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Abstract

We propose a method for vector field learning with out-
liers, called vector field consensus (VFC). It could distin-
guish inliers from outliers and learn a vector field fitting
for the inliers simultaneously. A prior is taken to force
the smoothness of the field, which is based on the Tiknonov
regularization in vector-valued reproducing kernel Hilbert
space. Under a Bayesian framework, we associate each
sample with a latent variable which indicates whether it
is an inlier, and then formulate the problem as maximum
a posteriori problem and use Expectation Maximization al-
gorithm to solve it. The proposed method possesses two
characteristics: 1) robust to outliers, and being able to tol-
erate 90% outliers and even more, 2) computationally effi-
cient. As an application, we apply VFC to solve the problem
of mismatch removing. The results demonstrate that our
method outperforms many state-of-the-art methods, and it
is very robust.

1. Introduction

A vector field is a map that assigns each position x ∈
IRP a vector y ∈ IRD defined by a vector-valued func-
tion. Past empirical work has shown that, learning a vector-
valued function exploiting the relationships between its
components often leads to more accurate predictions than
learning the outputs independently. However, it has re-
ceived much less attention in machine learning.

Computing a function from sparse data by assuming an
appropriate prior on the class of approximating functions is
addressed in regularization theory. This problem is ill-posed
since it has an infinite number of solutions. To make the re-
sult depend smoothly on the data, regularization techniques
typically impose smoothness constraints on the approximat-
ing set of functions in a hypothesis space [7]. There is a
particularly useful family of hypothesis spaces called repro-
ducing kernel Hilbert spaces (RKHS) [1], each of which is
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Figure 1. Mismatch removing and vector field learning. (a) An
image pair and its putative matches. Blue and red lines represent
correct matches and mismatches respectively. For visibility, only
50 randomly selected matches are presented. (b)(c) Vector field
samples introduced by all matches and correct matches respec-
tively. The head and tail of each quiver correspond to the positions
of feature points in two images. (d)(e) Learned vector field using
samples of (b) and (c) respectively. The visualization method is
line integral convolution (LIC) [5], color indicates the magnitude
of the vector at each point.

associated with a particular kernel, and the representer the-
orem for Tikhonov regularization in RKHS is widely ap-
plied. In this paper, we focus on RKHS of vector-valued
functions. The vector field learning under the framework of
vector-valued RKHS has been considered in [14], and they
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generalized the representer theorem for Tikhonov regular-
ization to the vector-valued setting. An extension work can
be found in [2]. They studied a new class of regularized
kernel methods for learning vector fields, which is based on
filtering the spectrum of the kernel matrix.

There is a precondition for these methods that the given
sparse data should not contain outliers. However, real-world
observations are always perturbed by noise and outliers,
sometimes the proportion of outliers is even very large. The
existence of outlier could ruin the traditional vector field
learning methods since they consider all samples as inliers.
In this case, robust estimators should be developed to pro-
vide stable results. The main purpose of this paper is to
learn the vector field from sparse data with outliers, as well
as remove outliers. Compared to traditional methods, the
difference is that we associate each sample with a latent
variable which indicates whether it is an inlier, and then use
expectation-maximization (EM) algorithm to find a maxi-
mum posterior (MAP) solution for the vector field by treat-
ing the latent variable as missing data.

Now considering figure 1, to illuminate our main idea,
we take mismatch removing as an example. As shown in
figure 1(a), blue lines denote inliers, red lines denote out-
liers. We first convert the matches into vector field training
set which is shown in figure 1(b). The inliers are shown
in figure 1(c). Using the traditional method, we obtain the
vector field in figure 1(d) and (e) from the training set in
figure 1(b) and (c) respectively. Obviously, the vector field
in figure 1(d) is not the purpose, and the training set in fig-
ure 1(c) is not known in advance. Therefore, the problem is
how to use the training set in figure 1(b) to estimate the vec-
tor field in figure 1(e), and this is the very goal in our work.
There is another problem, considering figure 1(b) only, we
may ask why the blue quivers indicate inliers, and the red
quivers indicate outliers. This is because the blue quivers
have “low frequency” in space domain, and they are con-
sistent with the smoothness prior. However, if the ground
truth itself contains the red quivers, which means the true
vector field does not have “dominated frequency” in space
domain, our method will not be suitable for this case, and
this is beyond the scope of our work.

1.1. Related work

Yuille and Grzywacz proposed the motion coherence
theory (MCT) for velocity field smoothing [21]. Myro-
nenko and Song extended the MCT to point set registration
and it is robust in the presence of outliers and noise [16].
These methods do not consider the interaction between the
components of velocity field. Several recent works have
been done on vector field learning. Micchelli and Pon-
til learned vector-valued functions under the framework of
vector-valued RKHS [14]. Based on their work, Baldassarre
et al. studied spectral filtering method for learning vector

fields [2]. Besides regularization method, vector field learn-
ing methods also include support vector regression [13] and
sparse basis field method [8].

Our proposed vector field consensus (VFC) method is
inspired by vector field learning [2] and robust model fit-
ting [18]. The main contributions of our work include: i)
we proposed a new vector field learning method called vec-
tor field consensus which can learn vector field from sparse
samples with outliers; ii) we applied VFC to mismatch re-
moving which is a fundamental problem in computer vision,
and the results demonstrate that it outperforms many state-
of-the-art methods. To the best of our knowledge, the vector
field learning with outliers has not yet been studied.

2. Vector field learning with outliers
2.1. Problem formulation

Given a set of observed input-output pairs S =
{(xn,yn) ∈ X ×Y}Nn=1 by random sampling a vector field
which contains some unknown outliers, where X ⊆ IRP

and Y ⊆ IRD are input space and output space respectively,
our purpose is to distinguish outliers from inliers and learn a
mapping f : X → Y to fit the inliers well, where f ∈ H, and
we assumeH is a reproducing kernel Hilbert space (RKHS)
[14].

In the following we make the assumption, without loss of
generality, that for inliers, the noise is Gaussian with zero
mean and uniform standard deviation σ; and for outliers,
the observations of output occur within a bounded region of
IRD, so the distribution is assumed to be uniform 1

a , where
a is just a constant (the volume of this region). Let γ be
the percentage of inliers which we do not know in advance.
Thus the likelihood is a mixture model of distributions for
inliers and outliers:

p(Y|X,θ) =
N∏
n=1

p(yn|xn,θ)

=

N∏
n=1

(
γ

(2πσ2)D/2
e−
‖yn−vn‖2

2σ2 +
1− γ
a

)
, (1)

where θ = {f , σ2, γ} is the set of unknown parameters,
XN×P = (x1, · · · ,xN )T, YN×D = (y1, · · · ,yN )T,
vn = f(xn). Note that the uniform distribution function
is nonzero only in a bounder region, here we omit the indi-
cator function in it for clarity.

Considering the smoothness constraint, the prior of f
could be written as:

p(f) ∝ e−λ2 ‖f‖
2
H , (2)

where λ > 0 is the regularization parameter, ‖ · ‖2H is the
norm in the RKHSH.

Given the likelihood (1) and prior (2), the posterior dis-
tribution p(θ|X,Y) could be estimated by applying Bayes
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rule: p(θ|X,Y) ∝ p(Y|X,θ)p(f). In order to optimally
estimate θ a MAP solution, θ∗, is made such that

θ∗ = argmax
θ

p(Y|X,θ)p(f), (3)

with θ∗ corresponding to the estimate of the true θ. Thus
the vector field f will be obtained. However, seeking a
good solution for f implies weakening the influence of out-
liers. In this paper, we cope with this problem under an EM
framework which we will discuss in the following subsec-
tions.

2.2. An EM solution

There are several ways to estimate the parameters of the
mixture model, such as EM algorithm, gradient descent,
variational inference, etc. The EM algorithm provides a
natural framework for solving this problem. EM alternates
two steps, an expectation step (E-step) and a maximization
step (M-step). In the E-step, responsibilities for samples
belonging to inlier are estimated based on the currently best
estimate of vector field f . In the M-step, a maximum likeli-
hood vector field f is estimated based on the responsibilities
computed in the E-step. The E-step can be interpreted as in-
lier detection with a fixed vector field f , whereas the M-step
implements vector field learning under the assumption that
the responsibilities are known.

We associate sample n with a latent variable zn ∈
{0, 1}, where zn = 1 represents Gaussian distribution and
zn = 0 represents uniform distribution. Following standard
texts [4] and omitting terms that are independent of θ, the
complete-data log posterior (i.e. the sum of log likelihood
and log prior) is given by

Q(θ,θold) = − 1

2σ2

N∑
n=1

P (zn = 1|xn,yn,θold)‖yn − vn‖2

− D

2
lnσ2

N∑
n=1

P (zn = 1|xn,yn,θold)

+ ln γ

N∑
n=1

P (zn = 1|xn,yn,θold)

+ ln(1− γ)
N∑
n=1

P (zn = 0|xn,yn,θold)

− λ

2
‖f‖2H. (4)

This may be maximized by treating the zn as missing data
from the mixture model.

E-step: Denote P = diag(p1, . . . , pN ), where the re-
sponsibility pn = P (zn = 1|xn,yn,θold) can be computed

by applying Bayes rule:

pn =
γe−

‖yn−vn‖2

2σ2

γe−
‖yn−vn‖2

2σ2 + (1− γ) (2πσ
2)D/2

a

. (5)

The posterior probability pn is a soft decision, which indi-
cates to what degree the sample n agrees with the current
estimated vector field f .

M-step: We determine the revised parameter estimate
θnew as follows: θnew = argmaxθQ(θ,θ

old). Consid-
ering P is diagonal matrix, take derivative of Q(θ) with
respect to σ2 and set it to zero, we obtain

σ2 =
tr
[
(Y −V)TP(Y −V)

]
D · tr(P)

, (6)

where tr(·) is the trace.
Take derivative of Q(θ) with respect to γ and set it to

zero, we obtain

γ =
tr(P)

N
. (7)

The mixing coefficient γ for Gaussian component is given
by the average responsibility which the Gaussian compo-
nent takes for explaining the samples.

Maximization Q with respect to f is complex, and we
will discuss it in the next subsection.

After the EM converges, it should make a decision which
samples are inliers. With a predefined threshold τ , we ob-
tain inlier set T = {n|pn > τ, n = 1, · · · , N}. When mak-
ing such hard decision, the set of T is the so-called consen-
sus set in Random Sample Consensus (RANSAC) [6], so
we call our method vector field consensus (VFC).

2.3. Vector field regularization using matrix kernel

Considering the terms of objective functionQ in (4) that
are related to f , and multiply them by -1, we get an energy
function:

E(f) = 1

2σ2

N∑
n=1

pn‖yn − f(xn)‖2 +
λ

2
‖f‖2H. (8)

Then the maximization of Q with respect to f is equivalent
to minimize energy function E(f). This energy function is a
vector-valued extension of Tikhonov regularization, and the
first term could be seen as weighted empirical error.

Taking advantage of the equivalence of RKHS and ker-
nel, we define the hypothesis space H using matrix ker-
nel. Matrix kernel is a symmetric matrix valued mapping
Γ : IRP × IRP → IRD×D that satisfies a positivity con-
straint.

Using the vector-valued representer theorem, the optimal
f has this form [2, 14]:

f(x) =

N∑
n=1

Γ(x,xn)cn, (9)
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with the coefficient cn determined by a linear system

(Γ̃ + λσ2P̃−1)C = Ỹ, (10)

where kernel matrix Γ̃ and P̃ are N × N block matrices,
each block is a D × D scalar matrix. The (i, j)-th block
of Γ̃ is Γ(xi,xj). P̃ = P ⊗ ID×D, where ⊗ denotes
Kronecker product. cn ∈ IRD×1, C = (cT1 , · · · , cTN )T,
Ỹ = (yT

1 , · · · ,yT
N )T are D ×N dimensional vectors.

We also provide a fast implementation for VFC. Notice
that the coefficient matrix in linear system (10) is positive
definite, so the low rank matrix approximation could be
used to reduce the complexity to linear as in [17, 16]. We
call this implementation FastVFC.

We summarize the vector field consensus method in al-
gorithm 1.

Algorithm 1: The Vector Field Consensus (VFC) Al-
gorithm

Input: Training set S = {(xn,yn)}Nn=1, kernel Γ
Output: Vector field f , inliers set T

1 Initialize λ, τ, γ;
2 Initialize V = X, P = IN×N ;
3 Set a to be the volume of the output space;
4 Initialize σ2 by formula (6);
5 Construct kernel matrix Γ̃ using the definition of Γ;
6 repeat
7 E-step:
8 Update P = diag(p1, . . . , pN ) by formula (5);
9 M-step:

10 Update C by solving linear system (10);
11 Update V by using vn = f(xn) and formula (9);
12 Update σ2 and γ by formulas (6) and (7);
13 until Q converges;
14 Vector field f is determined by formula (9);
15 The inlier set is T = {n|pn > τ, n = 1, · · · , N}.

3. Removing mismatch by VFC algorithm
To validate the effectiveness of vector field consensus

method, we apply it to mismatch removing problem. First
of all, we show how the putative match set can be naturally
modeled as vector field training set. Then we discuss some
key issues when applying VFC to mismatch removing prob-
lem.

3.1. Vector field introduced by image pairs

Assume a match is comprised by a pair (ui,u′i), where
ui and u′i are positions of the two feature points in tem-
plate image and reference image respectively. We made a
linear re-scaling of the correspondences, so that the posi-
tion in template and reference image have zero mean and

unit variance. Suppose the normalized match is (ûi, û
′
i).

We convert the normalized match into a vector field sam-
ple by a transformation (ûi, û

′
i) → (x,y), where x = ûi,

y = û′i − ûi.

3.2. Kernel selection

By choosing different kernels, the norm in the corre-
sponding RKHS encodes different notions of smoothness.
Usually, for mismatch removing problem, the structure of
the generated vector field is simple. We find decomposable
kernel is adequate for solving this problem, then the vector
field learning problem can be decomposed into D essen-
tially independent scalar problems [2]. Suppose the kernel
is:

Γ(xi,xj) = κ(xi,xj)A, (11)

where scalar kernel κ encodes the similarity between the
inputs, and matrix A encodes the relationships between the
outputs. The matrix kernel could exploit the relationships
among the components of the vector field.

For scalar kernel κ, we choose Gaussian kernel as fol-
lows

κ(xi,xj) = e−β‖xi−xj‖
2

. (12)

From the Fourier perspective, the regularization can be writ-
ten in terms of a penalty in the frequency domain. By choos-
ing an appropriately sized Gaussian filter we have the flex-
ibility to control the range of filtered frequencies and thus
the amount of spatial smoothness [16].

For the relationship matrix A, we choose graph regular-
ization [2]. A particular form is A = ω1 + (1 − ωD)I. In
practice, we found that just an identity matrix could work
quite well, so we set ω to 0 in this paper.

3.3. Computational complexity

For vector-valued Tikhonov regularization, the solution
of f(x) is found by inverting a matrix whose dimension is
(DN) × (DN). The time complexity is O((DN)3). For
mismatch removing problem, we choose a decomposable
kernel. By redefining a coordinate system, the vector field
learning problem can be reduced to solving D scalar reg-
ularization problems[2]. This particular kernel can reduce
the time complexity to O(DN3). Usually, D � N , and for
mismatch removing problem, D = 2.

In our current implementation, we just use MATLAB
“slash” operator, which implicitly use Cholesky decomposi-
tion to inverse matrix. For FastVFC, its total time complex-
ity could be reduced to O(mDN), where m is the iterative
times for EM. Our experiments demonstrate that FastVFC
is faster than Cholesky decomposition method, while with
little performance degradation.

3.4. Implementation details

In practice, we update γ using a little different form from
formula (7). After we obtain the posterior probability pn in
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Figure 2. The change of complete-data log posterior Q during the
EM iterations. (The experiment is performed on image pairs of
Mex with ratio test threshold 1.0. The initial correct match per-
centage is 11.65%.)

each iteration, we estimate inlier set T = {n|pn > τ, n =
1, · · · , N}, and then we update gamma as γ = |T |/N ,
where | · | denotes the cardinality of the inliers. When EM
converges, we fix γ as the current value and redo the EM
until convergence. And for numerical stability, we compel
γ ∈ [0.05, 0.95]. We find that this trick accelerates the con-
vergence and is more robust when the inliers percentage is
low.

When the initial correct match percentage is high, the
two update methods of γ performs nearly the same. For
low initial correct match percentage, figure 2 illuminates a
typical process of convergence for 11.65% inliers. We can
see that update using the previous trick is faster than up-
dating using formula (7). Even though EM algorithm gives
theoretical guarantees of obtaining local minimum only if
we using formula (7), we found that in practice this trick
does not hurt the performance, on the contrary, it makes the
algorithm more efficient.

Now considering the linear system (10), the matrix in-
version operation will cause some problem when the matrix
P is singular. For numerical stability, we cope with this
problem by defining a lower bound ε. Diagonal elements of
P that below ε is set as ε. In this paper, we set ε as 10−5.

Parameters initialization: There are mainly four pa-
rameters in VFC algorithm: β, λ, τ and γ. Parameters β
and λ both reflect the amount of smoothness regularization.
Parameter β determines how wide the range of interaction
between samples. Parameter λ controls the trade-off be-
tween the closeness to the data and the smoothness of the
solution. A detailed description of them can be found in
[21]. Parameter τ is a threshold, which is used for deciding
the correctness of a match. And parameter γ reflects our ini-
tial assumption on the amount of inliers in correspondence
sets. In practise, we find our method is insensitive to pa-
rameters. We set β = 0.1, λ = 3, τ = 0.75 and γ = 0.9
through this paper. The constant a is set as the area of the
reference image after linear re-scaling.

4. Experimental setup
We test our method on dataset of Mikolajczyk et al. [15]

and Tuytelaars et al. [19]. The image pairs in the first
dataset are either of planar scenes or the camera position is
fixed during acquisition. The images are, therefore, always
related by a homography. The ground truth homographies
are supplied by the dataset. The test data of Tuytelaars con-
tains several wide baseline image pairs. For further details
about the datasets we refer the reader to [15, 19].

We use the open source VLFEAT toolbox [20] to deter-
mine the initial matches of SIFT [12]. All parameters are set
as the default values except the ratio test threshold t. Usu-
ally, the greater value of t indicates the smaller amount of
matches with higher correct match percentage. The default
value of t is 1.5, and the smallest value is 1.0, which is the
nearest neighbor strategy.

We measure the performance of VFC for vector learn-
ing by an angular measure of error [3, 2] between the
learned vector of VFC and the ground truth. If vg =
(v1g , v

2
g) and ve = (v1e , v

2
e) are the ground truth and es-

timated fields, we consider the transformation v → ṽ =
1

‖(v1,v2,1)‖ (v
1, v2, 1). The error measure is defined as

err = arccos(ṽe, ṽg).
The match correctness is determined as follows. On the

dataset of Mikolajczyk et al., the authors use the overlap er-
ror εS to determine the match correctness. We use a sim-
ilar criterion. We just reduce the scale of feature point
to 1/3 of original scale, and we regard a match as correct
match if εS > 0. In our experiment, we find this method
is consistent with human’s perception. On the dataset of
Tuytelaars, we use a method combining subjectivity and
objectivity. We first generate matches by using VLFEAT
with the default parameters, which will generate high ac-
curacy matches. And then we fit the fundamental matrix by
RANSAC and use it to determine the match correctness. We
further confirm them artificially. Though the judgment of
correct match and mismatch seems arbitrary, we make the
benchmark before performing experiments to ensure objec-
tivity.

5. Experimental results
We test the performance of our proposed VFC and ver-

ify the validity of vector field learning on real images. The
experiments are done from the following three aspects: (1)
results on some wide baseline images; (2) vector field learn-
ing and mismatch removing performance on a dataset; (3)
robustness.

5.1. Results on wide baseline images

We test VFC method on wide baseline image pairs, as
shown in figure 3. One image pair is a structured scene, and
the other image pair is a unstructured scene. The training
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(a) (b) (c)

(d) (e) (f)

Figure 3. Experimental results for image pairs of Mex and Tree. (a-c) Results of ICF, GS and VFC for Mex respectively. The initial correct
match percentage is 51.90%, and the precision-recall pairs are (96.15%, 60.98%), (93.83%, 92.68%) and (96.47%, 100.00%) respectively.
(d-f) Results of ICF, GS and VFC for Tree respectively. The initial correct match percentage is 56.29%, and the precision-recall pairs are
(92.75%, 68.09%), (97.62%, 87.23%) and (94.85%, 97.87%) respectively. The lines indicate inlier detection result (blue = true positive,
green = false negative, red = false positive). For visibility, only 50 randomly selected correspondences are presented, and the true negatives
are not shown. Best viewed in color.

(a) (b)

(c) (d)

Figure 4. Vector field learning results for image pairs of Mex and
Tree. (a)(b) Inlier detection result and the learned field for Mex.
(c)(d) Inlier detection result and the learned field for Tree. The
quivers indicate inlier detection result (blue = true positive, black
= true negative, green = false negative, red = false positive). Best
viewed in color.

samples of vector fields and the learned vector fields are
shown in figure 4. We can see that even for complex vector
fields, VFC can learn them from noisy samples.

The performance for mismatch removing is character-
ized by precision and recall. We compare our VFC algo-
rithm with two state-of-the-art mismatch removing meth-

ods, Identifying point correspondences by Correspondence
Function (ICF) [9] and Graph Shift (GS) [10, 11]. The
ICF method uses support vector regression to learn a cor-
respondence function pair which map points in one image
to their corresponding points in another, and then reject the
mismatches by checking whether they are consistent with
the estimated correspondence functions. The GS method
constructs affinity graph via spatially coherent correspon-
dences, and then optimizes objective function by spectral
method. We implemented ICF and set all parameters ac-
cording to its default parameters. For GS, we implemented
it based on the publicly available core code supplied by the
authors. The parameters are set according to the original
paper, and we try our best to tune some details. In all the
experiment, three algorithms’ parameters are fixed.

The performance of VFC compared to other two ap-
proaches is show in figure 3. The results suggest that VFC
can distinguish inliers from outliers, and has the best trade-
off between precision and recall.

5.2. Results on a dataset

In this subsection, we test our method for vector field
learning and mismatch removing on the dataset of Mikola-
jczyk et al. We use all the 40 image pairs, and for each pair,
we set the SIFT ratio test threshold t as 1.5, 1.3, 1.0 respec-
tively. The cumulative distribution function of original cor-
rect match percentage is shown in figure 5(a). The initial
average precision of all image pairs is 69.57%, and about
30 percent of the training sets have correct match percent-
age below 50%, so the dataset is challenging for mismatch
removing.

2982



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Match Ratio

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

(a)

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test Error

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

 

 

ICF,   mean error = 0.438

Ours, mean error = 0.108
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ICF,   p=93.95%, r=62.69%

GS,   p=96.29%, r=77.09%

Ours, p=96.34%, r=96.89%

(c)

Figure 5. Experimental results on the dataset of Mikolajczyk et al. (a) Cumulative distribution function of original correct match percentage.
(b) Cumulative distribution functions, test error of learned vector field comparison between ICF and VFC. (c) Precision-recall statistics for
ICF, GS, and our method. Our method (red circles, upper right corner) has the best precision and recall overall.

The image pairs in this dataset satisfy homographies. As
a result, the ground truth vector fields can be calculated pre-
cisely. The error between two vectors is defined in experi-
mental setup. The test error of an image pair is estimated as
this: after learning the vector field, we use it to test the dis-
placement vectors of all pixels in the template image, and
compare them to the ground truth, the mean error is then
regarded as the test error. We compare VFC with ICF, since
ICF implicitly estimates a two-dimensional vector field by
estimating its components independently. Figure 5(b) gives
the cumulative distribution functions of test error. It is obvi-
ously that the vector fields estimated by VFC have less error
than ICF.

Figure 5(c) gives the precision-recall plot of three meth-
ods. The average precision-recall pairs are (93.95%,
62.69%), (96.29%, 77.09%) and (96.34%, 96.89%) for ICF,
GS and VFC respectively. As shown, when the initial cor-
rect match percentage is high, all the three methods perform
well. When mismatch percentage is high or the viewpoint
change is large, ICF tends to select all samples as support
vectors, and set all samples as inliers. Or on the contrary,
it selects very few samples as support vectors, and set other
samples as outliers. As a result, ICF is not robust for such
cases and usually has high precision or recall, but not simul-
taneously. GS has high precision and low recall. Perhaps
this is because GS can not estimate the factor for affinity
matrix automatically and it is not affine-invariant. Our pro-
posed method VFC has the best precision-recall trade-off.
And we found that the mismatch removing capability of
VFC is not affected by the large view angle, image rotation
and affine transformation since these cases are all contained
in the dataset. In fact, VFC performs well except that the
initial correct matches is very few.

The average run time of VFC and FastVFC on this
dataset is about 9.8s and 0.5s per image pair on a 2.5 GHz
PC respectively. The FastVFC is much faster than the other
two methods.

5.3. Robustness test

We test the robustness of VFC on two image pairs, Graf
and Church, as shown in figure 6. The Graf pair has large
affine deformation, and the Church pair is a wide baseline
image pair. For each image pair, we generate six training
sets by the following procedure: firstly, the ratio test thresh-
old is set as 1.5, 1.3 and 1.0 respectively, and then we fix
threshold to 1.0 and add 1000, 2000, 4000 random mis-
matches respectively.

We test our method and compare it to RANSAC, ICF
and GS, as shown in table 1 and table 2. It can be seen
that the performance of VFC is quite satisfactory, and it can
tolerate 90% outliers and even more. As the correct match
percentage decrease, the precision and recall of VFC de-
crease gradually. Still, the results are acceptable comparing
to other three methods.

(a)

(b)

Figure 6. Image pairs used for robustness test. (a) Graf; (b)
Church.
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Table 1. Performance on figure 6(a). The pairs in the table are precision-recall pairs (%).
match percentage 37.74% 34.67% 13.44% 8.54% 6.26% 4.08%
RANSAC [6] (75.95, 100.00) (78.26, 96.43) (67.65, 98.29) - - -
ICF [9] (89.80, 73.33) (93.15, 60.71) (18.54, 100.00) (8.54, 100.00) (6.26, 100.00) (4.08, 100.00)
GS [10, 11] (82.76, 80.00) (85.86, 75.89) (92.86, 44.44) (92.11, 29.91) (85.45, 20.09) (85.71, 17.95)
VFC (86.96, 100.00) (91.57, 100.00) (91.67, 98.72) (91.34, 99.15) (88.72, 73.93) (86.60, 71.79)

Table 2. Performance on figure 6(b). The pairs in the table are precision-recall pairs (%).
match percentage 54.76% 37.25% 9.56% 5.32% 3.69% 2.28%
RANSAC [6] (94.52, 100.00) (83.50, 92.47) (54.31, 89.17) - - -
ICF [9] (91.67, 63.77) (100.00, 21.51) (13.29, 100.00) (5.39, 100.00) (3.69, 100.00) (2.28, 100.00)
GS [10, 11] (91.78, 97.10) (92.31, 90.32) (84.44, 63.33) (88.71, 45.85) (86.05, 30.83) (84.00, 17.50)
VFC (98.33, 85.51) (94.25, 88.17) (90.76, 90.00) (95.24, 83.33) (86.96, 83.33) (85.47, 83.33)

6. Conclusion

In this paper, we investigate a robust vector field learn-
ing method, called vector field consensus (VFC), and apply
it to mismatch removing problem. It can detect outliers and
fit a smooth vector field from a training set. VFC alterna-
tively recovers the vector field and estimates the consensus
set. The experiments on mismatch removing demonstrate
that VFC is very robust, it can tolerate 90% mismatches
and even more. The quantitative results on a dataset show
that VFC outperforms state-of-the-art mismatch removing
methods. We also provide an efficient implementation of
VFC called FastVFC, which has linear time complexity.
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