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Abstract

This paper proposes an algorithm for interactive image segmentation. The task is formulated as a

problem of graph-based transductive classification. Specifically, given an image window, the color of

each pixel in it will be reconstructed linearly with those of the remaining pixels in this window. The

optimal reconstruction weights will be kept unchanged to linearly reconstruct their class labels. The label

reconstruction errors are estimated in each window. These errors are further collected together to develop

a learning model. Then, the class information about the user specified foreground and background

pixels are integrated into a regularization framework. Under this framework, a globally optimal labeling

is finally obtained. The computational complexity is analyzed, and an approach for speeding up the

algorithm is presented. Comparative experimental results illustrate the validity of our algorithm.

Index Terms

Interactive image segmentation, multiple linear reconstructions in windows, comparative study.

I. INTRODUCTION

Image segmentation is to partition the image grid into different regions such that the pixels in

each region share the same visual characteristics. Although the past decades have yielded many

approaches, automatically segmenting natural images is still a difficult task. The difficulties lie
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in two aspects. On the low level, it is difficult to model properly the visual elements including

colors, textures and other Gestalt characteristics in the image to be segmented. On the high

level, it is difficult to group truthfully the visual patterns into the needed object regions. In the

absence of prior knowledge about the image, none of these two aspects can be easily solved. In

practice, such difficulties encourages the development of interactive image segmentation [2], [3],

[9], [11], [16], [19], [24], [25]. With human computer interface, the user can label the foreground

and background. In view of pattern classification, such a labeling is fundamentally important

as it helps to reduce the complexity of pattern modeling as well as the ambiguity of pattern

grouping.

In the past decade, some interactive image segmentation algorithms have been developed [2],

[3], [9], [16], [4], [18], [19], [22]. Most of the early techniques such as intelligent scissors [11],

[12], snapping [5] and jet-stream [13] require the user to label the pixels near the boundary of

the desired objects. For example, when using the intelligent scissors, the user should gaze at the

region near the boundary. Labeling in this way is not an easy work.

Recently, the style of user interaction has been significantly improved. Within the interface of

the system, the user can drag the mouse to scribe zig-zag lines on the foreground and background

regions. Such an improvement of interaction is beneficial from the development of the region-

based algorithms. Typical algorithms in this family include magic wand, intelligent paint [1], [15],

sketch-based interaction [20], Graph Cut (GC) [2], [3], Grabcut [16], lazy snapping [9], Random

Walks (RW) [6], image matting [4], [7], [18], [19], [22], [27], distance-based interaction [14],

and so on. Taking the pixels covered by the zig-zag lines as training examples, the segmentation

task can be naturally addressed as a problem of pattern classification. This provides the work

setting for applying statistical inference or machine learning algorithms to interactive image

segmentation [9], [16], [22], [6].

Inferring on Markov Random Field (MRF) constructed on the image grid is a fundamental

approach to pixel labeling [8]. The optimization task can be solved via maxflow/mincut [2],

[3], [9], [16] or belief propagation [22]. The algorithm is effective in most cases. However, if

the foreground and background regions have similar colors, the gap of the likelihood costs in

these regions will be decreased. This will degrade the quality of segmentation. Fig. 1 gives an

example. We see some background regions are incorrectly segmented.

Recently, Gray proposed Random Walks (RW) for interactive image segmentation [6]. In RW,

October 20, 2011 DRAFT



3

Fig. 1. Left: the mushroom image [10] with user specified strokes; Right: the segmentation obtained by GC. Some background

regions are incorrectly segmented into the foreground object.

Fig. 2. Left: the leopard image [10] with user specified strokes; Right: the segmentation obtained by RW. The tail is incorrectly

segmented.

each unlabeled pixel will be assigned the same label of the seed point (one of the user labeled

pixels) that a random walker starting from this unlabeled pixel reaches first [6]. RW is fast and

can provide satisfactory segmentations for most natural images. However, for complex natural

image, it may generate unsatisfactory segmentations. Fig. 2 gives an example, where the tail of

the leopard is incorrectly segmented. Thus, more user interactions are needed to improve the

quality of segmentation.

Fig. 3. Left: the cat image [10] with user specified strokes; Right: the segmentation obtained by SR. The segmentation includes

some noise.
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Algorithms based on discriminative learning have also been introduced into interactive segmentation.

Xiang et al. developed Spline Regression (SR) to directly map the pixel features to be class

labels [25]. The spline is learned from the user-specified foreground and background pixels, and

used as a prediction function for those unlabeled pixels. SR is fast and can generate satisfactory

segmentations for most natural images with adequate user specified strokes. However, as it is a

discriminative learning algorithm, the segmentation may include some noise. Fig. 3 illustrates

an example.

In machine learning, transductive learning [21] is an important inferring method. The goal of

the learner in transductive learning is to infer the class labels of the remaining unlabeled data

points. Thus, it is suitable for the task of interactive image segmentation. In literature, Zhu et

al. proposed an inferring approach with Gaussian Random Field (GRF) [29], and Zhou et al.

developed an iterative framework of Learning with Local and Global Consistency (LLGC) [28].

These two algorithms are developed on the edge-weighted graph. Gaussian function are used

to evaluate edge weights. However, the parameter of Gaussian function should be well tuned to

data.

Later, Xiang et al. proposed Local Spline Regression (LSR) for semi-supervised learning [24].

In contrast, LSR does not contain parameters that should be well tuned to data. As one of its

applications, LSR has been applied to interactive image segmentations [24]. But how to speed

up LSR with unchanged segmentation accuracy is still a problem to be solved.

This paper presents a graph-based algorithm for interactive image segmentation. Specifically,

given a 3×3 local window, the color of each pixel in it will be linearly reconstructed with those of

the remaining eight pixels. The optimal weights will be transferred to linearly reconstruct its class

label (foreground/background). This treatment is largely motivated from the manifold learning

algorithm of Locally Linear Embedding (LLE) [17]. But beyond LLE where only one data point

is reconstructed in each given data neighborhood, we will reconstruct all the pixels in each spatial

window. In this process, the label reconstruction errors are estimated. Then, the information about

the user specified foreground and background is introduced into a regularization framework. The

segmentation task is finally solved via global optimization.

The main advantages or details of our algorithm can be highlighted as follows:

(1) The segmentation results achieved with our algorithm are comparable to those with graph

cut and random walks algorithms. With the same user strokes, our algorithm can generate more
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accurate segmentations on most complex natural images where graph cut and random walks do.

Experiments also indicate that our algorithm shows better adaptability to most natural images,

compared with GRF and LLGC.

(2) Our algorithm has two parameters. Both of them have their own explicit meanings, which

are all independent of data and need not be tuned well from image to image.

(3) The core computation can be easily implemented. The most complex computation is to

solve a sparse symmetrical linear equations. In contrast, the main computation time will be taken

to fulfil the linear reconstructions in the windows of 3× 3 pixels. To reduce the computation, a

fast approach is presented and tested via comparative experiments.

The remainder of this paper is organized as follows. Section II introduces our motivation.

In Section III, the algorithm is presented and analyzed. Sections IV reports the experimental

results. Section V gives a comparative study between our developed algorithms of SR, LSR and

MLRW. The conclusions will be drawn in Section VI.

II. MOTIVATION

A. Problem Formulation

The problem of interactive image segmentation can be formulated as follows. Given an image

I with n = h × w pixels {pi}n
i=1, two labeled pixel sets of foreground F and background B,

the task is to assign a label “foreground” or “background” to each of the unlabeled pixel in I.

Each pixel pi can be described with a feature vector xi = [r, g, b]T in R3, where (r, g, b) is

the normalized color of pi in RGB color space, namely, 0 ≤ r, g, b ≤ 1. Thus we can get a

data set X = {xi}n
i=1. Then, for F and B, we can get two subsets XF = {xi|pi ∈ F} (⊂ X )

and XB = {xi|pi ∈ B} (⊂ X ). All the data points in XF will be labeled as “+1”, and those in

XB will be labeled as “-1”. For each unlabeled data point xi, we need to assign it a class label

fi ∈ {+1,−1}.

In machine learning, this task can be addressed as a problem of transductive classification [21].

In this work setting, we will develop a graph-based algorithm to solve this task.

B. Motivation

To develop a graph-based algorithm of transductive classification, the key is to properly

represent the pixels in each window. To this end, we consider to linearly reconstruct their colors.
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(a) (b)

Fig. 4. (a): Scissors image [16] with 337×225 pixels. (b): Twelve pixels located in the scissors image in (a) with coordinates:

{(x, y)|x ∈ [183, 186], y ∈ [74, 76]} (at the center of the white box in (a) ).

This treatment is reasonable as in general the colors of the neighboring pixels are similar to

each other.

Given pixel pi ∈ I and its 3× 3 spatial neighborhood with pi at the center. We further denote

the color set of these pixels by Ni = {xij}9
j=1, where ij ∈ {1, 2, · · · , n} is a unique index in

X , and i1 = i. For pixel pi, we use its eight neighbors surrounding it to linearly reconstruct its

color vector xi:

x̂i = wi,2xi2 + · · · + wi,9xi9 , (1)

where wi,j (j = 2, 3, · · · , 9) are the reconstruction weights,
∑9

j=2 wi,j = 1, and x̂i is the

reconstructed color vector of xi. The optimal weights can be obtained by minimizing the squared

reconstruction error ||xi − x̂i||22. We have [17]

wi =
(λI + XT

i Xi)
−11

1T (λI + XT
i Xi)−11

, (2)

where wi = [wi,2, · · · , wi,9]
T ∈ R8, Xi = [xi2 −xi, · · · ,xi9 −xi] ∈ R3×8, and 1 = [1, · · · , 1]T ∈

Rk−1. In (2), I is a 8 × 8 identity matrix, and λ is a small positive parameter introduced to avoid

the (possible) singularity of XT
i Xi.

Since the class labels are unknown, an alternative way to evaluate the quality of the model is

to calculate the squared reconstruction error ei = ||xi − x̂i||22. Naturally, it is desired to obtain

the minimum reconstruction error with its eight pixels surrounding it. However, this goal may

not be achieved.

Fig. 4 gives an example. The scissors image [16] is shown in Fig. 4(a). Here we consider the

pixel located at position (185, 75). For clarity, we label it as pixel “7” in Fig. 4(b). Within the

3×3 spatial neighborhood, we can linearly reconstruct its color with the eight pixels “2, 3, 4, 6,
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8, 10, 11, 12”. In the case of λ = 0.1 in (2), the squared reconstruction error is e1 = 0.0018386.

Since pixel “7” is a neighbor of pixel “6”, we can also employ “1, 2, 3, 5, 6, 9, 10, 11” to

reconstruct it. In this case, the error is reduced to e2 = 0.0000373. We see e2 < e1. This fact

indicates that, the minimum color reconstruction error of a pixel may be obtained not by the

eight pixels surrounding it. Such information can be considered in algorithm development.

To utilize the above information, for each pixel in a spatial window, we linearly reconstruct

its color vector with those of the remaining pixels in it. The reconstruction wights will be kept

to reconstruct their class labels. The label reconstruction errors will be minimized in way of

global optimization.

III. MULTIPLE LINEAR RECONSTRUCTIONS IN WINDOWS FOR INTERACTIVE IMAGE

SEGMENTATION

A. Multiple Linear Reconstructions in Windows

Given pixel pi ∈ I and its 3× 3 local window with nine color vectors in Ni = {xij}9
j=1 ⊂ X

(here i1 = i). Now for each pixel pij , we linearly reconstruct its color vector xij with the

remaining eight color vectors in Ni:

xij ≈
∑
s 6=j

wi,j,s xis , j = 1, 2, · · · , 9, (3)

where wi,j,s is a reconstruction weight, and
∑

s 6=j wi,j,s = 1.

Let wi,j = [wi,j,1, .., wi,j,j−1, wi,j,j+1, .., wi,j,9]
T ∈ R8 and Xi,j = [xi1−xij , ..,xij−1

−xij ,xij+1
−

xij , ..,xi9 − xij ] ∈ R3×8. Based on (2), then [17]

wi,j =
(XT

i,jXi,j + λI)−11

1T (XT
i,jXi,j + λI)−11

, j = 1, 2, · · · , 9. (4)

Now we explain why a term λI is introduced in (4). Actually, the translated data matrix Xi,j

may equal zero if the pixels in the window all have the same color. Thus, λI can help avoid the

(possible) singularity of XT
i,jXi,j .

After the optimal weights are estimated, they are transferred to linearly reconstruct the class

label of xij . We have

fij ≈
∑
s 6=j

wi,j,s fis . (5)
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We see the class labels {fij}9
j=1 are all unknown. Now, we consider its squared reconstruction

error:

ei,j = (fij −
∑
s6=j

wi,j,s fis)
2. (6)

Let w̃i,j = [−wi,j,1, · · · ,−wi,j,j−1, 1,−wi,j,j+1, · · · , −wi,j,9]
T ∈ R9, and fi = [fi, fi2 , · · · , fi9 ]

T ∈

R9 be a sub-vector of f indexed by i, i2, · · · , i9. Then, the error in (6) can be rewritten as [26]

ei,j = fT
i w̃i,jw̃

T
i,jfi = fT

i Mi,jfi, (7)

where

Mi,j = w̃i,jw̃
T
i,j ∈ R9×9. (8)

In window Ni, we get nine squared errors to be minimized. To this end, we first consider

their sum as follows:

ei =
9∑

j=1

ei,j =
9∑

j=1

fT
i Mi,jfi = fT

i Mifi, (9)

where

Mi =
9∑

j=1

Mi,j. (10)

Note that the image has n = h × w pixels, and for each pixel we can get a window of 3 × 3

pixels. Thus, totally we can get n errors evaluated respectively from n windows. Adding them

together, then we have

E(f) =
n∑

i=1

ei =
n∑

i=1

fT
i Mifi. (11)

Actually, fi is a sub-vector of f = [f1, f2, · · · , fn]T , which can be selected out from f with

indices i, i2, · · · , i9. That is, with a selection matrix Si ∈ R9×n, we have fi = Sif . Here the

r-th row and c-th column element si(r, c) of Si is defined as follows: si(r, c) = 1 if c = ir; 0,

otherwise. Then,

E(f) =
n∑

i=1

fTST
i MiSif = fTMf , (12)

where

M =
n∑

i=1

ST
i MiSi. (13)
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B. Solving Class Labels for Interactive Image Segmentation

Our goal is to minimize E(f) evaluated on the grid graph. Moreover, to achieve the goal of

interactive image segmentation, it is also necessary to minimize the label prediction errors of the

pixels specified by the user in the human-computer interface. By summing these errors together,

an objective function can be constructed as follows:

G(f) = fTMf + γ(
∑
pi∈F

(1 − fi)
2 +

∑
pi∈B

(−1 − fi)
2), (14)

where γ is a positive trade-off parameter.

Parameter γ in (14) has an explicit meaning. In the case of γ = +∞, minimizing G(f) will

output “+1” for each of the user specified foreground pixels, and “-1” for each of the user

specified background pixels. Thus in this case, the class labels of the user labeled pixels will be

exactly satisfied. In computation, we can take γ as a large positive number.

By differentiating the objective function G(f) with respect to f and setting the derivative to

be zero, it follows

(M + γC)f = y, (15)

where C is a diagonal matrix with diagonal elements:

C(i, i) =

 1, if pixel pi is labeled by the user

0, otherwise.
(16)

In (15), y is a known vector. Let y = [y1, y2, · · · , yn]T ∈ Rn. Then, the element yi gives

yi =


γ, if pixel pi ∈ F

−γ, if pixel pi ∈ B

0, otherwise.

(17)

Finally, after fi is solved, the class label of pixel pi can be assigned as “+1”, if fi ≥ 0; “-1”,

otherwise.

C. The Algorithm

The steps of the algorithm, Multiple Linear Reconstructions in Windows (MLRW), are listed

in Table I. The flowchart is shown in Fig. 5. We see, except solving the linear equations in (15),

there are no complex computations in MLRW. In addition, M is a highly sparse matrix. This
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fact can be explained as follows. Note that the size of each Mi is 9× 9 and the 3× 3 windows

are overlapped with each other. Thus, for image with n = w×h pixels, we only need to allocate

about [h/3]× [w/3]× 81 non-zero elements, where [·] stands for the integer not greater than the

number. For example, for images with 480×320 pixels, we will get a matrix M in R153600×153600.

But the sparsity ratio will be up to about 153600 × (153600 − 9)/1536002 ≈ 99.99%. Sparsity

will facilitate the storage and help to reduce the computational complexity from O(n2) to O(n).

As a result, the linear equations in (15) can be solved efficiently.

Algorithm 1 Algorithm of MLRW
Input: Image I with n = w × h pixels {pi}n

i=1 to be segmented; the set of the user specified foreground pixels F

and the set of the user specified background pixels B; two parameters λ and γ.

Output: The segmentation of I.

1: Construct X = {xi}n
i=1, where xi = [r, g, b]T ∈ R3.

2: Allocate a sparse matrix M ∈ Rn×n.

3: for each pixel pi, i = 1, 2, · · · , n, do

4: Allocate a zero matrix Mi ∈ R9×9.

5: for j = 1, 2, · · · , 9, do

6: Calculate Mi,j , according to (8).

7: Mi ← Mi + Mi,j .

8: end for

9: M ← M + ST
i MiSi, according to (13).

10: end for

11: Construct diagonal matrix C, according to (16).

12: Construct vector y ∈ Rn, according to (17).

13: Solve f , according to (15).

14: for i = 1, 2, · · · , n, do

15: Label pi as “+1”, if fi ≥ 0; “-1”, otherwise.

16: end for

Now we further explain the performance of our algorithm. In Fig. 4, in our way, pixel “9”

will be employed to reconstruct pixel “7”. Note that pixel “9” is also in the 5× 5 window with

pixel “7” at the center. Then a question is that if it is enough to reconstruct pixel “7” only

once with the pixels in the 5 × 5 window. For this point, we have the following conclusion:

the performance of reconstructing respectively all of the pixels in 3 × 3 windows will not be
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Fig. 5. Flowchart of the algorithm.

Fig. 6. Left column: source images with the user specified strokes; Middle column: results obtained by SLRW with 5 × 5

windows; Right column: results obtained by our MLRW with 3 × 3 windows.

equivalent to that of reconstructing only the center pixel in 5 × 5 windows.

As for this point, Fig. 6 gives three examples. In Fig. 6, the left column illustrates the user

specified strokes. The middle column shows the segmentation results by only reconstructing

the center pixels of 5 × 5 windows, namely, using Single Linear Reconstructions in Windows

(SLRW). The right column shows the results obtained by MLRW. We see only reconstructing

the center pixels even with large image windows may still generate unsatisfactory results. This

in turn indicates that MLRW is not equivalent to SLRW with large windows.

Finally, we analyze the computational complexity. Let k = 9, then calculating wij in (4) will
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Fig. 7. From the left to the right columns are the segmentation results obtained by MLRW with λ =

10−7, 10−6, 10−5, 10−4, 10−3, respectively.

Fig. 8. From the left to the right columns are the segmentation results obtained by MLRW with γ = 102, 103, 104, 105, 106,

respectively.

scale in about O(3(k − 1)2 + (k − 1)2), including calculating XT
ij
Xij and solving equations

(XT
ij
Xij + λI)z = 1 to obtain z = (XT

ij
Xij + λI)−11. Note that Mij in (8) is a symmetric

matrix and the computational complexity will be about O(k(k + 1)/2). Thus, calculating Mi

in (10) will scale in about O(4.5k3). For n pixels, the computational complexity of constructing

M in (13) will be up to about O(4.5nk3). As a summary, the computational complexity of our

algorithm is about O((4.5k3 + 1)n), linear in the number of pixels to be segmented.

IV. EXPERIMENTAL RESULTS

A. Parameter Setting of MLRW

MLRW has two parameters, λ in (4) and γ in (14). As explained in Section III, λ is introduced

to avoid the (possible) singularity of matrix XT
ij
Xij . Thus we can take it as a small positive

number. Fig. 7 illustrates the segmentations obtained by MLRW with different λ on the three

images used in Fig. 6. In Fig. 7, from the left column to the right column are the results
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Fig. 9. Demo I: Segmentation results of the images from Grabcut image database. The images are scaled for arrangement.

obtained with λ = 10−7, 10−6, 10−5, 10−4, 10−3, respectively, by fixing γ = 10000. We see there

are not significant changes when λ is a small positive number. In the next experiments, we fix

λ = 0.0001.

Parameter γ is introduced to leverage the contributions of the pixels with known class labels.

As stated previously, γ can be taken as a large number. Fig. 8 shows the results obtained with

different γ on the three images used in Fig. 6. From the left to the right columns are the results

obtained with γ = 102, 103, 104, 105, 106, respectively. We see there are almost no changes

between the segmentations. This indicates that γ can be selected from a very large interval.

B. Comparisons

Here we compare MLRW with the commonly-used algorithms of Graph Cut (GC) [2], [3],

[9] and Random Walks (RW) [6] in interactive image segmentation. We also compare it with

the classical transductive algorithms of GRF [29] and LLGC [28]. In addition, SLRW will be

also compared to illustrate the effectiveness of our algorithm.

In GC, the algorithm in [3] is implemented. The label likelihoods of pixels are calculated

via the approach used in [9]. To speed up the calculation, Kmeans clustering algorithm with 20

clusters is run to cluster respectively the colors of the user specified foreground and background
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Fig. 10. Demo II: Segmentation results of the images from Grabcut image database. The images are scaled for arrangement.

pixels [9].

The Berkeley database [10] and Grabcut database [16] are used to conduct the experiments.

Segmentations on twenty images are reported here. For clarity, we use Fig. 9, Fig. 10, Fig. 11 and

Fig. 12 to illustrate the results obtained by different algorithms. In each figure, in the first and

second columns are the source images and the user specified strokes. From the third to the eighth

column are the results obtained by GC, RW, GRF, LLGC, SLRW and MLRW, repsectively. The

last column lists the ground truth for comparison.

To run RW, we downloaded the source codes from the author’s homepage, and kept all the

default parameters unchanged. In GRF and LLGC, the graph is constructed with 3 × 3 local

windows. Both GRF and LLGC employ Gaussian weighting function to evaluate the affinity

matrix. For each image, we calculate the mean distance dm between the color vectors of pixels.

Then the Gaussian parameter is taken as 0.5dm. In addition, LLGC has a normalized parameter

α [28]. In experiments, we fix it to be 0.99. When running SLRW and MLRW, we set λ = 0.0001

and γ = 10000.

As can be seen, GC can generate satisfactory segmentations where the foreground and back-

ground pixels have different colors. If the foreground and background have similar colors and
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Fig. 11. Demo III: Segmentation results of the images from Berkeley image database. The images are scaled for arrangement.

those colors are not labeled by the user, GC may generate unsatisfactory segmentations. This

can be witnessed from the last image in Fig. 10, the first and the second images in Fig. 11, and

the third image in Fig. 12.

RW is a powerful algorithm. However, it may also generate unsatisfactory results for complex

natural images. This can be observed from the last image in Fig. 9 and the second image in

Fig. 11. More user specified strokes are needed to guarantee that the random walk starting from

an unlabeled pixel meets first the labeled pixel belonging to its own class.

In most experiments, GRF and LLGC generate unsatisfactory results. More user specified

strokes are needed to block the leaking of label propagation into the unwanted regions (see

Fig. 13). In addition, the segmentations also indicate that MLRW significantly outperforms

SLRW.

Table I gives a quantitative comparison. The segmentation accuracy is calculated as the ratio

of correct segmented pixels with respect to the ground truth segmented by hand. The numbers

in the first rows correspond orderly to those twenty images. In contrast, in most experiments,

our algorithm achieves the highest accuracy.

Now we report the computation time. For image with 481 × 321 pixels, finishing all the

computations with GC, RW, GRF, LLGC and MLRW will take about 79.0, 78.0, 43.0, 3.8 and
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Fig. 12. Demo IV: Segmentation results of the images from Berkeley image database. The images are scaled for arrangement.

Fig. 13. Segmentation results obtained by GC, RW, GRF, LLGC, SLRW and MLRW, with different user-specified strokes.

MLRW generates satisfactory segmentation with a small number of user specified strokes.

Fig. 14. Segmentation results obtained by MLRW with different α. From the second to the last columns are those with

α = 0, 0.02, · · · , 0.2.
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Fig. 15. The accuracy curves and computation time curves with different α.

119.0 seconds respectively, using Matlab 7.0 on a PC with 3.0 GHz CPU and 4.0G RAM (Note

that, assembling matrix M in step 9 of Algorithm 1 is done in Matlab setting, by calling a DLL

of C codes). In contrast, our algorithm will take more computation time. Specifically for MLRW,

calculating 481 × 321 matrices {Mi} in (10) will need about 67.0 seconds. We see more than

a half of the computation time will be taken to calculate these matrices.

Finally, we point out the fact that, with enough interactions, the algorithms of GC, RW, GRF,

LLGC and SLRW all have the ability to generate satisfactory results (see Fig. 13). This can

be achieved by adding more and more user-specified strokes. However, in usage, there are two

natural criteria to justify the performance of the algorithms. On the one hand, we hope the

algorithm can get better segmentation with the same user specified strokes. On the other hand,

to achieve the same segmentation accuracy, we hope the number of the user specified strokes

is as small as possible. Fig. 13 gives an example. The image is also shown in the last row in

Fig. 10, where we see with a small number of strokes the above five algorithms all fail to cut

out the desired foreground. The results in Fig. 13 indicate that the segmentation quality can be

significantly improved when more user specified strokes are added. In contrast, MLRW generates

satisfactory segmentation, but with a small number of user specified strokes.
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TABLE I

THE SEGMENTATION ACCURACY (%) OF THE 20 IMAGES ORDERED IN FIG. 9, FIG. 10. FIG. 11 AND FIG. 12.

GC RW GRF LLGC SLRW MLRW

1 99.1237 95.5690 93.5651 91.6081 93.4961 99.5638

2 97.9479 98.6284 94.8750 93.8701 96.1372 98.9700

3 97.8086 99.1341 88.1380 89.1849 88.0169 99.3411

4 99.7383 99.6823 96.9245 94.3073 98.6719 99.6576

5 98.3460 97.7481 98.3102 96.2405 95.4303 98.9827

6 99.4252 96.3348 95.6978 96.9926 97.6400 99.5719

7 98.8904 99.2844 97.3319 98.6889 98.7526 99.3748

8 94.4543 98.8276 95.9512 95.3788 97.3201 98.8276

9 99.4336 99.4531 93.9714 93.1992 97.0104 99.6081

10 84.1156 99.2726 95.9304 97.4504 98.3704 99.6711

11 86.4399 99.4514 96.6704 98.2371 98.8439 99.4754

12 83.4476 97.2422 97.2371 97.1419 97.3316 98.3349

13 98.5648 95.5745 89.6937 89.4800 93.8673 98.6781

14 95.0337 99.0447 98.2947 98.9352 94.8491 99.0939

15 98.4916 98.6088 94.9016 96.1432 96.3757 99.0959

16 99.4229 99.5745 78.1044 80.1187 96.9638 99.4644

17 96.5525 97.0305 94.5603 94.4165 96.8491 98.1114

18 93.1393 99.3141 97.5033 98.2124 98.8692 99.3679

19 98.6503 97.8446 96.2338 97.3517 96.2546 98.8782

20 99.4087 99.2727 97.4689 98.3711 99.0531 99.5045

C. Speeding up MLRW

This subsection will introduce a method to reduce the calculations of matrices {Mi} in (10).

Note that natural images usually contain small regions with the same pixel colors. That is, if

the pixels in a 3 × 3 window have the same color, matrix XT
i,jXi,j in (4) will be zero. In this

case, all the elements in wi,j will be equal to each other. As a result, Mi in (10) will turn out

to be a constant matrix. This can be utilized to reduce the computations.

Actually, we can relax the above condition. In other words, if the standard deviation of the

color is less than a given threshold, a constant matrix can be used to replace Mi. This condition
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TABLE II

THE SEGMENTATION ACCURACY (%) OF THE 20 IMAGES, OBTAINED BY SR, LSR AND MLRW.

1 2 3 4 5 6 7 8 9 10

SR 99.5664 97.7949 96.7031 99.5951 97.7774 99.5644 98.7793 98.3409 99.2396 99.2326

LSR 99.4870 99.0386 99.3294 99.6719 98.9835 99.6193 99.3941 99.0399 99.6087 99.6859

MLRW 99.5638 98.9700 99.3411 99.6576 98.9827 99.5719 99.3748 98.8276 99.6081 99.6711

11 12 13 14 15 16 17 18 19 20

SR 97.4553 96.0214 98.6121 97.2429 98.7753 97.8102 95.4806 99.2526 99.0680 98.9586

LSR 99.4761 98.4383 98.7550 99.1416 99.1048 99.2564 98.0613 99.2260 99.1119 99.2276

MLRW 99.4754 98.3349 98.6781 99.0939 99.0959 99.4644 98.1114 99.3679 98.8782 99.5045

can be formulated as follows:

max(std(r), std(g), std(b)) ≤ α, (18)

where α is a given threshold, and std(r), std(g) and std(b) are the standard deviations of the

normalized red, green and blue color components in the 3 × 3 window.

Here we report the experiments on four images. The first column in Fig. 14 illustrates

these images. They are reported again here since they have different types of visual appear-

ances. In Fig. 14, from the second to the last column are the results obtained with α =

0, 0.02, 0.04, · · · , 0.2, respectively. Fig. 15(a), Fig. 15(b), Fig. 15(c) and Fig. 15(d) illustrate

the accuracy curves, with different α. As can be seen, in the case that 0 < α ≤ 0.06, the

segmentation accuracy keeps at the same level as that obtained with the original algorithm

(α = 0). This indicates that the above fast implementation can allow about 15 (≈ 255 × 0.06)

deviation of intensity. Correspondingly, Fig. 15(e), Fig. 15(f), Fig. 15(g) and Fig. 15(h) show

the computation time. For the elephant image, the computation time of constructing {Mi} is

drastically reduced even with α = 0.02. For other three images, when α is up to 0.06, the

computation time is reduced to about a half of the original computation time.

V. COMPARATIVE STUDY ON SR, LSR, AND MLRW

In this section, we will conduct a comparative study on our developed algorithms of SR [25],

LSR [24] and MLRW.
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Fig. 16. Segmentation results of the images obtained by SR, LSR and MLRW, with the same user specified strokes illustrated

in Fig. 9, Fig. 10, Fig. 11 and Fig. 12.

Fig. 17. Segmentation results obtained by LSR with different α. From the second to the last columns are those with α =

0, 0.02, · · · , 0.2.

Fig. 16 illustrates the segmentations of the 20 images obtained respectively by these three

algorithms. The user-specified strokes about the background and foreground are shown in Fig. 9,

Fig. 10, Fig. 11, and Fig. 12. The same parameter settings reported in [25], [24] are taken here

for implementation. Table II lists the segmentation accuracy. We see both LSR and MLRW

generate better segmentations, compared with SR. We also see that both LSR and MLRW can

generate results with the same level of segmentation quality.

Given a 3×3 local image window, LSR also constructs a Laplacian matrix. The computational

complexity will be up to about O((k + d + 1)3). In the case of k = 9 and d = 3, it will slightly

smaller than O(4.5k3). Specifically, for LSR, calculating 481×321 such matrices will need about
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TABLE III

COMPARISON BETWEEN SR, LSR AND MLRW.

category of algorithm local function used in each window accuracy speed memory speeding up under (18)

SR discriminative learning – low fast low –

LSR transductive learning nonlinear (one spline) high slow high not recommended

MLRW transductive learning linear (multiple linear reconstructions) high slow high recommended

35.0 seconds on average, while MLRW will cost about 67.0 seconds. However, speeding up LSR

in the way introduced in Subsection IV-C may decrease the segmentation quality, compared with

MLRW. Explanations are given below.

First, for LSR, we have the following conclusion (proof is given in Appendix):

For any 3 × 3 (or any other size) image window with the same pixel color, the Laplacian

matrix deduced by LSR will equal to a unique constant Laplacian matrix.

Then, like MLRW, we can use this conclusion to speed up LSR. Specifically, if the condition

(18) is satisfied, the Laplacian matrix in LSR will be replaced by a constant Laplacian matrix.

Fig. 17 reports the segmentations of the images used in Fig. 14, with different parameter α. The

accuracy and computation time curves are shown in Fig. 15. We see that employing the above

speed-up approach for LSR may significantly degrade the segmentation quality.

Finally, we give an example to explain the reason. Suppose we are given a 3×3 window with

nine color vectors: (0.274, 0.620, 0.563), (0.267, 0.612, 0.525), (0.271, 0.605, 0.529,), (0.276,

0.631, 0.524), (0.253, 0.614, 0.534,), (0.247, 0.627, 0.549), (0.263, 0.603, 0.549,), (0.293, 0.647,

0.535), and (0.300, 0.614, 0.554). Here the minimum deviation of the components only equals

to 0.0171. We denote the matrix calculated according to (10) by M1, and the constant matrix

by C1. We further denote the Laplacian matrix in LSR by M2, and the constant Laplacian

matrix by C2. Then, we use Frobenius norm to measure the difference between matrices. We

have ||M1 − C1||F = 5.5164 and ||M2 − C2||F = 1.7321 × 104. In contrast to MLRW, we

see simplifying the computation in LSR will cause larger difference. This explains why LSR

may significantly degrade the segmentation quality when performing the above simplification of

computation.
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Now we summarize SR, LSR, and MLRW as follows (see Table III):

(1) SR is developed in view of discriminative learning. That is, the features of the user specified

foreground and background pixels are employed to train a spline, which is used as a prediction

function for those unlabeled pixels. SR need not solve a large group of linear equations. Thus, it

is fast and can run with low memory. However, SR may generate segmentations with noises (see

Fig. 16). The reason is that the pixels are segmented one-by-one by the learned spline, without

considering their spatial relations on the image grid.

(2) LSR is developed SR from discriminative learning to transductive learning. Differently,

SR learns a unique spline for all of the pixels to be segmented, while LSR employs a group

of splines, each of which is used to only map the pixels in a 3 × 3 window. As a graph-based

learning algorithm, LSR explicitly utilizes the spatial relations between pixels when it is applied

to image segmentation. As a result, the segmentation quality is significantly improved. However,

LSR needs to construct the Laplacian matrices in image windows and solve large-scale linear

equations. More time will be taken and large memory will be required to fulfill the segmentation.

(3) MLRW is also a transductive learning algorithm. Differently, LSR uses spline to map the

pixels in each window, nonlinearly, into their classes labels, while MLRW linearly reconstructs

them. Experiments shows that MLRW and LSR can output segmentation with high accuracy.

However, as analyzed above, speeding up for LSR under condition (18) may significantly degrade

the segmentation quality.

Based on SR, LSR and MLRW, one future work can focus on developing a segmentation

system for very large images. To this end, the large-scale sparse linear equations in LSR and

MLRW can be solved iteratively by combining conjugate gradient, image pyramid and multi-grid

methods. In this process, SR can be used to provide an initial solution.

VI. CONCLUSIONS

We presented a graph-based classification algorithm for interactive image segmentation. It is

developed with multiple linear reconstructions in image windows. The key idea is to linearly

reconstruct the color vector of each pixel with those of the remaining pixels also in the window.

The estimated optimal reconstruction weights are transferred to linearly reconstruct the class

label of each pixel. In this way, the label reconstruction errors are estimated and minimized to

obtain the final segmentation. We analyzed the proposed algorithm, and reported the experiments
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on many types of natural images. A speeding up approach is presented. We also conducted a

comparative study between our developed algorithms. Comparative experimental results illustrate

the validity of our algorithm.

APPENDIX

In this appendix, we will give a proof about the property mentioned in Section V.

Without loss of generality, we consider 3 × 3 windows. Suppose the nine pixel has the same

color vector p = [r, g, b]T ∈ [0, 1]3. In this case the coefficient matrix for solving the spline

(Equation (9) in [24]) will turn out to be

A =

 λI U

UT 0

 ∈ R13×13, (19)

where λ is a small positive number, I is a 9 × 9 identity matrix, U = [e, epT ] ∈ R9×4, and

e = [1, 1, · · · , 1] ∈ R9.

The Laplacian matrix deduced by LSR is the 9 × 9 top-left sub-matrix of A−1 [24]. In the

case that the image window has the same color vector p, we see A is a singular matrix. Thus

here A−1 is actually calculated as its Moore-Penrose inverse matrix A+. Now we can re-state

the property in Section V as a theorem:

Theorem. For any p = [r, g, b]T ∈ [0, 1]3, the 9 × 9 top-left sub-matrix of A+, namely, the

Laplacian matrix C (the matrix Mi in Equation (11) in [24]), equals to

C = (I − eeT /9)/λ. (20)

To prove this theorem, we have the following lemma [23]:

Lemma. Given P ∈ Rn×N and Q ∈ RN×n, then PQ and QP have the same nonzero

eigenvalues. For each nonzero eigenvalue of PQ, if the corresponding eigenvector of PQ is v,

then the corresponding eigenvector of QP is w = Qv.

Now let u = [1,pT ]T ∈ R4. Then we have U = euT . Further let T = UTU = ueTeuT =

9uuT ∈ R4×4. We see T is a rank-one matrix. Based on the above lemma, it has an eigenvalue

uTu and an eigenvector u. According to the definition of Moore-Penrose inverse matrix, we

have

T+ =
1

9(uTu)2
uuT ∈ R4×4. (21)

October 20, 2011 DRAFT



24

Now we can prove the above theorem as follows:

Proof: According to matrix theory, formally we have

A−1 =

 (I − U(UTU)−1UT )/λ U(UTU)−1

(UTU)−1UT −λ(UTU)−1

 . (22)

Using T+ to calculate (UTU)−1 and substituting (21) into (22), we have

A+ =

 (I − eeT /9)/λ euT /(9uTu)

ueT /(9uTu) −λuuT /(9(uTu)2)

 . (23)

We see the 9 × 9 top-left sub-matrix of A+ just equals (I − eeT /9)/λ. It is easy to justify

that it is a Laplacian matrix. In this way, the conclusion is proved.

Based on (20), C is independent of color vector p. When speeding up LSR as mentioned in

Section V, it will be used to simplify the computation if the condition in (18) is held.
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