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Abstract — The zero-crossings of image Laplacian edge detector is important for edge detection, which can 
accurately determine the edges of the image. In this paper, we propose a novel active contour model that utilizes 

the image Laplacian to construct an energy functional. We minimize this functional and get an item which is 

related to a typical image segmentation that the boundary is the zero-crossings of image Laplacian. In order to 

improve the ability to resist noise and extend the capture range of the force based on this energy functional, we 

propose another energy functional of total variation for image Laplacian. Moreover, our model is incorporated with 

a variational level set formulation without re-initialization proposed by Li et al. Therefore, re-initialization is 

unnecessary. With our model, interior contours are automatically detected with only one initial contour, which can 

start anywhere in the image. Comparisons with other major region-based models, such as the piecewise constant 

model (C-V model), show advantages of our model in segmentation of images with intensity in-homogeneity.  
Keywords — active contours, segmentation, level sets, zero-crossings, Laplacian 

 

Ⅰ. Introduction 
Image segmentation is one of the most fundamental problems in image processing and 

computer vision, and various techniques have been applied for it, such as active contours in Ref. 
[1], [3], graph cut in Ref.[2] and so on. In this paper we focus on the Active contour models for 
image segmentation. 

The basic idea in active contour models is to evolve a curve, subjected to an image I , to detect 
the objects in an image. The existing active contour models can be generally categorized into two 
classes: edge-based models and region-based models. The choice of them in the applications 
depends on different characters of the image. 

In the traditional edge-based active contour models, an edge detector is used to stop the 
evolving curve on the boundary of the desired object. Usually, a positive, decreasing and regular 

edge-function (| |)I∇g  is selected, such that lim ( ) 0
t

t
→∞

=g . For instance 

1(| |) 1
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where G Iσ ∗ denotes a smooth version of I convolved with the Gaussian kernel Gσ with 

standard varianceσ . The function (| |)I∇g  is strictly positive in homogeneous regions, and 

near zero on the edges. 
A typical geometric edge-based active contour model is given by the following evolution 
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equation in Ref.[4]: 
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where (| |)I∇g is the edge-indicator function defined in Eq.(1) with 2=p , and v  is a positive 

constant, 0φ  is the initial level set function. Its zero level set curve moves in the normal direction 

with the velocity (| |)(div( ) )
| |

I φ
φ

∇
∇ +

∇
g v  and stops on the desired boundary, where g  

vanishes. The constant v  can be interpreted as a force pushing the curve toward or outward the 
object boundary. 

In practice, it is difficult to choose the proper balloon force term, which controls the curve to 

shrink or expand, such as the term (div( ) )
| |
φ
φ

∇
+

∇
v mentioned above. On the one hand, if the 

balloon force is not large enough, the evolving contour may not be able to pass some narrow 
parts of the objects; on the other hand, if the balloon force is too large, the evolving contour may 
leak through weak boundary of the object, resulting in unsatisfactory segmentation. Also, the 
discrete gradients are bounded and then the stopping function g never gets zero on the edges, 
and this may bring on the curve passing through the boundary of the object. 

The region-based active contour model can solve the problems of the edge-based model 
mentioned above. There are many advantages over the edge-based models. First, region-based 
models do not utilize the gradient but the regional information; second, they are less sensitive to 
the location of the initial contour. One of the most popular region-based models is the Chan-Vese 
model in Ref.[5], which can be used to segment binary-phase image with intensity homogeneity. 
However, as for image with intensity in-homogeneity, the C-V model can not work well. 

In this paper, we propose a novel active contour model, which can deal with the disadvantages 
of the models mentioned above. Based on image Laplacian, our model can accurately determine 
the boundary of object, and obtain a satisfactory segmentation of image with very weak edges. 
Besides, our model can also be applied to segment object with intensity in-homogeneity. Also, by 
introducing total variation for image Laplacian, our model is less sensitive to noise. Moreover, by 
means of incorporating a variational level set formulation without re-initialization in Ref.[6], 
re-initialization is unnecessary in the proposed method. Also, interior contours are automatically 
detected with only one initial contour, which can start anywhere in the image. 

Ⅱ. Description of the Model 
Let us first explain the idea of the model in a simple case. Assume that the image I is formed 

by two regions, of distinct value iI and oI , and the object to be detected is represented by the 

region with the value iI , 0C denotes the boundary. Now, let us consider the following energy: 
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2
1 2 ( ) ( )
( ) ( ) , ,

outside C inside C
F C F C Id Id IR+ = Δ − Δ ∈∫ ∫x x x              (2) 

where C  is a closed variable curve, and Δ  is the operator of Laplacian. As we can see from 
Fig.1 (c), the sign of the value inside and outside of the object is opposite. In this simple case, it is 

obvious that 0C , which is the boundary of the object, is the solution for the minimum of the energy 

mentioned above: 
2

1 2 1 0 2 0inf{ ( ) ( )} | | ( ) ( ),
C

F C F C I d F C F C IR
Ω

+ = − Δ ≈ + ∈∫ x x  

This is illustrated in Fig.2. If the curve is not on the boundary of the object, 

1 1 0 2 2 0( ) ( ), ( ) ( )F C F C F C F C> > ,and 1 2 1 2( ) ( ) inf{ ( ) ( )}
C

F C F C F C F C+ > + ,all the possible position of the curve 

can been seen and the energy in Eq.(2) is minimized when 0C C= . 

   
      (a) Original image      (b) the image Laplacian     (c) the sign of the image Laplacian 

Fig. 1. The original image, its Laplacian and the sign of its Laplacian 
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Fig. 2. Consider all the possible cases in the position of contour. ,+ −  denote the sign of the 
value of the region of image Laplacian.  

 
In practice, the image Laplacian is sensitive to the noise and as we can see from Fig.1(b). If the 

curve is far from the boundary of the object, the values of image Laplacian are near zero, that will 
cause the evolving force of the curve with it too small to be driven to the desired boundary. These 

can be partly solved by convolving the image with the Gaussian kernel Gσ with a large standard 

varianceσ , but this will blur and distort the edges. In order to solve these problems, we utilize a 
more proper variant u to replace IΔ , which is obtained from minimizing the energy functional: 
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\
( ) | | | | ,
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u u I d u d IRε α

Ω Ω
= −Δ + ∇ ∈∫ ∫x x x                (3) 

where α  is a positive constant which governs the tradeoff between the first term and the second 
term in the integrand. This constant should be set according to the amount of noise present in the 
image (more noise, increaseα ). 
   In our active contour model we will add some regularizing terms, such as the length of C . 

Therefore, we introduce the energy functional 1 2( , , , )ε ILF C μ λ λ  defined by: 

2
1 2 1 2( ) ( )

( , , , ) length( ) ,ε ILF

inside C outside C
C C ud ud IRμ λ λ μ λ λ= + − ∈∫ ∫i x x x     (4) 

where u is obtained from minimizing the energy functional in Eq.(3), and 0μ ≥ ， 1 0λ ≥ ， 2 0λ ≥  

are fixed parameters. 

Ⅲ. Variational Level Set Formulation of Image Laplacian Fitting model 
1. Varational level set formulation of the model 

  In level set methods, a contour 2C IR⊂  is represented by the zero level set of a Lipschitz 

function 2: IR IRφ → , such that 0φ > outside of the contour C , and 0φ < inside of it. With the 

level set representation, the energy functional 1 2( , , , )ε ILF C μ λ λ in Eq.(4) can be rewritten as 

2
1 2 1 2( , , , ) ( ) ( ) (1 ( )) ,εILF L uH d u H d IRφ μ λ λ μ φ λ φ λ φ

Ω Ω
= + − − ∈∫ ∫i x x x            (5) 

where H is the Heaviside function, ( )L φ denotes the length of C ,which is given by  

2( ) ( ( )) | ( ) | ,L d IRφ δ φ φ
Ω

= ∇ ∈∫ x x x x                       (6) 

In order to ensure stable evolution of the level set functionφ , we add the distance regularizing 

term in Ref. [6] to penalize the deviation of the level set function φ  from a signed distance 

function, which is given by 

2 21( ) ( 1) ,
2

d IRφ φ
Ω

= ∇ − ∈∫p x x                        (7) 

Now, we define the entire energy function: 

( ) ( ) ( )ILFF vφ φ φε= + ip                              (8) 

In practice, the Heaviside function H  in Eq.(5) is approximated by a smooth function defined by 

2
ε

1 2( ) [1 arctan( )],
2 ε

H IR
π

= + ∈
xx x                     (9) 

And the derivative of εH is the following smooth function 
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                                    (10) 

By replacing H in Eq.(5) and δ in Eq.(6)with εH and εδ , the energy functionε ILF  is regularized 

as εε ILF . We choose ε=1.5  for a good approximation. Therefore the energy functional in Eq.(8) can 

be approximated by  

ε ε( ) ( ) ( )ILFF v pφ φ φε= + i                             (11) 

This is the energy functional we will minimize to find the boundary of the object. 
2. Gradient Decent Flow 

Using the calculus of variation in Ref.[7], we minimize the energy functional in Eq.(3), and 
u can be found by solving the following Euler equation: 

( ) 0u u IαΔ − −Δ =                                 (12) 

where Δ  is the Laplacian operator. This equation provides further intuition behind the 
formulation. We note that in a homogeneous region (where IΔ  is zero), this equation is only 
determined by u  and its Laplacian equation, and the resulting of u  is interpolated among the 
pixels around it. Therefore, it has smoothing effect and is not sensitive to the noise. 

Also, by minimizing the energy functional in Eq.(11), we could get the Euler equation, which could 
be written as 

ε
ε 1 2 ε( )div( ) ( ) ( ) ( div( )) 0

| | | |
F u vφ φμδ φ λ λ δ φ φ
φ φ φ

∂ ∇ ∇
= − − + − Δ − =

∂ ∇ ∇
           (13) 

where εδ  is the smooth Dirac function given by Eq.(10), u  is the function that satisfies the 

Eq.(12).  

Ⅳ. Implementation 
1. Numerical Implementation 
With steepest descent method, the following gradient flow can be obtained 

   
( , , ) ( , , ) ( ( , , ) ( , ))u t u t u t I

t
α∂

= Δ − −Δ
∂
x y x y x y x y               (14) 

To set up the iterative solution, let the indices ,i j , and n correspond to , ,x y  and t , 

respectively, and the spacing between pixels be Δx  and Δy and the time-step for each 

iteration be tΔ . Then the required partial derivatives can be approximated as  

1
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Substituting these approximations into Eq.(14) gives our iterative solution to u  as follows: 

1
, , 1, , 1 1, , 1 ,(1 ) ( 4 )n n n n n n n

i j i j i j i j i j i j i j
tu t u u u u u u

t I

α+
+ + − −

Δ
= −Δ + + + + −

Δ Δ
+Δ Δ

x y          (15) 

Convergence of the above iterative process is guaranteed by a standard result in the theory of 

numerical methods in Ref.[8]. And the Courant-Friedrichs-Lewy step-size restriction 1
4

tαΔ
≤

Δ Δx y
 

is maintained. SinceΔx , Δy  and α  are fixed, we find that the following restriction on the 

time-step tΔ  must be maintained in order to guarantee the convergence ofu : 

4
t

α
Δ Δ

Δ ≤
x y

 

The intuition behind the condition is obvious. First, convergence will be made to be faster when 

Δx  and Δ y  are larger. Second, when α  is large and u  is expected to be a smoother item, 

the convergence rate will be slower. 
  Also, Eq.(13) can be solved by this method, and we finally obtain the evolution equation as 

ε

1 2 ε

( )div( )
| |

( ) ( ) ( div( ))
| |

t

u v

φ φμδ φ
φ

φλ λ δ φ φ
φ

∂ ∇
=

∂ ∇
∇

+ + + Δ −
∇

 

Let ε 1 2 ε( ) ( )div( ) ( ) ( ) ( div( ))
| | | |

G u vφ φφ μδ φ λ λ δ φ φ
φ φ

∇ ∇
= + + + Δ −

∇ ∇
and 1 2λ λ λ= + , then the 

equation above can be written as: 

( )G
t
φ φ∂
=

∂
                                    (16) 

Because of the diffusion item introduced by our penalizing energy functional, we no longer need 
the upwind scheme in Ref.[8] as in the traditional level set methods. Instead, the entire spatial 

derivative 
φ∂
∂x

 and 
φ∂
∂y

 are approximated by the central difference. The approximation of 

Eq.(16) can be written as 

1
, ,

,( )
n n
i j i j n

i jG
φ φ

φ
τ

+ −
=                              (17) 

where τ  is the time step. Then we get the approximation iterative equation as 

1
, , ,( )n n n

i j i j i jGφ φ τ φ+ = +                               (18) 

In order to maintain stable level set evolution, the time-step should satisfy
1
4

vτ < , as pointed out by 
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Ref.[6]. 
2.  Initialization of Level Set function 
In traditional level set methods, it is necessary to initialize the level set function as a signed 

distance function, but in our model, as introducing the penalizing energy functional of signed 

distance function in Eq.(7), we could flexibly initialize the level set function φ . In particular, we can 

simply initialize φ  as a binary function, which takes a positive constant ρ in a region 0Ω , and 

ρ− outside of 0Ω , where 0Ω  can be any arbitrarily given subset in the image domainΩ . 

Ⅴ. Experimental Results 
We validate our model with synthetic images and real images of different modalities. We select 

the same parameters of 1, 0.4, 5, 3.5,vρ μ λ= = = =  and 2.5,α = time-step 0.08tΔ = and 
0.5τ = , 1Δ =x , 1Δ =y  for most of the images in this paper. If the image is too noisy, we 

select a largeα . In order to get a smoother image, we first utilize a Gaussian kernel Gσ  to 
convolve with the image, where σ  is the standard variance. We use the parameter of σ =2. 
  In Fig. 3 we show how our model works on a synthetic image with different initial contours, 
objects with different shapes, convexities and an interior contour. The results reveal that our model 
is not sensitive to the initialization of the contour; different initial contour will get the same result. 
Also, our model can automatically detect interior contours of object, without necessity of initial 
contour around objects or more initial contours. 
 

     

     
(a) Initial contour   (b) 1 iteration         (c) 6 iterations     (d) final results 

Fig. 3. Application to different objects with various convexities, different shapes and an interior 
contour, and with different initial contours.  

 
Fig. 4. shows how our model works in an image with noise. The result reveals that the edges of 

the objects are maintained, because we utilize u  in Eq.(14) instead of image Laplacian IΔ , 
which is able to smooth the image Laplacian without blurring the edge of image, In this experiment, 
we choose the parameter of 4.5α = .It is worth pointing out that the new contours can emerge 
during the process of evolution only after one iteration, as depicted in Fig.4.(b). 
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(a) Initial contour.   (b) 1 iteration        (c) 4 iterations     (d) 10 iterations 
Fig.4. Application to a noisy synthetic image 

 
Fig. 5. shows the result of our model for a synthetic image with blurred object. As we can see from 

Fig.5(b), the contours accurately stop on the boundary of the objects. 
 

  
   (a) Initial contour       (b) The result of convolution 
Fig. 5. Application to a synthetic image with weak edges. 

 
Fig. 6. illustrates the comparisons between C-V model and our model to segment two real 

vessel images. As we can see from Fig. 6, the intensities of the two images are inhomogeneous. 
As the C-V model utilizes the statistic homogeneity of the image to control the evolution of the 
curve, it can’t work well. Our model have advantages over it, as our model utilizes the image 
Laplacian to control the evolution, although the intensity of the image is of statistic in-homogeneity, 
the image Laplacian inside of the object interested and outside of it have inverse signs,. As we 
utilize u  in Eq.(14) instead of image Laplacian IΔ , we can get smoother and more accurate 
contours. 

 

  
(a) Initial contours 
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(b) The results of C-V model 

  
(c) The results of our model 

Fig. 6. The comparisons between C-V model and our model with application to two real vessel 
images. 

Ⅵ.Conclusion 
In this paper, we propose a novel active contour model for image segmentation, which is based 

on image Laplacian. The proposed model utilizes the zero-crossings of image Laplacian to 
segment object of interest, and can accurately determine the boundary of the object. It is able to 
segment image with intensity in-homogeneity and weak edge objects with promising results. Also, 
we propose a novel item, which gets from minimizing the energy functional of Eq.(3)is obtained 
through a total variation formulation, to replace image Laplacian, and it is less sensitive to the 
noise. Furthermore, no re-initialization is necessary in our model and we could get a simple and 
fast implementation. Comparison with the C-V model shows that our model has an advantage of 
segmenting images with intensity in-homogeneity. Finally, the interior contours can be 
automatically detected with only one starting contour and the initial contour can be anywhere in 
the image. 

 
Reference 

 
[1] M. Kass, A.Witkin, and D. Terzopoulos, “Snakes: active contour models”, Int’l J. Comp. Vis, 

vol. 1, pp. 321-331, 1987. 
[2] Ning Xu; Bansal, R.; Ahuja, N, “Object segmentation using graph cuts based active 

contours”, IEEE Conference on Computer Vision and pattern Recognition (CVPR), 
volume.2: pp.46-53,2003. 

   [3]S. Osher, J. A. Sethian, “Fronts propagating with curvature dependent speed: algorithms 
based on Hamilton-Jacobi formulations”,J. Comp. Phys., vol. 79, pp. 12-49, 1988. 

[4]V.Caselles, F. Catte,T.Coll and F.Dibos, “A geometric model for active contours in image 
processing”, Numerische Mathematic 66, pp.1-31,1993. 

[5] T. Chan and L. Vese, “Active contours without edges”, IEEE Trans. Imag. Proc., vol. 10, pp. 



To appear in CHINESE OF JOURNAL ELECTRONICS 

266-277, 2001. 
[6] C.Li, C.Xu, C.Gui, M. D. Fox. Level set evolution without re-initionalization: A new variational 

formulation. IEEE Conference on Computer Vision and pattern Recognition (CVPR), 
volume.1: pp.430-436, 2005. 

[7] D.Lao, The base of variantion, Changsha: Industry of National defence Process, pp17, 2004. 
[8] W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd. New York: Academic, 

1992. 
[9] C. Xu and J.Prince. “Snakes, shapes, and gradient vector flow”. IEEE Trans Imag Proc, 

7(1):359-369,1998. 
[10] LI Jun YANG Xin SHI Peng-Fei, “A Fast Level Set Approach to Image Segmenta- tion 

Based on Mumford-Shah Model,” CHINESE COMPUTERS，volume 25(1):1176-1183, 
2002. 

 
 
 
 
 

 
   ZHANG Kaihua was born in Rizhao, China, in 1983. He received the B.S.   
degree in technology and science of electronic information from Ocean 
University of China. Currently he is a M.S. candidate of University of Science 
and Technology of China. His research interests include pattern recognition 
and image processing. Email: zhkhua@mail.ustc.edu.cn. 
 
 

XU Shoushi was born in Yixing, Chian, in 1942. Professor of University of Science and 
Technology of China. His research interests include image processing and signal processing. 
He has been in charge of several research projects from NSF. 863. He has published 1 book 
and more than 40 papers. Email: shshxu@ustc.edu.cn. 

ZHOU Wengang was born in Huangmei, China, in 1984. He received 
the B.S. degree in Electronic information engineering from Wuhan 
University. Currently he is a M.S. candidate of University of Science and 
Technology of China. His research interests include medical image 
segmentation. Email: zhwg@mail.ustc.edu.cn. 

 
 
LIU Bo was born in KaiFeng, China, in 1984. He received the B.S. degree 
in communication engineering from Henan University. Currently he is a M.S. 
candidate of University of Science and Technology of China. His research 
interests include machine learning and image processing.  
Email: kfliubo@mail.ustc.edu.cn 
 
 
 

 

 

 


