0 andv. The cost function in Eqn. 5 has a local maximum near0 and a local
minimum between this local maximum andv. Hence of the2 remaining roots, the one further from
0 will have a lower cost. Finally, we need to compare the cost ofthis root with that ofw = 0 using
Eqn. 13.

We can use similar arguments for theα = 2/3 case. Here we can potentially have: (a)4 imaginary
roots, (b)2 imaginary and2 real roots, or (c)4 real roots. In (a),w∗ = 0 is the only solution. For
(b), we pick the larger of the2 real roots and compare the costs withw = 0 using Eqn. 13, similar
to the case of3 real roots for the cubic. Case (c) never occurs: the final quartic polynomial Eqn. 11
was derived with a cubing operation from the analytic derivative. This introduces2 spurious roots
into the final solution, both of which are imaginary, thus only cases (a) and (b) are possible.

In both the cubic and quartic cases, we need an efficient way topick betweenw = 0 and a real root
that is between0 andv. We now describe a direct mechanism for doing this which doesnot involve
the expensive computation of the cost function in Eqn. 51.

Let r be the non-zero real root.0 must be chosen if it has lower cost in Eqn. 5. This implies:

1This requires the calculation of a fractional power, which is slow, particularly if α = 2/3.
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|r|α +
β

2
(r − v)2 >

βv2

2

sign(r)|r|α−1 +
β

2
(r − 2v) ≶ 0 , r ≶ 0 (12)

Since we are only considering roots of the polynomial, we canuse Eqn. 6 to eliminate sign(r)|r|α−1

from Eqn. 6 and Eqn. 12, yielding the condition:

r ≶ 2v
(α − 1)

(α − 2)
, v ≷ 0 (13)

since sign(r) = sign(v). Sow∗ = r if r is between2v/3 andv in theα = 1/2 case or between
v/2 andv in theα = 2/3 case. Otherwisew∗ = 0. Using this result, pickingw∗ can be efficiently
coded, e.g. lines 12–16 of Algorithm 2. Overall, the analytic approach is slower than the LUT, but
it gives an exact solution to thew sub-problem.

2.3 Summary of algorithm

We now give the overall algorithm using a LUT for thew sub-problem. As outlined in Algorithm
1 below, we minimize Eqn. 2 by alternating thex andw sub-problemsT times, before increasing
the value ofβ and repeating. Starting with some small valueβ0 we scale it by a factorβInc until it
exceeds some fixed valueβMax. In practice, we find that a single inner iteration suffices (T = 1),
although more can sometimes be needed whenβ is small.

Algorithm 1 Fast image deconvolution using hyper-Laplacian priors
Require: Blurred imagey, kernelk, regularization weightλ, exponentα (¿0)
Require: β regime parameters:β0, βInc, βMax

Require: Number of inner iterationsT .
1: β = β0, x = y
2: Precompute constant terms in Eqn. 4.
3: while β < βMax do
4: iter = 0
5: for i = 1 to T do
6: Givenx, solve Eqn. 5 for all pixels using a LUT to givew
7: Givenw, solve Eqn. 4 to givex
8: end for
9: β = βInc · β

10: end while
11: return Deconvolved imagex

As with any non-convex optimization problem, it is difficultto derive any guarantees regarding the
convergence of Algorithm 1. However, we can be sure that the global optimum of each sub-problem
will be found, given the fixedx andw from the previous iteration. Like other methods that use
this form of alternating minimization [5, 6, 22], there is little theoretical guidance for setting theβ
schedule. We find that the simple scheme shown in Algorithm 1 works well to minimize Eqn. 2 and
its proxy Eqn. 1. The experiments in Section 3 show our schemeachieves very similar SNR levels
to IRLS, but at a greatly lower computational cost.

3 Experiments
We evaluate the deconvolution performance of our algorithmon images, comparing them to numer-
ous other methods: (i)ℓ2 (Gaussian) prior on image gradients; (ii) Lucy-Richardson[15]; (iii) the
algorithm of Wanget al. [22] using a total variation (TV) norm prior and (iv) a variant of [22] using
an ℓ1 (Laplacian) prior; (v) the IRLS approach of Levinet al. [10] using a hyper-Laplacian prior
with α = 1/2, 2/3, 4/5. Note that only IRLS and our method use a prior withα < 1. For the
IRLS scheme, we used the implementation of [10] with defaultparameters, the only change being
the removal of higher order derivative filters to enable a direct comparison with other approaches.
Note that IRLS andℓ2 directly minimize Eqn. 1, while our method, and the TV andℓ1 approaches of
[22] minimize the cost in Eqn. 2, usingT = 1, β0 = 1, βInc = 2

√
2, βMax = 256. In our approach,

we useα = 1/2 andα = 2/3, and compare the performance of the LUT and analytic methodsas
well. All runs were performed with multithreading enabled (over 4 CPU cores).
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We evaluate the algorithms using a set of blurry images, created in the following way. 7 in-focus
grayscale real-world images were downloaded from the web. They were then blurred by real-world
camera shake kernels from [12]. 1% Gaussian noise was added,followed by quantization to 255
discrete values. In any practical deconvolution setting the blur kernel is never perfectly known.
Therefore, the kernel passed to the algorithms was a minor perturbation of the true kernel, to mimic
kernel estimation errors. In experiments with non-perturbed kernels (not shown), the results are
similar to those in Tables 3 and 1 but with slightly higher SNRlevels. See Fig. 2 for an example of a
kernel from [12] and its perturbed version. Our evaluation metric was the SNR between the original

imagex̂ and the deconvolved outputx, defined as10 log10
‖x̂−µ(x̂)‖2

‖x̂−x‖2 , µ(x̂) being the mean of̂x.

In Table 1 we compare the algorithms on 7 different images, all blurred with the same 19×19 kernel.
For each algorithm we exhaustively searched over differentregularization weightsλ to find the value
that gave the best SNR performance, as reported in the table.In Table 3 we evaluate the algorithms
with the same 512×512 image blurred by 8 different kernels (from [12]) of varying size. Again,
the optimal value ofλ for each kernel/algorithm combination was chosen from a range of values
based on SNR performance. Table 2 shows the running time of several algorithms on images up
to 3072×3072 pixels. Figure 2 shows a larger 27×27 blur being deconvolved from two example
images, comparing the output of different methods.

The tables and figures show our method withα = 2/3 and IRLS withα = 4/5 yielding higher
quality results than other methods. However, our algorithmis around 70 to 350 times faster than
IRLS depending on whether the analytic or LUT method is used.This speedup factor is independent
of image size, as shown by Table 2. Theℓ1 method of [22] is the best of the other methods, being
of comparable speed to ours but achieving lower SNR scores. The SNR results for our method are
almost the same whether we use LUTs or analytic approach. Hence, in practice, the LUT method is
preferred, since it is approximately 5 times faster than theanalytic method and can be used for any
value ofα.

Image IRLS IRLS IRLS Ours Ours
# Blurry ℓ2 Lucy TV ℓ1 α=1/2 α=2/3 α=4/5 α=1/2 α=2/3
1 6.42 14.13 12.54 15.87 16.18 14.61 15.45 16.04 16.05 16.44
2 10.73 17.56 15.15 19.37 19.86 18.43 19.37 20.00 19.78 20.26
3 12.45 19.30 16.68 21.83 22.77 21.53 22.62 22.95 23.26 23.27
4 8.51 16.02 14.27 17.66 18.02 16.34 17.31 17.98 17.70 18.17
5 12.74 16.59 13.28 19.34 20.25 19.12 19.99 20.20 21.28 21.00
6 10.85 15.46 12.00 17.13 17.59 15.59 16.58 17.04 17.79 17.89
7 11.76 17.40 15.22 18.58 18.85 17.08 17.99 18.61 18.58 18.96

Av. SNR gain 6.14 3.67 8.05 8.58 7.03 7.98 8.48 8.71 8.93
Av. Time 79.85 1.55 0.66 0.75 354 354 354 L:1.01 L:1.00

(secs) A:5.27 A:4.08

Table 1: Comparison of SNRs and running time of 9 different methods for the deconvolution of
7 576×864 images, blurred with the same 19×19 kernel. L=Lookup table, A=Analytic. The best
performing algorithm for each kernel is shown in bold. Our algorithm withα = 2/3 beats IRLS
with α = 4/5, as well as being much faster. On average, both these methodsoutperformℓ1, demon-
strating the benefits of a sparse prior.

Image ℓ1 IRLS Ours (LUT) Ours (Analytic)
size α=4/5 α=2/3 α=2/3

256×256 0.24 78.14 0.42 0.7
512×512 0.47 256.87 0.55 2.28

1024×1024 2.34 1281.3 2.78 10.87
2048×2048 9.34 4935 10.72 44.64
3072×3072 22.40 - 24.07 100.42

Table 2: Run-times of different methods for a range of image sizes, using a 13×13 kernel. Our LUT
algorithm is more than100 times faster than the IRLS method of [10].

4 Discussion

We have described an image deconvolution scheme that is fast, conceptually simple and yields
high quality results. Our algorithm takes a novel approach to the non-convex optimization prob-
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Figure 2: Crops from two images (#1 & #5) being deconvolved by4 different algorithms, including
ours using a 27×27 kernel (#7). In the bottom left inset, we show the originalkernel from [12]
(lower) and the perturbed version provided to the algorithms (upper), to make the problem more
realistic. This figure is best viewed on screen, rather than in print.
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Kernel IRLS IRLS IRLS Ours Ours
# / size Blurry ℓ2 Lucy TV ℓ1 α=1/2 α=2/3 α=4/5 α=1/2 α=2/3

#1: 13×13 10.69 17.22 14.49 19.21 19.41 17.20 18.22 18.87 19.36 19.66
#2: 15×15 11.28 16.14 13.81 17.94 18.29 16.17 17.26 18.02 18.14 18.64
#3: 17×17 8.93 14.94 12.16 16.50 16.86 15.34 16.36 16.99 16.73 17.25
#4: 19×19 10.13 15.27 12.38 16.83 17.25 15.97 16.98 17.57 17.29 17.67
#5: 21×21 9.26 16.55 13.60 18.72 18.83 17.23 18.36 18.88 19.11 19.34
#6: 23×23 7.87 15.40 13.32 17.01 17.42 15.66 16.73 17.40 17.26 17.77
#7: 27×27 6.76 13.81 11.55 15.42 15.69 14.59 15.68 16.38 15.92 16.29
#8: 41×41 6.00 12.80 11.19 13.53 13.62 12.68 13.60 14.25 13.73 13.68
Av. SNR gain 6.40 3.95 8.03 8.31 6.74 7.78 8.43 8.33 8.67
Av. Time 57.44 1.22 0.50 0.55 271 271 271 L:0.81 L:0.78

(sec) A:2.15 A:2.23

Table 3: Comparison of SNRs and running time of 9 different methods for the deconvolution of a
512×512 image blurred by 7 different kernels. L=Lookup table, A=Analytic. Our algorithm beats
all other methods in terms of quality, with the exception of IRLS on the largest kernel size. However,
our algorithm is far faster than IRLS, being comparable in speed to theℓ1 approach.

lem arising from the use of a hyper-Laplacian prior, by usinga splitting approach that allows the
non-convexity to become separable over pixels. Using a LUT to solve this sub-problem allows for
orders of magnitude speedup in the solution over existing methods. Our Matlab implementation is
available online athttp://cs.nyu.edu/ ˜ dilip/wordpress/?page_id=122 .

A potential drawback to our method, common to the TV andℓ1 approaches of [22], is its use of
frequency domain operations which assume circular boundary conditions, something not present in
real images. These give rise to boundary artifacts which canbe overcome to some extend with edge
tapering operations. However, our algorithm is suitable for very large images where the boundaries
are a small fraction of the overall image.

Although we focus on deconvolution, our scheme can be adapted to a range of other problems which
rely on natural image statistics. For example, by settingk = 1 the algorithm can be used to denoise,
or if k is a defocus kernel it can be used for super-resolution. The speed offered by our algorithm
makes it practical to perform these operations on the multi-megapixel images from modern cameras.

Algorithm 2: Solve Eqn. 5 forα = 1/2

Require: Target valuev, Weightβ
1: ǫ = 10−6

2: {Compute intermediary termsm, t1, t2, t3}
3: m = −sign(v)/4β2

4: t1 = 2v/3

5: t2 =
3
√

−27m − 2v3 + 3
√

3
√

27m2 + 4mv3

6: t3 = v2/t2
7: {Compute 3 roots,r1, r2, r3:}
8: r1 = t1 + 1/(3 · 21/3) · t2 + 21/3/3 · t3
9: r2 = t1 − (1 −

√
3i)/(6 · 21/3) · t2

− (1 +
√

3i)/(3 · 22/3) · t3
10: r3 = t1 − (1 +

√
3i)/(6 · 21/3) · t2

− (1 −
√

3i)/(3 · 22/3) · t3
11: {Pick global minimum from(0, r1, r2, r3)}
12: r = [r1, r2, r3]
13: c1 = (abs (imag (r)) < ǫ) {Root must be real}
14: c2 = real (r)sign (v) > (2/3 · abs (v))

{Root must obey bound of Eqn. 13}
15: c3 = real (r)sign (v) < abs (v) {Root< v}
16: w∗= max((c1&c2&c3)real (r)sign (v))sign (v)

return w∗

Algorithm 3: Solve Eqn. 5 forα = 2/3

Require: Target valuev, Weightβ
1: ǫ = 10−6

2: {Compute intermediary termsm, t1, . . . , t7:}
3: m = 8/(27β3)
4: t1 = −9/8 · v2

5: t2 = v3/4
6: t3 = −1/8 · mv2

7: t4 = −t3/2 +
√

−m3/27 + m2v4/256

8: t5 = 3
√

t4
9: t6 = 2(−5/18 · t1 + t5 + m/(3 · t5))

10: t7 =
√

t1/3 + t6
11: {Compute 4 roots,r1, r2, r3, r4:}
12: r1 = 3v/4 + (t7 +

√

−(t1 + t6 + t2/t7))/2

13: r2 = 3v/4 + (t7 −
√

−(t1 + t6 + t2/t7))/2

14: r3 = 3v/4 + (−t7 +
√

−(t1 + t6 − t2/t7))/2

15: r4 = 3v/4 + (−t7 −
√

−(t1 + t6 − t2/t7))/2
16: {Pick global minimum from(0, r1, r2, r3, r4)}
17: r = [r1, r2, r3, r4]
18: c1 = (abs (imag (r)) < ǫ) {Root must be real}
19: c2 = real (r)sign (v) > (1/2 · abs (v))

{Root must obey bound in Eqn. 13}
20: c3 = real (r)sign (v) < abs (v) {Root< v}
21: w∗ = max((c1&c2&c3)real (r)sign (v))sign (v)

return w∗
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