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a b s t r a c t

In vector field learning, regularized kernel methods such as regularized least-squares require the number
of basis functions to be equivalent to the training sample size, N. The learning process thus has OðN3Þ and
OðN2Þ in the time and space complexity, respectively. This poses significant burden on the vector learning
problem for large datasets. In this paper, we propose a sparse approximation to a robust vector field
learning method, sparse vector field consensus (SparseVFC), and derive a statistical learning bound on the
speed of the convergence. We apply SparseVFC to the mismatch removal problem. The quantitative
results on benchmark datasets demonstrate the significant speed advantage of SparseVFC over the
original VFC algorithm (two orders of magnitude faster) without much performance degradation; we
also demonstrate the large improvement by SparseVFC over traditional methods like RANSAC. Moreover,
the proposed method is general and it can be applied to other applications in vector field learning.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

For a given set of data S¼ fðxn; ynÞ∈X � YgNn ¼ 1, one can learn a
function f : X-Y so that it approximates a mapping to output yn
for an input xn. In this process one can fit a function to the given
training data with a smoothness constraint, which typically
achieves some form of capacity control of the function space.
The learning process aims to balance the data fitting and model
complexity, and thus, produces a robust algorithm that generalizes
well to the unseen data [1]. This can one way be formulated into
an optimization problem with a certain choice of regularization
[2,3], which typically operates in the Reproducing Kernel Hilbert
Space (RKHS) [4] (associated with a particular kernel). Two well-
known methods along the line of learning with regularization are
regularized least-squares (RLS) and support vector machines
(SVM) [2]. These regularized kernel methods have drawn much
attention due to their computational simplicity and strong gen-
eralization power in traditional machine learning problems such
as regression and classification.
ll rights reserved.
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Regularized kernel methods over RKHS often lead to solving a
convex optimization problem. For example, RLS directly solves a
linear system. However, the computational complexity associated
with applying kernel matrices is relatively high. Given a set of N
training samples, the kernel matrix is of size N � N. This suggests a
space complexity OðN2Þ and a time complexity at least OðN2Þ; in
fact most regularized kernel methods have core operations such as
matrix inversion in RLS which is of OðN3Þ. It is therefore compu-
tationally demanding if N is large. This situation is more trouble-
some in vector-valued cases where we focus on the vector-valued
regularized least-squares (vector-valued RLS). There are several
different names for the RLS model [5] such as regularization
networks (RN) [3], kernel ridge regression (KRR) [6], least squares
support vector machines (LS-SVM) [7], etc. We use a widely
adopted one in the literature, i.e. RLS in this paper.

A vector field is a map that assigns each position x∈RP with a
vector y∈RD, defined by a vector-valued function. Examples of
vector field range from the velocity fields of fluid particles to the
optical flow fields associated with visual motion. The problem of
vector field learning is tied with functional estimation and
supervised learning. We may learn a vector field by using regular-
ized kernel methods and, in particular, vector-valued RLS [8,9].
According to the representer theorem in RKHS, the optimal
solution is a linear combination of a number (the size of training
data points N) of basis functions [10]. The corresponding kernel
matrix is of size DN � DN. Compared to the scalar case, the
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vectored values pose more challenges on large datasets. One
possible solution is to learn sparse basis functions; i.e. we could
pick a subset of size M basis functions, making the kernel matrix of
size DM � DM. Thus, the computational complexity could be
greatly reduced when M5N. Moreover, the solution based on
sparse bases also enables faster prediction. Therefore, when we
learn a vector field via vector-valued regularized kernel methods,
using a sparse representation may be of particular advantage.

Motivated by the recent sparse representation literature [11],
here we investigate a suboptimal solution to the vector-valued RLS
problem. We derive an upper bound for the approximation
accuracy based on the representer theorem. The upper bound
has a rate of convergence in Oð

ffiffiffiffiffiffiffiffiffiffi
1=M

p
Þ, indicating a fast conver-

gence rate. We develop a new algorithm, SparseVFC, by using the
sparse approximation in a robust vector field learning problem,
vector field consensus (VFC) [9]. As in [9], the SparseVFC algorithm
is applied to the mismatch removal problem. The experimental
results on various 2D and 3D datasets show the clear advantages
of SparseVFC over the competing methods in efficiency and
robustness.

1.1. Related work

Sparse representations [11] have recently gained a considerable
amount of interest for learning the kernel machines [12–15]. To scale
up kernel methods to deal with large data, a wealthy body of efficient
sparse approximations have been suggested in the scalar case, inclu-
ding the Nyström approximation [16], sparse greedy approximations
[17], reduced support vector machines [18], and incomplete Cholesky
decomposition [19]. Common to all these approximation schemes is
that only a subset of the latent variables are treated exactly, with the
remaining variables being approximated. These methods differ in the
mechanism for choosing the subset, and in the matrix form used to
represent the hypothesis space. In this paper, we generalize this idea
to the vector-valued setting.

Another approach to achieve the sparse representation is to add
regularization term penalizing the ℓ1 norm of the expansion coeffi-
cients [20,21]. However, this does not alleviate the problem, since it
has to compute (and invert) the kernel matrix of size N � N, and then
it is not suitable for large datasets. To overcome this problem, Kim
et al. [22] described a specialized interior-point method for solving
large scale ℓ1-regularized that uses the preconditioned conjugate
gradients algorithm to compute the search direction.

The large scale kernel learning problem can also be addressed
by iterative optimization such as conjugate gradient [23] and more
efficient decomposition-based methods [24,25]. Specially, for the
RLS model with the ℓ2 loss, fast optimization algorithms such as
accelerated gradient descent in conjunction with stochastic meth-
ods [26–28] can perform very fast as well. However, a main
drawback of these methods is that they have to store a kernel
matrix of size N � N which is not realistic for large datasets.

The main contributions of our work include (i) we present a
sparse approximation algorithm for vector-valued RLS which has
linear time and space complexity w.r.t. the training data si
ze;
(ii) we derive an upper bound for the approximation accuracy of
the proposed sparse approximation algorithm in terms of regular-
ized risk functional; (iii) based on the sparse approximation and
our the vector field learning method VFC, we give a new algorithm
SparseVFC which significantly speeds up the original VFC algo-
rithm without scarifies in accuracy; (iv) we apply SparseVFC to
mismatch removal which is a fundamental problem in computer
vision and the results demonstrate its superiority over the original
VFC algorithm and many other state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2, we
briefly review the vector-valued Tikhonov regularization and lay
out a sparse approximation algorithm for solving vector-valued
RLS. In Section 3, we apply the sparse approximation to robust
vector field learning and mismatch removal problem. The datasets
and evaluation criteria used in the experiments are presented in
Section 4. In Section 5, we evaluate the performance of our
algorithm on both synthetic data and real-world images. Finally,
we conclude in Section 6.

 

 

2. Sparse approximation algorithm

We start by defining the vector-valued RKHS and recalling the
vector-valued Tikhonov regularization, and then lay out a sparse
approximation algorithm for solving the vector-valued RLS pro-
blem. At last, we derive a statistical learning bound for the sparse
approximation.

2.1. Vector-valued reproducing kernel Hilbert spaces

We are interested in a class of vector-valued kernel methods,
where the hypotheses space is chosen to be a reproducing kernel
Hilbert space (RKHS). This motivates reviewing the basic theory of
vector-valued RKHS. The development of the theory in the vector
case is essentially the same as in the scalar case. We refer to
[10,29] for further details and references.

Let Y be a real Hilbert space with inner product (norm) 〈�; �〉Y ,
(∥ � ∥Y), for example, YDRD, X a set, for example, XDRP , and H a
Hilbert space with inner product (norm) 〈�; �〉H, (∥ � ∥H). A norm can
be defined via an inner product, for example, ∥f∥H ¼ 〈f; f〉1=2H . Next,
we recall the definition of RKHS as well as some properties of it
which we will use in this paper.

Definition 1. A Hilbert space H is an RKHS if the evaluation maps
evx : H-Y are bounded, i.e. if ∀x∈X there exists a positive
constant Cx such that

∥evxðfÞ∥Y ¼ ∥fðxÞ∥Y≤Cx∥f∥H; ∀f∈H: ð1Þ

A reproducing kernel Γ : X � X-BðYÞ is then defined as

Γðx; x′Þ≔evxevnx′; ð2Þ
where BðYÞ is the space of bounded operators on Y, for example,
BðYÞDRD�D, and evnx is the adjoint of evx .

From the definition of the RKHS, we can derive the following
properties:
(i)
 For each x∈X and y∈Y, the kernel Γ has the following
reproducing property

〈fðxÞ; y〉Y ¼ 〈f;Γð�; xÞy〉H; ∀f∈H: ð3Þ
(ii)
 For every x∈X and f∈H, we have that

∥fðxÞ∥Y≤∥Γðx;xÞ∥1=2Y;Y∥f∥H; ð4Þ
where ∥ � ∥Y;Y is the operator norm.
The property (i) can be easily derived from the equation evnxy¼
Γð�; xÞy. In the property (ii), we assume that supx∈X ∥ Γðx; xÞ∥1=2Y;Y ¼
sΓo∞.

Similar to the scalar case, for any N∈N, fxn : n∈NNgDX , and a
reproducing kernel Γ, a unique RKHS can be defined by consider-
ing the completion of the space

HN ¼ ∑
N

n ¼ 1
Γð�; xnÞcn : cn∈Y

� �
; ð5Þ

 



1 Note that the point set f ~xm : m∈NMg may not be a subset of the input training
data fxn : n∈NNg.
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with respect to the norm induced by the inner product

〈f;g〉H ¼ ∑
N

i;j ¼ 1
〈Γðxj; xiÞci;dj〉Y ; ð6Þ

for any f;g∈HN with f ¼∑N
i ¼ 1Γð�; xiÞci and g¼∑N

j ¼ 1Γð�; xjÞdj.

2.2. Vector-valued Tikhonov regularization

Regularization aims to stabilize the solution of an ill-
conditioned problem. Given an N-sample S¼ fðxn; ynÞ∈X � Y :

n∈NNg of patterns, where XDRP and YDRD are input space and
output space, respectively, in order to learn a mapping f : X-Y,
the vector-valued Tikhonov regularization in an RKHS H with
kernel Γ minimizes a regularized risk functional [10]

ΦðfÞ ¼ ∑
N

n ¼ 1
VðfðxnÞ;ynÞ þ λ∥f∥2H; ð7Þ

where the first term is called the empirical error with the loss
function V : Y � Y-½0;∞Þ satisfying Vðy; yÞ ¼ 0, the second term is
a stabilizer with a regularization parameter λ controlling the trade-
off between these two terms.

Theorem 1 (Vector-valued Representer Theorem Micchelli and Pontil
[10]). The optimal solution of the regularized risk functional (7) has
the form:

foðxÞ ¼ ∑
N

n ¼ 1
Γðx; xnÞcn; cn∈Y: ð8Þ

Hence, minimizing over the (possibly) infinite dimensional
Hilbert space, boils down to find a finite set of coefficients
fcn : n∈NNg.

A number of loss functions have been discussed in the
literature [1]. In this paper, we focus on vector-valued RLS which
is a vector-valued Tikhonov regularization with an ℓ2 loss function,
i.e.,

VðfðxnÞ; ynÞ ¼ pn∥yn−fðxnÞ∥2; ð9Þ
where pn≥0 is the weight, and ∥ � ∥ denotes the ℓ2 norm. Other
common loss functions are the absolute value loss V ðfðxÞ; yÞ ¼
jfðxÞ−yj and Vapnik's ϵ�insensitive loss VðfðxÞ; yÞ ¼maxðjfðxÞ
−yj−ϵ;0Þ.

Using the ℓ2 loss, the coefficients cn of the optimal solution, i.e.
Eq. (8), is then determined by a linear system [10,9]

ð ~Γ þ λ ~P
−1ÞC¼ Y; ð10Þ

where the kernel matrix ~Γ is called the Gram matrix which is an
N � N block matrix with the ði; jÞ−th block Γðxi; xjÞ. ~P ¼ P⊗ID�D is a
DN � DN diagonal matrix, here P¼ diagðp1;…; pNÞ, and ⊗ denotes
Kronecker product. C¼ ðcT1;…; cTNÞT and Y¼ ðyT1;…; yTNÞT are DN � 1
dimensional vectors.

Note that when the loss function V is not quadratic anymore,
the solution of the regularized risk functional (7) still has the form
(8), but the coefficients cn cannot be found anymore by solving a
linear system.

2.3. Sparse approximation in vector-valued regularized least-squares

Under the Representer Theorem, the optimal solution fo comes
from an RKHS HN defined as in Eq. (5). Finding the coefficients cn
of the optimal solution fo in vector-valued RLS merely requires to
solve the linear system (10). However, for large values of N, it may
pose a serious problem due to heavy computational (i.e. scales as
OðN3Þ) or memory (i.e. scales as OðN2Þ) requirements, and, even
when it is implementable, one may prefer a suboptimal but
simpler method. In this section, we propose an algorithm that is
based on a similar kind of idea as the subset of regressors method
[30,31] for the standard vector-valued RLS problem.

Rather than searching for the optimal solution fo in HN , we use
a sparse approximation and search a suboptimal solution fs in a
space HM (M5N) with much less basis functions defined as

HM ¼ ∑
M

m ¼ 1
Γð�; ~xmÞcm : cm∈Y

� �
; ð11Þ

with f ~xm : m∈NMgDX ,1 and then minimize the loss over all the
training data. Yet the problem that remains is how to choose the
point set f ~xm : m∈NMg, and accordingly find a set of coefficients
fcm : m∈NMg. In the scalar case, different approaches for selecting
this point set are discussed, for example, in [5]. There, it was found
that simply selecting an arbitrary subset of the training inputs
performs no worse than more sophisticated methods. Recent
progress in compressed sensing [11] also demonstrated the power
of sparse random basis representation. Therefore, in the interest of
computational efficiency, we use the simply random sampling
method to choose sparse basis functions in the vector case. And
we also compare the influence of different choices of sparse basis
functions in the experiment section.

According to the sparse approximation, the unique solution of
the vector-valued RLS in HM has this form:

fsðxÞ ¼ ∑
M

m ¼ 1
Γðx; ~xmÞcm: ð12Þ

To solve the coefficients cm, we now consider the Hilbertian
norm and the corresponding inner product (6)

∥f∥2H ¼ ∑
M

i ¼ 1
∑
M

j ¼ 1
〈Γð ~x j; ~x iÞci; cj〉Y ¼ CT ~ΓC; ð13Þ

where C¼ ðcT1;…; cTMÞT is a DM � 1 dimensional vector, the kernel
matrix ~Γ is an M �M block matrix with the ði; jÞ−th block Γð ~x i; ~x jÞ.
Thus, the minimization of the regularized risk functional (7)
becomes

min
f∈H

ΦðfÞ ¼min
f∈H

∑
N

n ¼ 1
pn∥yn−fðxnÞ∥2 þ λ∥f∥2H

� �

¼min
C

f∥ ~P1=2ðY− ~UCÞ∥2 þ λCT ~ΓCg; ð14Þ

where ~U is an N �M block matrix with the ði; jÞ−th block Γðxi; ~x jÞ:

~U ¼
Γðx1; ~x1Þ ⋯ Γðx1; ~xMÞ

⋮ ⋱ ⋮
ΓðxN ; ~x1Þ ⋯ ΓðxN ; ~xMÞ

2
64

3
75: ð15Þ

Taking the derivative of the right hand of Eq. (14) with respect
to the coefficient matrix C and setting it to zero, we can then
compute the coefficient matrix C from the following linear system:

ð ~UT ~P ~U þ λ ~ΓÞC¼ ~U
T ~PY: ð16Þ

In contrast to the optimal solution fo given by the Representer
Theorem, which is a linear combination of the basis functions
Γð�; x1Þ;…;Γð�; xNÞ determined by the inputs x1;…;xN of training
samples, the suboptimal solution fs is formed by a linear combina-
tion of arbitrary M-tuples of the basis functions. Generally, this
sparse approximation will yield a vast increase in speed and
decrease in memory requirements with negligible decrease in
accuracy.

Note that the sparse approximation is somewhat related to
SVM since SVM's predictive function also depends on a few
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samples (i.e. support vectors). In fact, under certain conditions,
sparsity leads to SVM, which is related to the Structural Risk
Minimization principle [1]. As derived in [20], when the data is
noiseless, and the coefficient matrix C is chosen to minimize the
following cost function, the sparse approximation gives the same
solution of SVM:

QðCÞ ¼
���fðxÞ− ∑

N

n ¼ 1
cnΓðx; xnÞ

���2
H
þ λ∥C∥ℓ1 ; ð17Þ

where ∥ � ∥ℓ1 is the usual ℓ1 norm. If N is very large and Γð�; xnÞ is not
an orthonormal basis, it is possible that many different sets of
coefficients will achieve the same error on a given data set. Among
all the approximating functions that achieve the same error, using
the ℓ1 norm in the second term of Eq. (17) favors the one with the
smallest number of non-zero coefficients. Our approach follows
this basic idea. The difference is that in the cost function (17) the
sparse basis functions are chosen automatically during the opti-
mization process, while in our approach the basis functions are
chosen randomly for the purpose of reducing both time and space
complexities.
2.4. Bounds of the sparse approximation

To derive upper bounds on error of approximation of the
optimal solution fo by the suboptimal one fs, we employ
Maurey–Jones–Barron's theorem [32,33] reformulated in terms of
G-variation [34]: for a Hilbert space X with norm ∥ � ∥ and f∈X, G is
a bounded subset of it, the following upper bound holds

∥f−spannG∥≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsG∥f∥GÞ2−∥f∥2

n

s
; ð18Þ

where spannG is a linear combination of n arbitrary basis functions
in G, sG ¼ supg∈G∥g∥, and ∥ � ∥G denotes the G-variation which is
defined as

∥f∥G ¼ inffc40 : f=c∈cl convðG∪−GÞg; ð19Þ

with cl convð�Þ being the closure of the convex hull of a set and
−G¼ f−g : g∈Gg. Here the closure of a set A is defined as
clA¼ ff∈X : ð∀ϵ40Þð∃g∈AÞ∥f−g∥oϵg. For properties of G-variation,
we refer the reader to [34–36].

Taking advantage of this upper bound, we derive the following
proposition which compares the optimal solution fo with a
suboptimal solution fs in terms of regularized risk functional ΦðfÞ.

Proposition 1. Let fðxn; ynÞ∈X � YgNn ¼ 1 be a finite set of input-
output pairs of data, Γ : X � X-Y a matrix-valued kernel,
sΓ ¼ supx∈X ∥Γðx; xÞ∥1=2Y;Y , f

oðxÞ ¼∑N
n ¼ 1Γðx; xnÞcn the optimal solution

of the regularized risk functional (7), fsðxÞ ¼∑M
m ¼ 1Γðx; ~xmÞcm a

suboptimal solution, suppose ∀n∈NN , ∥fsðxnÞ þ foðxnÞ−2yn∥Y
≤supx∈X ∥f

sðxÞ þ foðxÞ∥Y , then we have the following upper bound:

ΦðfsÞ−ΦðfoÞ≤ðNs2Γ þ λÞ α

M
þ 2∥fo∥H

ffiffiffiffiffi
α

M

r� �
; ð20Þ

where α¼ ðsΓ∥fo∥GÞ2−∥fo∥2H, H is the RKHS corresponding to the
reproducing kernel Γ, λ is the regularization parameter.

Proof. According to the property (ii) of an RKHS in Section 2.1, for
every f∈H and x∈X we have

∥fðxÞ∥Y≤∥Γðx; xÞ∥1=2Y;Y∥f∥H≤sΓ∥f∥H; ð21Þ

where sΓ ¼ supx∈X ∥Γðx; xÞ∥1=2Y;Y . Thus we obtain

sup
x∈X

∥fðxÞ∥Y≤sΓ∥f∥H: ð22Þ
By the last inequality and Eq. (18), we obtain

ΦðfsÞ−ΦðfoÞ ¼ ∑
N

n ¼ 1
ð∥fsðxnÞ−yn∥

2
Y−∥f

oðxnÞ−yn∥2YÞ þ λð∥fs∥2H−∥fo∥2HÞ

≤ ∑
N

n ¼ 1
〈fsðxnÞ−foðxnÞ; fsðxnÞ þ foðxnÞ−2yn〉Y

þλ ∥fs∥H−∥f
o∥H �ð∥fs∥H þ ∥fo∥HÞ

����
≤ ∑

N

n ¼ 1
∥fsðxnÞ−foðxnÞ∥Y∥fsðxnÞ þ foðxnÞ−2yn∥Y

þλ∥fs−fo∥Hð∥fs∥H þ ∥fo∥HÞ
≤Nsup

x∈X
∥fsðxÞ−foðxÞ∥Y sup

x∈X
∥fsðxÞ þ foðxÞ∥Y

þλ∥fs−fo∥Hð∥fs∥H þ ∥fo∥HÞ
≤NsΓ∥f

o−fs∥H sΓ∥f
o þ fs∥H−2yminj

��
þλ∥fo−fs∥Hð∥fo∥H þ ∥fs∥HÞ

≤NsΓ

ffiffiffiffiffi
α

M

r
2sΓ∥f

o∥H þ sΓ

ffiffiffiffiffi
α

M

r� �
þ λ

ffiffiffiffiffi
α

M

r
2∥fo∥H þ

ffiffiffiffiffi
α

M

r� �

¼ ðNs2Γ þ λÞ α

M
þ 2∥fo∥H

ffiffiffiffiffi
α

M

r� �
; ð23Þ

where α¼ ðsΓ∥fo∥GÞ2−∥fo∥2H, ∥ � ∥G corresponds to the G-variation,
and G corresponds to HN in our problem. □

From this upper bound, we can easily derive that to achieve an
approximation accuracy ϵ, i.e. ΦðfsÞ−ΦðfoÞ≤ϵ, the needed minimal
number of basis functions satisfies

M≤α
ϵ

Ns2Γ þ λ
−2∥fo∥2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

ðNs2Γ þ λÞ∥fo∥2H

s
−1

0
@

1
A

2
4

3
5
−1

: ð24Þ

 

 

3. Sparse approximation for robust vector field learning

A vector field is also a vector-valued function. The Tikhonov
regularization treats all samples as inliers which ignores the issue
of robustness, i.e., the real-world data may often contain some
unknown outliers. Recently, Zhao et al. [9] present a robust vector-
valued RLS method named Vector Field Consensus (VFC) for
vector field learning. In which, each sample is associated with a
latent variable indicating whether it is an inlier or an outlier,
and then the EM algorithm is adopted for optimization. Besides,
the technique of robust vector field learning has been also
adopted in Gaussian processes, basically by using the so-called
t-processes [37,38]. In this section, we present a sparse approx-
imation algorithm for VFC, and apply it to the mismatch removal
problem.

3.1. Sparse vector field consensus

Given a set of observed input–output pairs S¼ fðxn; ynÞ : n∈NNg
as samples randomly drawn from a vector field which may contain
some unknown outliers, the goal is to learn a mapping f to fit the
inliers well. Due to the existence of outliers, it is desirable to have
a robust estimate of the mapping f. There are two choices: (i) to
build a more complex model that includes the outliers—which
involves modeling the outlier process using extra (hidden) vari-
ables which enable us to identify and reject outliers, or (ii) to use
an estimator which is less sensitive to outliers, as described in
Huber's robust statistics [39]. In this paper, we use the first
scenario. In the following we make an assumption that, the vector
field samples in the inlier class have Gaussian noise with zero
mean and uniform standard deviation s, while the ones in the
outlier class are uniformly distributed 1=awith a being the volume
of the output domain. Let γ be the percentage of inliers which we 



Table 1
Comparison of computational complexity.

VFC [9] FastVFC [9] SparseVFC

Time OðN3Þ OðN3Þ O(N)

Space OðN2Þ OðN2Þ O(N)
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do not know in advance, X¼ ðxT
1;…;xT

NÞT and Y¼ ðyT
1;…; yTNÞT be

DN � 1 dimensional vectors, and θ¼ ff; s2; γg the unknown para-
meter set. The likelihood is then a mixture model as

pðYjX; θÞ ¼ ∏
N

n ¼ 1

γ

ð2πs2ÞD=2
e−∥yn−fðxnÞ∥

2=2s2 þ 1−γ
a

 !
: ð25Þ

We model the mapping f in a vector-valued RKHS H with
reproducing kernel Γ, and impose a smoothness constraint on it, i.
e. pðfÞ∝e−ðλ=2Þ∥f∥2H . Therefore, we can estimate a MAP solution of θ by
using the Bayes rule as θn ¼ arg maxθ pðYjX; θÞpðfÞ. An iterative EM
algorithm can be used to solve this problem. We associate sample
n with a latent variable zn∈f0;1g, where zn¼1 indicates a Gaussian
distribution and zn¼0 points to a uniform distribution. We follow
the standard notations [40] and omit some terms that are
independent of θ. The complete-data log posterior is then given by

Qðθ; θoldÞ ¼−
1

2s2
∑
N

n ¼ 1
Pðzn ¼ 1jxn; yn; θ

oldÞ∥yn−fðxnÞ∥2

−
D
2

ln s2 ∑
N

n ¼ 1
Pðzn ¼ 1jxn; yn; θ

oldÞ

þln ð1−γÞ ∑
N

n ¼ 1
Pðzn ¼ 0jxn; yn; θ

oldÞ

þln γ ∑
N

n ¼ 1
Pðzn ¼ 1jxn; yn; θ

oldÞ− λ

2
∥f∥2H: ð26Þ

E-step: Denote P¼ diagðp1;…; pNÞ, where the probability
pn ¼ Pðzn ¼ 1jxn; yn; θ

oldÞ can be computed by applying Bayes rule

pn ¼
γe−∥yn−fðxnÞ∥2=2s2

γe−∥yn−fðxnÞ∥2=2s2 þ ð1−γÞ
ð2πs2ÞD=2

a
: ð27Þ

The posterior probability pn is a soft decision, which indicates to
what degree the sample n agrees with the current estimated
vector field f.

M-step: We determine the revised parameter estimate
θnew ¼ arg maxθQðθ; θoldÞ. Taking derivative of QðθÞ with respect
to s2 and γ, and setting them to zero, we obtain

s2 ¼ ðY−VÞT ~PðY−VÞ
D � trðPÞ ; ð28Þ

γ ¼ trðPÞ=N; ð29Þ
where V¼ ðfðx1ÞT;…; fðxNÞTÞT is a DN � 1 dimensional vector, and
trð�Þ denotes the trace.

Considering the terms of objective function Q in Eq. (26) that
are related to f, the vector field can be estimated from minimizing
an energy function as

EðfÞ ¼ 1
2s2

∑
N

n ¼ 1
pn∥yn−fðxnÞ∥2 þ

λ

2
∥f∥2H: ð30Þ

This is a regularized risk functional (7) with ℓ2 loss function (9). To
estimate the vector field f, it needs to solve a linear system similar
to Eq. (10), which takes up most of the run-time and memory
requirements of the algorithm. Obviously, the sparse approxima-
tion could be used here to reduce the time and space complexity.

Using the sparse approximation, we search a suboptimal fs

which has the form as in Eq. (12) with the coefficient cn
determined by a linear system similar to Eq. (16)

ð ~UT ~P ~U þ λs2 ~ΓÞC¼ ~U
T ~PY: ð31Þ

Since it is a sparse approximation to the vector field consensus
algorithm, we name our method SparseVFC. In summary,
compared with the original VFC algorithm, we estimate a
vector field f by solving a linear system (31) in SparseVFC rather
than Eq. (10) in VFC. Our SparseVFC algorithm is outlined in
Algorithm 1.
Algorithm 1. The SparseVFC Algorithm.
Input: Training set S¼ fðxn; ynÞ : n∈NNg, matrix kernel Γ,
regularization constant λ, basis function number M

Output: Vector field f, inlier set I
1
 Initialize a, γ, V¼ 0DN�1, P¼ IN�N , and s2 by equation (28)

2
 Randomly choose M basis functions from the training

inputs and construct kernel matrix ~Γ

3
 repeat

4
5
6
7
8
9

E−step :

Update P¼ diagðp1;…; pNÞ by equation ð27Þ
M−step :

Update C by solving linear system ð31Þ
Update V by using equation ð12Þ
Update s2 and γ by equations ð28Þandð29Þ
10
 until Q converges

11
 Vector field f is determined by equation (12)

12
 The inlier set is I ¼ fn : pn4τ;n∈NNg with τ being a

predefined threshold.
It also presented a fast implementation for VFC named FastVFC
in the original paper [9]. To reduce the time complexity, it first
uses the low rank matrix approximation by computing the
singular value decomposition (SVD) for the kernel matrix ~Γ of
size DN � DN, and then the Woodbury matrix identity to invert the
coefficient matrix in the linear system for solving C [41].

Computational complexity. Notice that ~P is a diagonal matrix,
we can compute ~U

T ~P in linear system (31) by multiplying the n-th
diagonal element of ~P to the n-th column of ~UT , and thus the time
complexity of SparseVFC for mismatch removal is reduced to
OðmD3M2N þmD3M3Þ, where m is the iterative times for EM. The
space complexity of SparseVFC scales like OðD2MN þ D2M2Þ due to
the memory requirements for storing the matrix ~U and kernel ~Γ.

Typically, the required number of basis functions for sparse
approximation is much less than the number of data points, i.e.
M≪N. In this paper, we apply the SparseVFC to the mismatch
removal problem on 2D and 3D images, in which the number of
the point matches N is typically in the order of 103, and the
required number of basis function M is in the order of 101.
Therefore, both the time and space complexities of SparseVFC
could be simply written as O(N). Table 1 summarizes the time and
space complexities of VFC, FastVFC and SparseVFC. Compared to
VFC and FastVFC, the time and space complexities are reduced
from OðN3Þ and OðN2Þ to both O(N). This is significant for large
training sets. Note that the time complexity of FastVFC is still
OðN3Þ, it is because the SVD operation of a matrix of size N � N has
time complexity OðN3Þ.

Relation to FastVFC. There is some relationship between our
SparseVFC algorithm and the FastVFC algorithm. On the one hand,
both these two algorithms use approximation to the matrix-
valued kernel Γ to search a suboptimal solution rather than the
optimal solution, and then reduce the time complexity. On the
other hand, our algorithm is clearly superior to the FastVFC, which
can be seen from both the time and space complexities as shown
in Table 1. For FastVFC, it makes a low rank matrix approximation
on the kernel matrix ~Γ itself, which does not change the size of ~Γ. 
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Therefore, the memory requirement is not decreased, and it is still
not implementable for large training sets. Moreover, the FastVFC
algorithm has the same time complexity OðN3Þ as VFC, due to the
SVD operation and kernel matrix inversion operation in FastVFC
and VFC, respectively. The difference is that the SVD operation in
FastVFC needs to perform only once while the matrix inversion
operation in VFC needs to perform in each EM iteration, and hence
an acceleration can be achieved in FastVFC. In contrast, the
SparseVFC uses a sparse representation and chooses much less
basis functions to approximate the function space, leading to a
significant reduction of the size of the corresponding reproducing
kernel. This sparse approximation (even with random chosen basis
functions) not only significantly reduces both the time and space
complexities, but also does not lead to sacrifice in accuracy, and in
some situations it even gains a little better performance compared
to the original VFC algorithm (as shown in our experiments).

3.2. Application to mismatch removal

In this section, we focus on establishing accurate point corre-
spondences between two images of the same scene. Many of the
computer vision tasks such as building 3D models, registration,
object recognition, tracking, and structure and motion recovery
start by assuming that the point correspondences have been
successfully recovered [42].

Point correspondences between two images are in general
established by first detecting interest points and then matching the
detected points based on local descriptors [43]. This may result in a
number of mismatches (outliers) due to viewpoint changes, occlu-
sions, repeated structures, etc. The existence of mismatches is usually
enough to ruin the traditional estimation methods. In this case, a
robust estimator is desirable to remove mismatches [44–49]. In our
SparseVFC, as shown in the last line of Algorithm 1, a sample being
an inlier or outlier could be determined by its posterior probability
after EM convergences. Using this property, we apply SparseVFC to
the mismatch removal problem. Next, we point out some key issues.

Vector field introduced by image pairs. We first make a linear re-
scaling of the point correspondences so that the positions of
feature points in the first and second images both have zero mean
and unit variance. Let the input x∈RP be the location of a normal-
ized point in the first image, and the output y∈RD be the
corresponding displacement of that point in the second image;
then the matches can be converted into motion field training set.
For 2D images P ¼D¼ 2; for 3D surfaces P ¼D¼ 3. Fig. 1 illustrates
schematically the 2D image case.

Kernel selection. Kernel plays a central role in regularization
theory as it provides a flexible and computationally feasible way to
choose an RKHS. Usually, for the mismatch removal problem, the
structure of the generated vector field is relatively simple. We
simply choose a diagonal decomposable kernel [8,9]: Γðxi; xjÞ ¼
e−β∥xi−xj∥2 I. Then we can solve a more efficient linear system instead
of Eq. (31) as

ðUTPUþ λs2ΓÞ ~C ¼UTP ~Y ; ð32Þ
Fig. 1. Schematic illustration of motion field introduced by image pairs. Left: an image
matches in the left figure. 1 and � indicate feature points in the first and second imag
where the kernel matrix Γ∈RM�M and Γij ¼ e−β∥ ~x i− ~x j∥2 , U∈RN�M and
Uij ¼ e−β∥xi− ~x j∥2 , ~C ¼ ðc1;…; cMÞT and ~Y ¼ ðy1;…; yNÞT are M � D and
N � D matrices, respectively. Here N is the number of putative
matches, and M is the number of bases. It should be noted that
solving the vector field learning problem with this diagonal
decomposable kernel is not equivalent to solving D independent
scalar problems, since the update of the posterior probability pn
and variance s2 in Eqs. (27) and (28) are determined by all
components of the output yn.

When it is applied to mismatch removal, there is a problem
which should draw attention. We must ensure that the point set
f ~xm : m∈NMg used to construct the basis functions does not
contain two same points since in this case the coefficient matrix
in linear system (32), i.e. ðUTPUþ λs2ΓÞ, will be singular.
Obviously, this may appear in the mismatch removal problem,
since in the putative match set there may exist one point in the
first image matched to several points in the second image.

3.3. Implementation details

There are mainly four parameters in the SparseVFC algorithm:
γ, λ, τ and M. Parameter γ reflects our initial assumption on the
amount of inliers in the correspondence sets. Parameter λ reflects
the amount of the smoothness constraint which controls the
trade-off between the closeness to the data and the smoothness
of the solution. Parameter τ is a threshold, which is used for
deciding the correctness of a match. In general, our method is very
robust to these parameters. We set γ ¼ 0:9, λ¼ 3, and τ¼ 0:75
according to the original VFC algorithm throughout this paper.
Parameter M is the number of the basis functions used for sparse
approximation. The choice of M depends on both the data (i.e., the
true vector field) and the assumed function space (i.e., the
reproducing kernel), as shown in Eq. (24). We will discuss it in
the experiment according to the specific application.

It should be noted that in practice we do not determine the
value of M according to Eq. (24). On the one hand, it is derived in
the context of providing a theoretic upper bound, and in practice
to achieve a good approximation the required value of M may be
much smaller than this bound. On the other hand, the upper
bound in Eq. (24) is hard to compute, and it is costly to derive a
value of M for each sample set.

 

 

4. Experimental setup

In our evaluation we consider synthetic 2D vector field estima-
tion, mismatch removal on 2D real images and 3D surfaces. All the
experiments are performed on a Intel Core2 2.5GHz PC with
Matlab code. Next, we discuss about the datasets and evaluation
criteria.

Synthetic 2D vector field: The synthetic vector field is con-
structed from a scalar function defined by a mixture of five
Gaussians, which have the same covariance 0:25I and centered
at (0, 0), (1, 0), (0, 1), (−1, 0) and (0, −1), respectively, as in [8]. Its
pair and its putative matches; right: motion field samples introduced by the point
es, respectively.  
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gradient and perpendicular gradient indicate a divergence-free
and a curl-free field, respectively. The synthetic data is then
constructed by taking a convex combination of these two vector
fields. In our evaluation the combination coefficient is set to 0.5,
and then we get the synthetic field as shown in Fig. 2. The field is
computed on a 70�70 grid over the square ½−2;2� � ½−2;2�.

The training inliers are uniformly sampled points from the grid,
and we add Gaussian noise with zero mean and uniform standard
deviation 0.1 on the outputs. The outliers are generated as follows:
the input x is chosen randomly from the grid; the output y is
generated randomly from a uniform distribution on the square
½−2;2� � ½−2;2�. The performance for vector field learning is mea-
sured by an angular measure of error [50] between the learned
vector of VFC and the ground truth. If vg ¼ ðv1g ; v2g Þ and ve ¼ ðv1e ; v2e Þ
are the ground truth and estimated fields, we consider the
transformation v- ~v ¼ 1=ð∥ðv1; v2;1Þ∥Þðv1; v2;1Þ. The error measure
is defined as err ¼ arccosð ~ve; ~vgÞ.

2D image datasets: We tested our method on the dataset of
Mikolajczyk et al. [51] and Tuytelaars and van Gool [52], and
several image pairs of non-rigid objects. The images in the first
dataset are either of planar scenes or the camera position was
fixed during acquisition. Therefore, the images are always related
by a homography. The test data of Tuytelaars et al. contains several
wide baseline image pairs. The image pairs of non-rigid object are
made in this paper.

The open source VLFEAT toolbox [53] is used to determine the
initial correspondences of SIFT [43]. All parameters are set as the
default values except for the distance ratio threshold t. Usually, the
greater value of t is, the smaller amount of matches with higher
correct match percentage will be. The match correctness is
determined by computing an overlap error [51], as in [9].

3D surfaces datasets: For 3D case, we consider two datasets
used in [54]: the Dino and Temple datasets. Each surface pair are
representations of the same rigid object which can be aligned
using a rotation, translation and scale.

We determine the initial correspondences by using the method
of Zaharescu et al. [54]. The feature point detector is called
MeshDOG, which is a generalization of the difference of Gaussian
(DOG) operator [43]. The feature descriptor is called MeshHOG,
and it is a generalization of the histogram of oriented gradients
(HOG) descriptor [55]. The match correctness is determined as
follows. For these two datasets, the correspondences between the
two surfaces can be formulated as y¼ sRx þ t, where R3�3 is a
rotation matrix, s is a scaling parameter, and t3�1 is a translation
vector. We can use some robust rigid point registration methods
such as the Coherent Point Drift (CPD) [41] to solve these three
parameters, and then the match correctness can be accordingly
determined.
Fig. 2. Visualization of a synthetic 2D field without nois
5. Experimental results

To test the performance of the sparse approximation algorithm,
we perform experiments on the proposed SparseVFC algorithm,
and compare its approximate accuracy and time efficiency to VFC
and FastVFC on both synthetic data and real-world images. The
experiments are conducted from two aspects: (i) vector field
learning performance comparison on synthetic vector field and
(ii) mismatch removal performance comparison on real image
datasets.

5.1. Vector field learning on synthetic vector field

We perform a representative experiment on a synthetic 2D
vector field shown in Fig. 2. For each cardinality of the training set,
we repeat the experimental process by 10 times with different
randomly drawn examples. After the vector field is learned, we use
it to predict the outputs on the whole grid and compare them to
the ground truth. The experimental results are evaluated by means
of test error (i.e. error between prediction and ground truth on the
whole grid) and run-time speedup factor (i.e. ratio of run-time of
VFC to run-time of FastVFC or SparseVFC) for clarity. The matrix-
valued kernel is chosen to be a convex combination of the
divergence-free kernel Γdf and curl-free kernel Γcf [56] with width
~s ¼ 0:8, and the combination coefficient is set to 0.5. The
divergence-free and curl-free kernels have the following forms:

Γdf ðx; x′Þ ¼
1
~s2 e

−∥x−x′∥2=2 ~s2 x−x′
~s

� �
x−x′
~s

� �T
"

þ D−1ð Þ−∥x−x′∥2

~s2

� �
� I
	
; ð33Þ

Γcf ðx; x′Þ ¼
1
~s2 e

−∥x−x′∥2=2 ~s2
I−

x−x′
~s

� �
x−x′
~s

� �T
" #

: ð34Þ

In order to choose an appropriate value of M on this synthetic
field, we assess the performance of SparseVFC with respect to M
under different experimental setup. Rather than using the ground
truth to assess performance, i.e. the mean of test error, we use the
standard deviation of the estimated inliers [44]

sn ¼ 1
jI j ∑i∈I

∥yi−fðxiÞ∥2
 !1=2

; ð35Þ

where I is the estimated inlier set in the training samples, and j � j
denotes the cardinality of a set. Generally speaking, smaller value
of sn indicates better estimation. The result is presented in Fig. 3a,
we can see that M¼60 could reach a good compromise between

 

 

e and its 500 random samples used in experiment.  
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the accuracy and computational complexity. For comparison, we
also present the mean of test error in Fig. 3b. We can see that these
two criterions tend to produce similar choices of M. For FastVFC,
150 largest eigenvalues are used for calculating the low rank
matrix approximation.

We first give some intuitive impression on the performance of our
method, as shown in Fig. 4. We see that SparseVFC can successfully
recover the vector field from sparse training samples, and the
performance is getting better as the number of inlier in the training
set increases. Figs. 5 and 6 show the vector field learning perfor-
mances of VFC, FastVFC and SparseVFC. We consider two scenarios
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Fig. 3. Experiments for choosing the sample point number M used for sparse approximat
test error with respect to M. The inlier number in the training set is set to 500 and 800

Fig. 4. Reconstruction of field learning shown in Fig. 2a via SparseVFC. Left: 200 inliers co
ratios are both 0.5. The means of test error is about 0.072 and 0.044, respectively.
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Fig. 5. Performance comparison on test error. (a) Comparison of test error through
(b) Comparison of test error through changing the inlier number in the training sets, th
for performance comparison: (i) fix the inlier number and change the
inlier percentage and (ii) fix the inlier percentage and change the
inlier number. Fig. 5 shows the performance comparison of the test
error under different experimental setup, we see that both SparseVFC
and FastVFC perform much the same as VFC. Fig. 6 shows a
performance comparison on the average run-time. From Fig. 6a, we
see that the computational cost of SparseVFC is about linear with
respect to the training set size. The run-time speedup factors of
FastVFC and SparseVFC with respect to VFC are presented in Fig. 6b.
We see that the speedup factor of FastVFC is about a constant, since
its time complexity is the same as VFC, both are OðN3Þ. However,
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Fig. 6. Performance comparison on run-time under the experimental setup in Fig. 5b. (a) Run-time of SparseVFC. (b) Run-time speedup of FastVFC and SparseVFC with
respect to VFC.

Table 2
The numbers of matches and initial inlier percentages in the six image pairs.

Tree Valbonne Mex DogCat Peacock T-shirt

No. of matches 167 126 158 113 236 300
Inlier pct. (%) 56.29 54.76 51.90 82.30 71.61 60.67
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compared to FastVFC, the use of SparseVFC leads to an essential
speedup, and this advantage will be significantly magnified with
larger scale of training set.

In conclusion, when an appropriate number of basis functions
are chosen, the SparseVFC algorithm can approximate the original
VFC algorithm quite well, while with a significant run-time
speedup.

5.2. Mismatch removal on real images

We notice that the algorithm demonstrates strong ability on
mismatch removal. Thus we apply it to the mismatch removal
problem and perform experiments on a wide range of real images.
The performance is characterized by precision and recall. Besides
VFC and FastVFC, we use three additional mismatch removal
methods for comparison: RANdom SAmple Consensus (RANSAC)
[57], Maximum Likelihood Estimation SAmple Consensus (MLE-
SAC) [44] and Identifying point correspondences by Correspon-
dence Function (ICF) [47]. RANSAC tries to get as small an outlier-
free subset as feasible to estimate a given parametric model by
resampling, while its variants MLESAC adopts a new cost function
using weighted voting strategy based on M-estimator, and chooses
the solution which maximize the likelihood rather than the inlier
count in RANSAC. The ICF method uses support vector regression
to learn a correspondence function pair which maps points in one
image to their corresponding points in another, and then rejects
the mismatches by checking whether they are consistent with the
estimated correspondence functions.

The structure of the generated motion field is relatively simple
in the mismatch removal problem. We simply choose a diagonal
decomposable kernel with Gaussian form in the scalar part, and
we set β¼ 0:1 according to the original VFC algorithm. Moreover,
the number of basis functions M used for sparse approximation is
fixed in our evaluation, since choosing M adaptively would require
some pre-processing which would increase the computational
cost. We manage to tune the value of M by using a small test
set, and we find that using 15 basis functions for sparse approx-
imation is accurate enough. So we set M¼15 throughout the
experiments. For FastVFC, 10 largest eigenvalues are used for
calculating the low rank matrix approximation.
5.2.1. Results on several 2D image pairs
Our first experiment involves mismatch removal on several

image pairs, including wide three baseline image pairs (Tree,
Valbonne and Mex) and three image pairs of non-rigid object
(DogCat, Peacock and T-shirt). Table 2 presents the numbers of
matches as well as the initial correct match percentages in these
six image pairs.
The whole mismatch removal progress on these image pairs is
illustrated schematically in Fig. 7. The columns show the iterative
progress, the level of the blue color indicates to what degree a
sample belongs to inlier, and it is also the posterior probability pn
in Eq. (30). In the beginning, all the SIFT matches in the first
column are assumed to be inlier. We convert them into motion
field training sets which are shown in the 2nd column. As the EM
iterative process continues, progressively more refined matches
are shown in the 3rd, 4th and 5th columns. The 5th column shows
that the algorithm almost converges to a nearly binary decision on
the match correctness. The SIFT matches reserved by the algo-
rithm are presented in the last column. It should be noted that
there is an underline assumption in our method that the vector
field should be smooth, i.e. the norm of the field f in Eq. (13)
should be small. However, for wide baseline image pairs such as
Tree, Valbonne andMex, the related motion fields are in general not
continuous, and our method is still effective for mismatch
removal. We give an explanation as follows: under the sparsity
assumptions of the training data, it is not hard to seek a smooth
vector field which can fit nearly all the inliers (sparse) well; if the
goal is just to remove mismatches in the training data, the
smoothness constraint can work well.

Next, we give a performance comparison with the other five
methods in Table 3. The geometry model used in RANSAC and
MLESAC is epipolar geometry. We see that MLESAC has slightly
better precisions than the RANSAC with the cost of producing a
slightly lower recall. The recall of ICF is quite low, although it has a
satisfactory precision. However, VFC, FastVFC and SparseVFC can
successfully distinguish inliers from outliers, and they have the
best trade-off between precision and recall. The low rank matrix
approximation used in FastVFC may slightly hurt the performance.
While in SparseVFC, it seems that the sparse approximation does
not lead to degenerated performance, on the contrary, it makes the
algorithm more efficient.

Notice that we did not compare to RANSAC and MLESAC on the
image pairs of non-rigid object. RANSAC and MLESAC depend on a
parametric model, for example, fundamental matrix. If there exist
some objects with deformation in the image pairs, they can no
longer work, since the point pairs will no longer obey the epipolar
geometry.  
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Fig. 7. Results on image pairs of Tree, Valbonne,Mex, DogCat, Peacock and T-shirt. The first three rows are wide baseline image pairs, and the rest three are image pairs of non-
rigid object. The columns show the iterative mismatch removal progress, and the level of the blue color indicates to what degree a sample belongs to inlier. For visibility, only
50 randomly selected matches are presented in the first column. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this article.)

Table 3
Performance comparison with different mismatch removal algorithms. The pairs in the table are precision–recall pairs (%).

RANSAC [57] MLESAC [44] ICF [47] VFC [9] FastVFC [9] SparseVFC

Tree (94.68, 94.68) (98.82, 89.36) (92.75, 68.09) (94.85, 97.87) (94.79, 96.81) (94.85, 97.87)
Valbonne (94.52, 100.00) (94.44, 98.55) (91.67, 63.77) (98.33, 85.51) (98.33, 85.51) (98.33, 85.51)
Mex (91.76, 95.12) (93.83, 92.68) (96.15, 60.98) (96.47, 100.00) (96.47, 100.00) (96.47, 100.00)
DogCat – – (92.19, 63.44) (100.00, 100.00) (100.00, 100.00) (100.00, 100.00)
Peacock – – (99.12, 66.86) (99.40, 98.82) (99.40, 98.22) (99.40, 98.82)
T-shirt – – (99.07, 58.79) (98.88, 96.70) (98.84, 93.41) (98.88, 96.70)
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5.2.2. Results on a 2D image datasets
We test our method on the dataset of Mikolajczyk et al., which

contains image transformations of viewpoint change, scale change,
rotation, image blur, JPEG compression, and illumination. We use
all the 40 image pairs, and for each pair, we set the SIFT distance
ratio threshold t to 1.5, 1.3 and 1.0, respectively, as in [9]. The
cumulative distribution function of original correct match percen-
tage is shown in Fig. 8a. The initial average precision of all image
pairs is 69.58%, and nearly 30 percent of the training sets have
correct match percentage below 50%. Fig. 8b presents the cumu-
lative distribution of the number of point matches contained in
the experimental image pairs. We see that most of the image pairs
have large scale of point matches (i.e. in the order of 1000's).

The precision–recall pairs on this dataset are summarized in
Fig. 8. The average precision–recall pairs are (95.49%, 97.55%),
(97.95%, 96.93%), (93.95%, 62.69%) and (98.57%, 97.78%) for RAN-
SAC, MLESAC, ICF and SparseVFC, respectively. Here we choose
homography as the geometry model in RANSAC and MLESAC. Note
that the performances of VFC, FastVFC and SparseVFC are quite
close, thus we omit the results of VFC and FastVFC in the figure for
clarity. From the result, we see that ICF usually has high precision
or recall, but not simultaneously. MLESAC performs a little better 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Match Ratio

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Point Matches

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on RANSAC,     p=95.49%, r=97.55%
MLESAC,     p=97.95%, r=96.93%
ICF,              p=93.95%, r=62.69%
SparseVFC, p=98.57%, r=97.78%

Fig. 8. Experimental results on the dataset of Mikolajczyk et al. (a) Cumulative distribution function of original correct match percentage. (b) Cumulative distribution
function of number of point matches in the image pairs. (c) Precision–recall statistics for RANSAC, MLESAC, ICF and SparseVFC on the dataset of Mikolajczyk. Our method (red
circles, upper right corner) has the best precision and recall overall. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Table 4
Average precision–recall and run-time comparison of RANSAC, VFC, FastVFC and
SparseVFC on the dataset of Mikolajczyk.

RANSAC [57] VFC [9] FastVFC [9] SparseVFC

(p, r) (95.49, 97.55) (98.57, 97.75) (98.75, 96.71) (98.57, 97.78)
t (ms) 3784 6085 402 21

Table 5
Performance comparison by using different matrix-valued kernels for robust
learning. DK: decomposable kernel; DFK+CFK: combination of divergence-free
and curl-free kernels.

DK, ω¼ 0 DK, ω≠0 DFK+CFK

VFC [9] (98.57, 97.75) (98.66, 97.91) (98.69, 97.65)
SparseVFC (98.57, 97.78) (98.66, 97.93) (98.67, 97.71)

Table 6
Performance comparison by choosing different numbers of basis functions.

M 5 10 15 20

(p, r) (98.10, 96.88) (98.57, 97.73) (98.57, 97.78) (98.57, 97.79)
t (ms) 12 15 21 49
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than RANSAC, and they both achieve quite satisfactory perfor-
mance. This can be explained by the lack of complex constraints
between the elements of the homography matrix. Our method has
good performance in dealing with the mismatch removal problem,
and it has the best trade-off between precision and recall com-
pared to the other three methods.

We compare the approximate accuracy and time efficiency of
SparseVFC to VFC and FastVFC in Table 4. As shown in it, both
FastVFC and SparseVFC approximate VFC quite well, especially our
method SparseVFC. Moreover, SparseVFC achieves a significant
speedup with respect to the original VFC algorithm, of about 300
times on average. The run-time of RANSAC is also presented in
Table 4, and we see that SparseVFC is much more efficient than
RANSAC. To prevent the efficiency of RANSAC from decreasing
drastically, usually a maximum sampling number is preset in the
literature. We set the maximum sampling number to 5000.

The influence of different choices of basis functions for sparse
approximation is also tested on this dataset. Besides the random
sampling, we consider three other different methods: (i) simply
use

ffiffiffiffiffi
M

p
�

ffiffiffiffiffi
M

p
uniform grid points over the bounded input space;

(ii) find M clustering center of the training inputs via k-means
clustering algorithm; (iii) pick M basis functions minimizing the
residuals via sparse greedy matrix approximation [17]. The aver-
age precision–recall pairs of these three methods are (98.58%,
97.79%), (98.57%, 97.75%) and (98.58%, 97.79%), respectively. We
see that all the three approximation methods produce almost the
same result as the random sampling method. Therefore, for the
mismatch removal problem, it does not seem that selecting the
“optimal” subset using sophisticated methods improves the per-
formance compared to a random subset. However, in the interests
of computational efficiency, we may be better off simply choosing
a random subset of the training data.

Next, we study on using different kernel functions for robust
learning. Two additional matrix-valued kernels are tested, such as
a decomposable kernel [8]: Γðxi; xjÞ ¼ e−β∥xi−xj∥

2A with A¼ω1D�D

þð1−ωDÞID�D, and a convex combination of the divergence-free
kernel Γdf and curl-free kernel Γcf . Note that the form kernel will
degenerate into a diagonal kernel when we set ω¼ 0. In our
evaluation, the combination coefficients in these two kernels are
selected via cross-validation. The results are summarized in
Table 5. We see that SparseVFC approximate VFC quite well under
different matrix-valued kernels. Moreover, using a diagonal
decomposable kernel is adequate for the mismatch removal
problem; it can reduce the complexity of the linear system, i.e.
Eq. (32), while with only a negligible decrease in accuracy.

Finally, we use this dataset to investigate the influence of the
choice of M, the number of basis functions. Besides the default
value 15, three additional values of M including 5, 10 and 20 are
tested, and the results are summarized in Table 6. We see that
SparseVFC is not very sensitive to the choice of M, and even M¼5
can achieve a satisfied performance. It should be noted that better
approximate accuracy can be achieved by choosing M adaptively.
For example, first compute the standard deviation of the estimated
inliers sn (i.e. Eq. (35)) under different choices of M, and then
choose the one with the smallest value of sn. However, such
scenario would significantly increase the computational cost, since
it requires to run the algorithm once for each choice of M.
Therefore, fixing the value of M to a constant large enough, i.e.
15 in this paper, will achieve a good trade-off between the
approximate accuracy and computational efficiency.
5.2.3. Results on 3D surface pairs
Since VFC is not influenced by the dimension of the input data,

now we test the mismatch removal performance of SparseVFC on
3D surface pairs and compare it to the original algorithm. Here the
parameters are set as the same values as in the 2D case.

The two surface pairs Dino and Temple are shown in Fig. 9. As
shown, the capability of SparseVFC is not weakened in this case.
For the Dino dataset, there are 325 initial correspondences with 



Fig. 9. Mismatch removal results of SparseVFC on two 3D surface pairs: Dino and Temple. There are 325 and 239 initial matches in these two pairs, respectively. For each
group of results, the left pair denotes the identified putative correct matches (Dino 263, Temple 216), and the right pair denotes the removed putative mismatches (Dino 62,
Temple 23). For visibility, at most 50 randomly selected correspondences are presented.

Table 7
Performance comparison of VFC, FastVFC and SparseVFC on two 3D surface pairs:
Dino and Temple. The initial correct match percentages are about 81.23% and
89.96%, respectively.

VFC [9] FastVFC [9] SparseVFC

Dino (98.87, 99.62) (100.00, 99.62) (100.00, 99.62)
Temple (99.07, 99.53) (99.07, 99.53) (99.07, 99.53)
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264 correct matches and 61 mismatches; after using the Spar-
seVFC to remove mismatches, 263 matches are preserved and all
of which are correct matches. That is to say, all the false matches
are eliminated while discarding only 1 correct match. For the
Temple dataset, there are 239 initial correspondences with 215
correct matches and 24 mismatches; after using the SparseVFC to
remove mismatches, 216 matches are preserved, in which 214 are
correct matches—that is, 22 of 24 false matches are eliminated
while discarding only 1 correct match. Performance comparison
are presented in Table 7, we see that both FastVFC and SparseVFC
have a good approximation to the original VFC algorithm. There-
fore, the sparse approximation used in our method works quite
well, not only in the 2D case, but also in the 3D case.
6. Conclusion

In this paper, we study a sparse approximation algorithm for
vector-valued regularized least-squares. It searches a suboptimal
solution under an assumption that the solution space can be
represented sparsely with much less basis function. The time
and space complexities of our algorithm are both linear in the
scale of training samples, and the number of basis functions is
manually assigned. We also present a new robust vector field
learning method called SparseVFC, which is a sparse approxima-
tion to VFC, and apply it to solving the mismatch removal problem.
The quantitative results on various experimental data demonstrate
that the sparse approximation leads to a vast increase in speed
with negligible decrease in performance, and it outperforms
several state-of-the-art methods such as RANSAC from the per-
spective of mismatch removal.

Our sparse approximation addresses a generic problem for
vector field learning, and it can be applied to other methodologies
which can be converted into the vector field learning problem, for
example, the Coherent Point Drift algorithm [41] designed for
point registration. The sparse approximation of the Coherent Point
Drift algorithm is described in detail in Appendix. Besides, our
approach also has some limitations, for example, the sparse
approximation is validated only in the case of ℓ2 loss. Our future
work shall focus on (i) determining the basis number automati-
cally and efficiently and (ii) validating the sparse approximation
under different types of loss functions.
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Appendix A. Sparse approximation for coherent point drift

The Coherent Point Drift (CPD) algorithm [41] considers
alignment of two point sets as a probability density estimation
problem. Given two point sets XLD�1 ¼ ðxT

1;…; xT
L ÞT and YKD�1 ¼

ðyT
1;…; yTK ÞT with D being the data point's dimension, the algorithm

assumes the points in Y are the Gaussian mixture model (GMM)
centroids, and the points in X are the data points generated by the
GMM. It then estimates the transformation T which yields the best
alignment between the transformed GMM centroids and the data
points by maximizing a likelihood. There the transformation T is
defined as an initial position plus a displacement function f:
TðyÞ ¼ y þ fðyÞ, where f is assumed to come from an RKHS H and
hence has the form of Eq. (8).

Similar to our SparseVFC algorithm, the CPD algorithm also
adopts an iterative EM algorithm to alternatively recover the
spatial transformation and update the point correspondence. 
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And in the M-step, for recovering the displacement function f, it
needs to solve a linear system similar to Eq. (10), which takes up
most of the run-time and memory requirements of the algorithm.
The sparse approximation again could be used here to reduce the
time and space complexity.

In the iteration of CPD algorithm, the displacement function f
can be estimated from minimizing an energy function as

EðfÞ ¼ 1
2s2

∑
L

l ¼ 1
∑
K

k ¼ 1
pkl∥xl−yk−fðykÞ∥2 þ

λ

2
∥f∥2H; ð36Þ

where pkl is the posterior probability of the correspondence
between two points yk and xl, and s is the standard deviation of
the GMM components.

Using the sparse approximation, we search a suboptimal fs

with the form Eq. (12). Due to the choice of a diagonal decom-
posable kernel Γðyi; yjÞ ¼ e−β∥yi−yj∥

2
I, Eq. (36) becomes

EðCÞ ¼ 1
2s2

∑
L

l ¼ 1
∥ðdiagðP�;lÞ⊗ID�DÞ1=2ðXK

l −Y− ~UCÞ∥2 þ λ

2
CT ~ΓC; ð37Þ

where P¼ fpklg and P�;l denotes the l-column of P, kernel matrix ~Γ
is a M �M block matrix with the ði; jÞ−th block Γð ~y i; ~y jÞ, ~U is a K �
M block matrix with the ði; jÞ−th block Γðyi; ~y jÞ, XK

l ¼ ðxl;…; xlÞ is a
KD� 1 dimensional vector, and C¼ ðc1;…; cMÞ is the coefficient
vector.

Taking the derivative of Eq. (37) with respect to the coefficient
vector C and setting it to zero, we obtain a linear system

ðUTdiagðP1ÞUþ λs2ΓÞ ~C ¼UTP ~X−UTdiagðP1Þ ~Y ; ð38Þ
where the kernel matrix Γ∈RM�M and Γij ¼ e−β∥ ~y i− ~y j∥2 , U∈RK�M and
Uij ¼ e−β∥yi− ~y j∥2 , 1 is a column vector of all ones, ~C ¼ ðc1;…; cMÞT,
~X ¼ ðx1;…; xLÞT and ~Y ¼ ðy1;…; yK ÞT. Here M is the number
of bases.

Thus we obtain a suboptimal solution from the coefficient
matrix ~C. This corresponds to the optimal solution fo, i.e. Eq. (8),
with the coefficient matrix ~C determined by the linear system [41]

ðΓþ λs2diagðP1Þ−1Þ ~C ¼ diagðP1Þ−1PX−Y; ð39Þ
where Γ∈RK�K with Γij ¼ e−β∥yi−yj∥

2
, and ~C ¼ ðc1;…; cK ÞT.

Since it is a sparse approximation of the CPD algorithm, we
name this approach SparseCPD. We simply summarize the Spar-
seCPD algorithm in Algorithm 2.

Algorithm 2. The SparseCPD Algorithm.
Input: Two point sets X and Y

Output: Transformation T
1
 Parameter initialization, including M and all the parameters in
CPD
2
 repeat

3
4
5
6
7

���
E−step :

Update the point correspondence
M−step :

Update the coefficient vector ~C by solving linear system ð38Þ
Update other parameters in CPD
8
 until converges;

9
 The transformation T is determined according to the

coefficient vector ~C.
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