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a b s t r a c t

Anovel Bayesianmethod for inference in dynamic regressionmodels is proposedwhere both the values of
the regression coefficients and the importance of the variables are allowed to change over time. We focus
on forecasting and so the parsimony of themodel is important for good performance. A prior is developed
which allows the shrinkage of the regression coefficients to suitably change over time and an efficient
Markov chainMonte Carlo method for posterior inference is described. The newmethod is applied to two
forecasting problems in econometrics: equity premium prediction and inflation forecasting. The results
show that this method outperforms current competing Bayesian methods.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Forecasting, the estimation of a future value of a variable, plays
an important role in both decision-making and strategic planning
and has been extensively studied in econometrics. For example,
forecasts of inflation affect the decisions of monetary and fiscal
policymakers, investors who wish to hedge against the risk of
nominal assets, and trade unions and management when they
negotiate wage contracts, to name a few. Similarly, forecasts of
equity premiums play an important role for investors who wish to
diversify their equity portfolios to hedge against adverse market
movements. The quality of the forecast depends on: the time scale
involved (how far into the futurewe are trying to predict), the time
period of the empirical sample, and the model used.

Regression models are a popular technique for forecasting
since the values of other variables can be used to inform
predictions. However, their use with observations made over time
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is complicated by several problems. Firstly, it has been found
that these models can produce poor out-of-sample forecasts when
the predictors’ effects are assumed constant over time. This is
generally taken as evidence that the effects of variables are
time-varying. Sims (1980), Stock and Watson (1996), Cogley and
Sargent (2001, 2005), Primicery (2005), Paye and Timmermann
(2006), Ang and Bekaert (2007), Canova (2007), and Lettau and
Van Nieuwerburgh (2008) are some studies providing evidence
of time varying regressor effects in inflation and equity premium
forecasting. Secondly, the increasing availability of large economic
datasets has led to interest in using regression models with many
regressors. It is well known that the estimation of regression
models becomes more complicated when a large number of
predictors is used due to the increased potential for over-fitting
which can lead to poor out-of-sample forecasts or predictions. The
problem of over-fitting can be alleviated by looking for sparse
regression estimates where many regression coefficients are set
to zero or values close to zero. This is usually achieved using
regularisation of the regression coefficients or variable selection
methods.

The problem of time-varying regressor effects can be addressed
using dynamic regression models, which are a form of time-
varying parameter models, where the regression coefficients are
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assumed to evolve according to some stochastic process. This
defines the dynamic linear models (DLM) discussed in West and
Harrison (1999), or state-space models.

The problem of a large number of variables has been addressed
in severalways. Initialwork concentrated onmodelswhich assume
a global measure of the importance of a variable. Groen et al.
(2009) introduced a latent variable which indicates whether a
variable is included in or excluded from themodel. The approach is
restricted so that the decision to include or exclude a predictor is
irreversible. Belmonte et al. (2011) combined the Bayesian Lasso
of Park and Casella (2008) with the model selection methods
of Frühwirth-Schnatter and Wagner (2010) in order to have
shrinkage in a dynamic regression setting. This approach allows
some regression coefficients to be shrunk very close to zero for
the whole time series and so effectively achieve variable selection.
These methods have the potentially critical limitation that the
importance of variables cannot change over time. For example, in
some problems certain predictors could be useful for forecasting
at particular times but not at others. In the Bayesian literature,
this problem has been approached by allowing variables to enter
and exit the model over time. Koop and Korobilis (2012) used the
dynamic model averaging (DMA) method of Raftery et al. (2010)
to select a suitable time-varying parameter model. However,
the dynamics on model space are only implicitly defined by
their approach. Alternatively, Chan et al. (2012) constructed the
class of time-varying dimension (TVD) models using an explicitly
constructed stochastic process for the subset of variables included
in the model. This leads to a dynamic mixture model for which
efficient posterior computational methods can be developed using
the approach of Gerlach et al. (2000). However, both approaches
are limited by the number of models that they can consider. The
DMA approach uses full enumeration of posterior probabilities
and the number of models with p regressors is 2p precluding
large values of p. Posterior computation in the TVD model also
potentially involves all 2p models but the authors suggest using a
much restricted set of possible models.

The DMA and TVD approaches build on Bayesian variable se-
lection techniqueswhich explicitly consider all possible regression
models. An alternative class of methods is Bayesian regularisation
methods which use absolutely continuous priors and encourage
small regression effects to be aggressively shrunk towards zero un-
der the posterior (see Carvalho et al. (2010), and Polson and Scott
(2011)). These authors have shown that these methods can lead
to posteriors which place substantial mass on combinations of re-
gression coefficients which are sparse (that is most of the regres-
sion coefficients have values very close to zero) if supported by the
data. Belmonte et al. (2011) have already extended one such prior,
the Bayesian Lasso, to the dynamic regression setting. Ourmethod-
ological contribution differs from their work in twomain respects.
Firstly, our prior for the time-varying regression coefficients ex-
tends the more general normal-gamma (NG) prior (see Caron and
Doucet (2008) and Griffin and Brown (2010)) to DR models and,
secondly, our prior accounts for both time-varying regression co-
efficients and time-varying sparsity.

The paper is organised as follows: Section 2 introduces the
normal-gamma autoregressive (NGAR) process prior, considers
some of its properties and describes the full Bayesian model for
dynamic regression with time-varying sparsity. Section 3 provides
of an overview of the required Markov chain Monte Carlo (MCMC)
method for fitting a dynamic regression model with an NGAR
process prior (the full steps of the MCMC sampler are described in
Appendix A). Section 4 applies the DR model with NGAR process
priors to simulated data, while Section 5 considers empirical
studies in equity premium prediction and inflation forecasting.
Section 6 summarises our findings and conclusions.
2. A Bayesian dynamic regression model with time-varying
sparsity

A dynamic regression (DR) model links a response yt to
regressors x1,t , . . . , xm,t (all observed at time t) by

yt =

m
i=0

xi,tβi,t + ϵt , t = 1, . . . , T , i = 0, . . . ,m (1)

where x0,t = 1 for all t (allowing for an intercept), βi,t is a vector
of unknown coefficients for the ith regressor at time t , ϵt is the
innovation term at time t generated from a normal distribution
with zero mean and time-varying variance i.e. ϵt ∼ N(0, σ 2

t ).
The regressors x1,t , . . . , xm,t may include both lags of the response
and exogenous variables. The DR model is usually completed by
assuming that β1,t , . . . , βm,t follow a linear stochastic process
(such as a random walk or vector autoregression).

In this paper we assume that the time-varying variances,
σ 2
1 , . . . , σ

2
T are generated by a gamma autoregressive (GAR)

process using the method described in Pitt et al. (2002) and Pitt
and Walker (2005) and later, independently, developed as the
autoregressive gamma process by Gourieroux and Jasiak (2006).
The process is specified using latent variables κσ1 , . . . , κ

σ
T−1 by the

recursion
σ 2
t ∼ Ga


λσ + κσt−1, λ

σ / (µσ (1 − ρσ ))


and

κσt−1|σ
2
t−1 ∼ Pn


λσρσσ 2

t−1/ ((1 − ρσ ) µσ )

,

for t = 2, . . . , T and σ 2
1 ∼ Ga (λσ , λσ /µσ ) . This defines a first-

order autoregressive model for σ 2
1 , . . . , σ

2
T with autoregressive

parameter ρσ and stationary distribution Ga(λσ , λσ /µσ ) where
x ∼ Ga(a, b) denotes that x follows a gamma distribution with
shape parameter a and mean a/b. We discuss our choice of
priors for λσ , µσ , and ρσ in Section 2.2. The Bayesian model is
completed by specifying a prior for βi,t for i = 0, . . . ,m and
t = 1, . . . , T which is discussed in the following section.

2.1. The NGAR process prior for βi,t

In regression models with a large number of regressors, it is
common to assume that only a subset of the regressors is important
for prediction. In DRmodels, this assumption is naturally extended
to subsets of important regressors that change over time. This
assumption can be expressed in the prior by defining a stochastic
process for β1,t , . . . , βm,t which allows a subset of β1,t , . . . , βm,t
to be set equal to zero (or equivalently, some regressors to be
removed from the model), or values close to zero at time t and
allows the subset to change over time. We refer to the proportion
of parameters δ = (δ1, . . . , δs) which are close to zero as the
sparsity of δ with a larger proportion referred to as more sparsity.
In DR models, there are two interesting forms of sparsity. Firstly,
the sparsity of βi = (βi,1, . . . , βi,T )which is the proportion of time
that βi,t is close to zero. Secondly, the sparsity of β1,t , . . . , βm,t
which is the proportion of regression coefficients that are set
close to zero at time t . The assumption of time-varying subsets of
important variables can be expressed by time-varying sparsity of
β1,t , . . . , βm,t .

These forms of sparsity can be expressed by giving independent
normal-gamma autoregressive (NGAR) process priors to the time
series of regression coefficients β1, . . . , βm. We define the NGAR
process prior below. Let x ∼ Pn(µ) denote that x follows a Poisson
distribution with mean µ.

Definition 1. The normal-gamma autoregressive (NGAR) process
for βi is defined by

βi,s =


ψi,s

ψi,s−1
ϕiβi,s−1 + ηi,s,

ηi,s|ψi,s ∼ N

0, (1−ϕ2

i )ψi,s


s = 2, . . . , T ,
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which is a normal AR(1) process conditional on ψi = (ψi,1,
. . . , ψi,T ), and where ψi,s follows a first-order gamma autoregres-
sive process specified using latent variables κi,1, . . . , κi,s−1 via the
recursion

ψi,s|κi,s−1 ∼ Ga

λi + κi,s−1,

λi

µi(1 − ρi)


,

κi,s−1|ψi,s−1 ∼ Pn

ρiλiψi,s−1

µi(1 − ρi)


,

with

βi,1|ψi,1 ∼ N(0, ψi,1), ψi,1 ∼ Ga(λi, λi/µi).

The normal-gamma autoregressive process will be written as βi ∼

NGAR(λi, µi ,ϕi, ρi).

The NGAR process can also be represented as the prod-
uct of two independent stationary stochastic processes: ψi =

(ψi,1, . . . , ψi,T ) and φi = (φi,1, . . . , φi,T ). Under this representa-
tion, βi,t =


ψi,tφi,t where φi = (φi,1, . . . , φi,T ) is generated

from an AR(1) process with autocorrelation parameter ϕi such
that φi has the standard normal as its stationary distribution
i.e. φi = ϕi φi−1 + ςi where ςi ∼ N(0, 1−ϕ2

i )

. The parameters

ψi = (ψi,1, . . . , ψi,T ) are generated from a GAR process whose
stationary distribution is Ga(λi,

λi
µi
). The conditional density ofψi,t

given ψi,t−1 is equal to

∞
κ=0

wκ,ψi,t−1Ga

ψi,t

λi + κ,
λi

µi(1 − ρi)


(2)

which is a mixture of gamma distributions with parameters λi +κ ,
and λi

µi(1−ρi)
, and Poisson weights such that

wκ,ψi,t−1 =

exp

−

ρiλi
µi(1−ρi)

ψi,t−1

 
ρiλi

µi(1−ρi)
ψi,t−1

κ
κ!

. (3)

The mean of ψi,t given ψi,t−1 is

E[ψi,t |ψi,t−1] = µi(1 − ρi)+ ρiψi,t−1,

which has an autoregressive structure, and its conditional variance
is

Var[ψi,t |ψi,t−1] =
µ2

i (1 − ρi)
2

λi
+

2ρiµi(1 − ρi)ψi,t−1

λi
.

The process βi is stationary and has a normal-gamma stationary
distribution since ψi and φi are independent and stationary. The
unconditional variance of βi,t is Var(βi,t) = µi and the excess
kurtosis is ~(βi,t) = 3/λi.

The set-up of the NGAR process prior is similar to that of the
normal-gamma (NG) prior and can be considered as the natural
extension of the NG prior to dynamic regression problems. Griffin
and Brown (2010) study the use of a normal-gamma (NG) prior for
regression problems where a sample y1, . . . , yn is observed with
m-dimensional vectors of regressors x1, . . . , xn and is modelled by

yj = xjβ + ϵj, ϵj ∼ N(0, σ 2), j = 1, . . . , n.

The prior assumes that β1, . . . , βm are independent with βi|ψi
following a normal distribution with mean zero and variance ψi,
whereψi ∼ Ga(λ, λ/µ). In this hierarchical set-up, the parameter
ψi plays a key role in determining the shrinkage to zero of the least
squares estimate β̂ induced by the posterior mean E[βi|y]. Smaller
values of ψi will lead to the posterior mean of βi (conditional on
ψi) being increasingly shrunk to zero. We can thus describe ψi as
the relevance of the ith regressor with a smaller value of ψi im-
plying less relevance for the ith regressor (as the posterior mean is
increasingly shrunk to zero). This interpretation of the variance of
a normal prior distribution for a regression coefficient dates back
to, at least, Tipping (2000) and Bishop and Tipping (2000). Griffin
and Brown (2010) show that the proportion ofmass close to zero in
the marginal prior distribution of βi or, equivalently, the prior dis-
tribution of ψi controls the sparsity of the posterior means of the
regression coefficients with smaller values of λ implying higher
levels of sparsity. In other words, smaller values of λ imply that
more regression coefficients will have posterior means close to
zero if supported by the data.

The NGAR process prior has a similar structure with βi,t |ψi,t
following a normal distribution with mean zero and variance ψi,t
and ψi,t following a gamma distribution, marginally. Therefore,
similar to the NG prior, ψi,t plays the role of relevance of the
ith regressor at time t . Small values of ψi,t will lead to greater
shrinkage of βi,t . For a fixed prior mean, µi, as the value of the
sparsity parameter λi decreases more prior mass for βi,t is placed
close to zero and so the process tends to spend a greater proportion
of time close to zero.

Figs. 1 and 2 display simulated paths of the NGAR process for
bothψi,t and βi,t with different combinations of λi,ϕi and ρi. These
illustrate the ability of the prior to generate periods where the
regression coefficients are close to zero and periods where the
regression coefficients are away from zero.

The sparsity parameter λi clearly controls the proportion of
time that the regression coefficient spends close to zero. This
proportion becomes larger as λi decreases which is illustrated in
Figs. 1 and 2 where λi = 0.2 and λi = 1 respectively. Smaller
values of λi lead to ‘‘spikier’’ processes for ψi,t and βi,t which
favours increasingly rapid changes from small to large values. The
autocorrelation parameter ρi controls the dependence between
ψi,t−1 and ψi,t . Larger values of ρi lead to a larger autocorrelation
and favour processes which spend longer periods close to zero or
away from zero. Decreasing the value of ρi allows the regressors
to increasingly jump from values near to zero to values away from
zero (and vice versa). The autocorrelation parameter ϕi controls
the dependence between βi,t and βi,t−1 conditional on the ψi =

(ψi,1, . . . , ψi,T ) process. Hyperpriors for the parameters of the
NGAR process prior are described in the following section.

2.2. Bayesian inference for DR models and hyperpriors for the
parameters of the NGAR process priors

We consider the DR model with independent NGAR processes
priors for the regression coefficients. The NGAR process prior
allows us to control the sparsity of the posterior distribution of the
regression coefficients (i.e. the proportion of regression coefficients
with mass close to zero at a time t), and assumes that regressors
should rarely jump in and out of the model. Both assumptions are
important to avoid over-fitting of the DR model.

The parameterµi acts as an overall relevance parameter for the
ith regression coefficient since it controls the marginal variance of
βi,t . In particular, βi,t will be close to zero for all t if µi is small.
Therefore, a hierarchical prior is specified for µ1, . . . , µm with

µi ∼ Ga(λ⋆, λ⋆/µ⋆), i = 0, . . . ,m

and

λ⋆ ∼ Ex(1/s⋆), p(µ⋆) ∝ (µ⋆ + 2b⋆)−3

where Ex(γ ) represents an exponential distribution with mean
1/γ . This introduces a second level of sparsity (at the level of the
regressors rather than the time-varying regression coefficients).
This is particularly important in problems with many regressors
where some regressors have no regression effect across all
observations. The hyperparameter s⋆ is the prior mean of λ⋆ and so
gives an initial idea of the level of sparsity using the ideas described
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Fig. 1. Simulated paths of βt and ψt with different values of ρi and ϕi with λi = 0.2 and Var[βi,t ] = µi = 1.
in Griffin and Brown (2010). The parameter µ⋆ is given a heavy-
tailed prior with prior mean b⋆, which is given a value suitable
for the spread of the regression coefficients in the particular
application.

The NGAR process prior now has two sparsity parameters.
The parameter λ⋆ is the sparsity parameter for µi, with smaller
values of λ⋆ indicating that more µi’s are close to zero. This
implies that βi,t is close to zero at all time t for more regressors,
since µi is the variance of βi under the stationary distribution. In
contrast, λi controls the sparsity within the time series of the ith
regression coefficient and a small value of λi would indicate that
the regression coefficient is close to zero for a large proportion of
observations. The sparsity parameter λi is given the prior

p(λi) ∝ λi(0.5 + λi)
−4

which is a heavy-tailed prior giving values around 1. This centres
the prior over the Lasso cases (which arises when λi = 1).

The flexibility of the NGAR process prior can lead to over-fitting
when the values of ϕi and ρi are small. The problem of over-fitting
is particularly acute in DR models since we have m regression
coefficients at each time point. The realisations in Figs. 1 and 2
confirm that even a value of ρi close to 0.9 allows regressors to
quickly be excluded from the DR model. Our prior is

ϕi ∼ Be(77.6, 2.4), ρi ∼ Be(77.6, 2.4), i = 0, . . . ,m,

which gives a prior mean of 0.97 with most mass over 0.9 and
implies that the processes for the regression coefficients and the
relevances are strongly autocorrelated. This effectively excludes
models which allow the regression coefficients to rapidly change
over time (and lead to over-fitting).

The priors for the parameters of the volatility process σ 2
t are

chosen as

λσ ∼ Ga(3, 1), p(µσ ) ∝ (1 + µσ )−3/2, ρσ ∼ Be(38, 2).

The choice for λσ signifies that the volatility process will have
stationary distribution which is less heavy tailed than a Laplace
distribution. Themeanµσ is given a very heavy tailed prior to allow
for a wide-range of possible values. The dependence parameter
ρσ is given an informative prior that enforces stationarity and
places most of its mass on values greater than 0.85. This seems
reasonable given the value usually associated with stochastic
volatility models.

3. Computation

MCMC methods to fit a DR model, as in (1), with an NGAR
process prior are described in this section. It is possible to
use a standard Gibbs sampler which simulates from each full
conditional distribution in turn. However, this approach leads to
highly autocorrelated draws. The problem is mainly caused by the
correlation between the process (βi, ψi, κi) and its parameters θi =

(λi, µi, ρi, ϕi) and the process (σ 2, κσ ) and its parameters θσ =

(λσ , µσ , ρσ ). Our sampling scheme involves jointly updating
(ψi, κi)with θi and (σ 2, κ)with θσ whilst integrating out a subset
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Fig. 2. Simulated paths of βi,t and ψi,t with different values of ρi and ϕi with λi = 1 and Var[βi,t ] = µi = 1.
βM of β1, . . . , βm (which changes at each iteration). The full
conditional densities can be calculated using the Kalman filter
since the regression model conditional on ψ is a Gaussian state-
space model. Realisations of βM can subsequently be generated
using standard forward-filtering backwards-sampling (Frühwirth-
Schnatter, 1994; Carter and Kohn, 1994).

Many full conditional distributions in the sampler have non-
standard forms and so adaptive MCMC methods are used (see,
e.g. Andrieu and Thoms, 2008; Griffin and Stephens, 2013, for
reviews). These methods allow the proposal in a Metropo-
lis–Hastings sampler to depend on previous samples and so break
theMarkov assumption which underlies the use of MCMC. Roberts
and Rosenthal (2007) gave relatively weak conditions for the con-
vergence of such methods. In our sampler, we assume that the
state space is bounded at extremely large and small values. This
has no practical effect on the implementation of the MCMC meth-
ods. Twoparticular forms of adaptive update are used: the adaptive
Metropolis–Hastings random walk (AMHRW) step (Atchadé and
Rosenthal, 2005) and the adaptive scale within adaptive Metropo-
lis (ASWAM) step (Haario et al., 2001; Atchade and Fort, 2010). In
the AMHRW step for a parameter ξ , at the γth iteration, a new
value ξ ′

∼ N

ξ (γ−1), τ

ξ
γ


is proposed where ξ (j) is the value of

ξ at the jth iteration. The acceptance probability αξγ is calculated in
the usual way and the proposal is either accepted or rejected. The
variance of the proposal is updated using

log τ ξγ+1 = log τ ξγ + γ−η

αξγ − α̂


(4)
where 0.5 < η ≤ 1 and 0 < α̂ < 1. Under the scheme,
the variance τ ξγ converges to a value with average acceptance
rate α̂ (which we set to 0.3 in our examples). This method is
restricted to univariate parameters. Multivariate parameters can
be updated using ASWAM. Let ξ be a p-dimensional parameter, a
Metropolis–Hastings random walk step is used with the proposal
ξ ′

∼ N

ξ (γ−1), sξγS

ξ
γ


where sξγ > 0 is a scale parameter and Sξγ

is the sample variance–covariance of ξ calculated using the first
(γ − 1) draws from the MCMC sampler. The proposed value is
accepted or rejected as usual in aMetropolis–Hastings step and the
value of sξγ is updated using log sξγ+1 = log sξγ +γ−η


α
ξ
γ − α̂


.

The joint updating of (ψi, κi) with θi and (σ 2, κ) with θσ
uses the following method which can be seen as a form of
retrospective sampling (see, e.g. Papaspiliopoulos et al., 2007).
Suppose a reversible Markov chain is constructed for (ψθ , κθ )
whose stationary distribution is the marginal distribution of ψ, κ
given θ andwith transitions of the form qψ,κ


(ψθ , κθ ) ,


ψ ′

θ ′ , κ
′

θ ′


.

AMetropolis–Hastings sampler can be constructedwith a proposal
of the form

q ((ψ, κ, θ)) = qψ,κ

(ψ, κ) ,


ψ ′, κ ′


qθ

θ, θ ′


.

The acceptance probability in the Metropolis–Hastings step is

min

1,

p(y|ψ ′, κ ′)q(θ ′, θ)

p(y|ψ, κ)q(θ ′, θ)
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Fig. 3. Simulated: First row—true regression coefficients βi,t , Second row—the posterior median (solid line) and 95% credible interval (grey shading) of βi,t , and Third
row—the posterior median (solid line) and 95% credible interval (grey shading) of


ψi,t .
since the chain is reversible and so obeys detailed balance. A
suitable Markov chain for the NGAR process can be constructed
using

ψ ′

1,i =


λiµ

′

i

λ′

iµi
ψi,1 + Ga(λ′

i − λi, λ
′

i/µ
′

i) if λ′

i > λi

λiµ
′

i

λ′

iµi
ψi,1 Be(λ′

i, λi − λ′

i) if λ′

i < λi

κ ′

i,t =



κi,t + Pn


ρj
′

1 − ρj′

ψ ′

i,tλ
′

i

µ′

i
−

ρj

1 − ρj

ψi,tλi

µi


if

ρi
′

1 − ρi′

ψ ′

i,tλ
′

i

µ′

i
>

ρi

1 − ρi

ψi,tλi

µi

Bi

κi,t ,

ρi
′(1 − ρi)

ρi(1 − ρi′)

µiψ
′

i,tλ
′

i

µ′

iψi,tλi


if

ρi
′

1 − ρi′

ψ ′

i,tλ
′

i

µ′

i
<

ρi

1 − ρi

ψi,tλi

µi

for t = 1, . . . , T − 1 and

ψ ′

i,t =



λiµ
′

i(1 − ρi
′)

λiµi(1 − ρi)
ψi,t

+Ga

λ′

i + κ ′

i,t−1 − λi − κi,t−1,
λ′

i

µ′

i (1 − ρi′)


if λ′

i + κ ′

i,t−1 > λi + κi,t−1

λiµ
′

i(1 − ρi
′)

λiµi(1 − ρi)
ψi,t Be(λ′

i + κ ′

i,t−1, λi

+ κi,t−1 − λ′

i − κ ′

i,t−1) if λ′

i + κ ′

i,t−1 < λi + κi,t−1

for t = 2, . . . , T .
The steps of the MCMC sampler are described in Appendix A.

4. Simulated example

The following simulated example illustrates the ability of the
NGAR process prior to allow time-varying sparsity in dynamic
regression. We generated the data from Eq. (1) with m = 5,
xi,t ∼ N(0, I5) and xi,1, . . . , xi,T independent. We introduced five
regression coefficients: β1,t followed an AR(1) process with AR
parameter 0.97 and a normal marginal distribution with mean
2 and variance 0.25, β2,t followed an AR(1) process with AR
parameter 0.97 and a normal marginal distribution with mean 0
and variance 0.25 for t < 100 and β2,t = 0 for t > 100 with
β2,1 ∼ N(2, 0.25),

β3,t =


0 if t ≤ 20, 51 ≤ t ≤ 120, and 151 ≤ t ≤ 200

−2 if 21 ≤ t ≤ 50, and 121 ≤ t ≤ 150,

and β0,t (the intercept), β4,t and β5,t were zero for all times. The
innovation variance σ 2

t was generated using an AR(1) process on
the log scale

log σ 2
t = log(0.01)+ 0.97(log σ 2

t−1 − log(0.01))+


0.01

1 − 0.972 νt

where νt ∼ N(0, 1). The initial value of each parameter was drawn
from its stationary distribution. The generated values of the regres-
sion coefficients are shown in the first row of Fig. 3 where β1,t is al-
ways important, β4,t and β5,t are never important, the importance
of β2,t tends to decrease until t = 100 after which the value of
β2,t is zero, and β3,t enters and exits the model abruptly on two
occasions.

Inference for the DR model with NGAR process prior, s⋆ = 0.1
and b⋆ = 0.1 are shown in Fig. 3. The MCMC sampler was run
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Fig. 4. Equity Premium: Posterior medians (solid line) of the time-varying regression relevance,

ψi,t . (yaxis = value of


ψi,t , xaxis = time) with 95% credible interval (grey

shading).
for 100,000 iterations, 10,000 were discarded as an initial burn-
in and every 18th draw was saved. An iMac with a 2.66 GHz Intel
Core i5 processor, and memory 4 GB 1067 MHz DDR3 was used,
and the computing time was 6 h. The second row of Fig. 3 shows
the estimated regression coefficients which follow the true values
closely. The posterior median and 95% credible interval of β0,t , β4,t
and β5,t are very close to zero. The NGAR process prior is also
able to adapt to the changing importance of β2,t and the abrupt
behaviour of β3,t in the model. The third row of Fig. 3 shows the
posterior inference on the regressor time-varying relevance factor
ψi,t . The values for the intercept, x4 and x5 are fairly constant

and close to zero. The posterior median of the relevance factor for
x2 is decreasing until about t = 100 and then takes a value close
to zero, whereas the posterior median of the relevance factor for
x3 correctly replicates the abrupt entries and exits of the regressor
from the model. The results of this simulation illustrate the ability
of the NGAR process prior to shrink values close to zero when the
data supports this.

5. Empirical examples

In this section we apply the dynamic regression model with an
NGAR process prior for the regression coefficients to both equity
premiumand inflationdatasets. Our aim is to provide evidence that
this model adequately accounts for the time-varying effect of the
regression coefficients, identifies variables that are most relevant
at each time point and produces good out-of-sample forecasts.
The value s⋆ = 0.1 was used in all examples, which leads to
substantial selection of the regressors. We used b⋆ = 2 in the
equity premium prediction example and b⋆ = 0.1 in the inflation
forecasting examples. This represented the different scales of the
regression effects in the two examples. TheMCMC samplerwas run
for 100,000 iterations, 10,000 were discarded as an initial burn-in
and every 18th draw was saved. The computing time was 15 h for
the inflation forecasting examples and 26 h for the equity premium
prediction example.

In Section 2, we discussed the NGAR process prior for the time-
varying regression coefficient, βi,t , and the time-varying relevance
of the ith regressor, ψi,t . Recall that a smaller value of ψi,t implies
that the ith regressor is less important at time t . We present two
plots for each dataset. The first plot displays the posterior median
of

ψi,t as it changes over time and shows the importance of each

predictor over time (including periods where it has most impact).
The second plot displays the posterior median of βi,t over time,
which illustrates the effect of each relevant predictor. It is natural
to expect that when a predictor is not relevant (when the posterior
median of


ψi,t is zero), then the value of βi,t should be very close

to zero. We also plot the time-varying innovation variance, σ 2
t , to

identify the periods when σ 2
t changes. All plots are displayed with

95% credible intervals (CI).
5.1. Equity premium prediction

The set of variables relevant to equity premium forecasting is
large. It ranges from variables relating to dividends and earnings
such as dividend yield and price earnings ratio to interest rates,
bond yields, and inflation. For our empirical studywe use the same
dataset as Goyal and Welch (2008). The response variable is the
value weighted monthly return of the S&P 500 obtained from the
CRSP database. For our illustration we considered all the twelve
predictors (see Appendix B for the complete list), including cross
sectional beta premium (CSP) (see Roll and Ross, 1994). For this
reason the sample period is restricted fromMay 1937 to December
2002, as it is the period where values of CSP are available.

From the original list of thirteen predictors, ten had posterior
medians and 95% CI’s for both


ψi,t and βi,t that were very close

to zero for the whole observation period and therefore have been
excluded from our plots. These excluded variables were: B/M, TBL,
LTY, NTIS, INFL, LTR, D/Y, SVAR, DFY, and DRF (see Appendix B for
full details). The plots of the posterior medians and 95% credible
intervals (CI’s) of


ψi,t for EPR (earnings price ratio), CSP (relative

valuation of high and low beta stocks), and DE (dividend payout
ratio), the three relevant predictors, and the posteriormedians and
95% CI’s of βi,t for these predictors are displayed in Figs. 4 and 5
respectively. The relevance of EPR is relatively constant over time.
The same is true for its regression coefficient, which has a posterior
median around 7 for the whole period. EPR has a positive effect
on the equity premium for the whole period which is expected
as it signals a firm’s profitability. The regression coefficients for
CSP and DE show more fluctuation in their relevance over time.
However, their relevance is still relatively constant over time. The
coefficient of CSP is almost always positive. It increases from the
mid 1950’s up to the late 1980’s and then it decreases. In addition
we can also observe an oscillating pattern within this gradual
increase and decrease of the CSP effect. One possible explanation is
that within each decade there are years of high economic growth
followed by years of slow growth. The beta of the firm is ameasure
of the firm risk that is attributed to the market and cannot be
diversified. The beta will be high in times of recession and will
affect equity premiums more than during periods of high growth.
The coefficient of DE is also positive for all time periods, with its
effect being largest during the 1980’s, the period when the Reagan
administration began the deregulation of US financial markets.
The effect decreases from the 1990’s to 2000’s and this could be
due to the shift of emphasis in investment decisions from DE to
firm growth prospects. Goyal and Welch (2008) do not provide
estimates for the regression coefficients but look at the importance
of predictors by running simple regressions for different periods
within the sample.
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Fig. 5. Equity Premium: Posterior median (solid line) of the time-varying regression coefficients, βi,t . (yaxis = value of βi,t , xaxis = time) with 95% credible interval (grey
shading).
(a) (b) (c)

Fig. 6. Equity Premium: (a) the posterior median (solid line) and 95% CI (grey shading) of the relevances of the intercept

ψ0,t , (b) the posterior median (solid line) and 95%

CI (grey shading) of the intercept β0,t , and (c) posterior median (solid line) and 95% CI (grey shading) of the time-varying innovation volatility, σ 2
t . (yaxis = values of


ψ0,t ,

β0,t and σ 2
t respectively, xaxis = time).
Fig. 6 displays the time-varying relevance and the effect of the
intercept (the first two plots) and the behaviour of the innovation
variance, σ 2

t over time. The importance of the intercept is fairly
constant. Its effect is increasing over time and is positive with the
exception of the period of the secondWorldWar and the beginning
of the 1950’s which was a period of reorganisation following the
War. The innovation variance is fairly constant over time, around
0.12.

5.2. Inflation forecasting

Forecasts of inflation are usually classified according to the
type of explanatory variables used. The size of the set of potential
variables is huge and is usually split into four subsets: past inflation
forecasts, where the explanatory variables are previous lags of
inflation; Phillips curve forecasts, which involve activity variables,
such as economic growth rate or output gap, unemployment
rate, and lagged inflation; forecasts based on variables which
are themselves forecasts of asset prices (combination indices),
term structures of nominal debt, and consumer surveys; and
forecasts based on other exogenous variables such as government
investment, the number of new private houses built, etc.

For our inflation forecasting study we constructed a dataset
using data series obtained from: FRED, the economic database
of the Federal Reserve Bank of St. Louis, the consumer survey
database of the University of Michigan, the Federal Reserve Bank
of Philadelphia, and the Institute of Supply Management. We use
two different quarterly measures of US inflation as the response
variable, the personal consumption expenditure (PCE) deflator and
the gross domestic product (GDP) deflator. We therefore fit two
separate models. The sample period for both is from the second
quarter of 1965 to first quarter of 2011. Our dataset includes 31
predictors, from activity and term structure variables to survey
forecasts and previous lags. The full list with details of each is
included in Appendix B.

5.2.1. PCE deflator results
We first discuss the results based on the PCE deflator. From the

thirty one predictors sixteen had a posterior median for

ψi,t and

βi,t greater than zero. The plots of the posterior median and 95%
CI of


ψi,t are displayed in Fig. 7 and the plots for the posterior

median and 95% CI of βi,t are displayed in Fig. 8. Since the posterior
median of βi,t is rarely far from zero, we interpret the 95% credible
interval as a set of plausible values for the regression coefficients.
This allows us to identify times when a large absolute value of the
regression coefficient is implausible and also variables for which it
is implausible that the regression coefficient takes a particular sign
(either positive or negative).

Of these sixteen predictors, the ones that are noticeably
relevant in forecasting the PCE deflator are: IMGS (import of goods
and services) growth, INF EXP (inflation expectation), T-Bill 3m
rate, Materials, Lags 2 and 4, DJIA (S&P 500 returns), GDP and PCE
growth.

The most relevant predictor of PCE deflator is IMGS growth.
The value of


ψi,t is fairly constant over time, being higher in

the 1970’s (oil shock) and late 2000’s (financial crisis) which were
periods of economic slowdown. Its coefficient is always positive,
with higher values during these two periods. The importance of
INF EXP is slightly decreasing up to the early 1990’s and from
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Fig. 7. PCE deflator: Posterior medians (solid line) of the time-varying regression relevance,

ψi,t . (yaxis = value of


ψi,t , xaxis = time) with 95% CI (grey shading).
then on it stabilises. Overall, it has a positive coefficient, reaching
its peak value (around 0.55) in the mid 1970’s and mid 1980’s.
From then on its value decreases, possibly turning negative in
the late 2000’s. The relevance of T-Bill 3m rate, Materials, Lags
2 and 4, and DJIA (S&P 500 returns) is fairly constant over time,
but the value of their coefficients is not, it fluctuates. For the
T-Bill 3m rate it jumps from 0.2 to 0.6 in the mid 1970’s it then
falls to around 0.1 and remains there until the late 2000’s when it
increases to around 0.45. For Materials the coefficient is negative
in the 1980’s and 1990’s but not the other periods. The coefficients
of the two Lags appear to move in the opposite direction. Lag 2’s
coefficient is positive up to the early 2000’s and then decreases
becoming negative in the late 2000’s, whereas that of Lag 4 starts
off positive, turns negative between 1980’s and 1990’s and then
turns positive. The coefficient of DJIA is negative up to the mid
1990’s and then turns positive, and the coefficients of GDP and PCE
growth are very close to zero up to themid 2000’s and then become
positive.

The time-varying relevance and effect of the intercept are
shown in the first twoplots of Fig. 9,whereas the third plot displays
the behaviour of the innovation variance σ 2

t . The relevance of the
intercept is higher during the 1970’s oil shock when compared to
all other periods. Its coefficient is positive in the 1970’s and 1980’s
and turns negative in the early 1990’s. The innovation variance
oscillates over time and reaches its peak around 2008, the start of
the recent financial crisis.
5.2.2. GDP deflator results
The posterior median and 95% CI plot of


ψi,t for each of the

predictors of the GDP deflator are displayed in the plots of Fig. 10.
The posterior median and 95% CI plot of βi,t for each predictor are
displayed Fig. 11.

Sixteen predictors are identified with posterior median for
ψi,t substantially greater than zero. Almost double the number

compared to the PCE deflator. This is reasonable as GDP reflects
the value of all finished goods and services produced within the
country whereas the PCE reflects personal consumption of goods
and services. These predictors were: INF EXP, Lag 3, Materials,
RGEGI growth, Private employment, Non farm payroll (NFP), T-Bill
3m rate, Lag 4, IMGS growth, Output gap, DJIA,M1 (money supply),
Lag 2, Housing starts, T-Bill spread, and GS 1 (Treasury constant
maturity rate).

The most relevant predictor of GDP deflator is INF EXP. Its
relevance is highest during the 1970’s and then decreases. Its
coefficient is positive with highest values form the 1970’s to early
1980’s when it starts to decrease and settles around 0.1. The
relevance of the other predictors is fairly constant but the values
of their coefficients differ. For T-Bill 3m rate, Lag 4, IMGS growth,
Output gap, DJIA, M1, Lag 2, Housing starts, T-Bill spread, and
GS 1 the coefficients are more or less stable. The 95% credible
interval bands suggest that there are periods were a change in
the regression coefficient sign is possible. For example for M1,
around the early 2000’s, its 95% credible interval band hints to a
sign change from positive to negative, but this sign change is more
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Fig. 8. PCE deflator: Posterior medians (sold line) of the time-varying regression coefficients, βi,t . (yaxis = value of βi,t , xaxis = time) with 95% CI (grey shading).
(a) (b) (c)

Fig. 9. PCE deflator: (a) the posterior median (solid line) and 95% CI (grey shading) of the relevances of the intercept

ψ0,t , (b) the posterior median (solid line) and 95% CI

(grey shading) of the intercept β0,t , and (c) posterior median (solid line) and 95% CI (grey shading) of the time-varying innovation volatility, σ 2
t . (yaxis = values of


ψ0,t , β0,t

and σ 2
t respectively, xaxis = time).
clearly displayed in the case of Materials, RGEGI, PRIVATE EMP,
NFP. For MATERIALS the coefficient is positive between the 1970’s
and 1980’s possibly due the oil shock which led to increases in
prices and thus to higher inflation. From the 1980’s onwards this
effect becomes smaller. It starts fairly small (possibly negative) and
it then becomes positive (from the 1990’s to late 2000’s). Periods of
economic growth always providemore employment opportunities
in the private sector. The coefficient of NFP (non farm payroll) also
has the same effect on the GDP deflator. The coefficient of RGEGI
growth is negative in the 1980’s and then turns positive but it is
very close to zero. Finally the coefficient of the third lag of GDP
deflator is almost always positive as is the case with that of IMGS
growth.

The NGAR process prior can induce bimodal posterior
distributionswith onemode at zero and onemode away from zero.
Fig. 12 illustrates this interesting aspect of the posterior for the INF
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Fig. 10. GDP deflator, h = 1: Posterior medians (solid line) of the time-varying regression relevance,

ψi,t . (yaxis = values of


ψi,t , xaxis = time) with 95% CI (grey

shading).
EXP regressor. The posterior median is much larger in 1973 and
1983 with one mode at about 0.5. In 1993 and 2003, the secondary
mode disappears and a single mode at zero remains. These poste-
riors can be interpreted as expressing our uncertainty about the
importance of a particular regressor.

The time-varying relevance and effect of the intercept are
shown in the first two plots of Fig. 13, whereas the third plot
displays the behaviour of the innovation varianceσ 2

t . The relevance
of the intercept is higher during the 1970’s oil shock when
compared to all other periods. Its coefficient is positive in the
1970’s and 1980’s and turns negative in the late 1990’s. The
innovation variance oscillates over time and reaches its peak in the
mid 1970’s and around 2008, two recessionary periods.

5.3. Comparison to other methods

We compare the predictive performance of the DR model
with the NGAR process prior to other Bayesian variable selection
and regularisation methods that have recently been proposed for
DR models with a large number of potential predictors. These
methods are: Time Varying Dimension (TVD) models (Chan et al.,
2012), the dynamic model average (DMA) approach (Koop and
Korobilis, 2012), and the hierarchical shrinkage (HierShrink) prior
of Belmonte et al. (2011). In the case of the TVD and the HierShrink
methods, the priors suggested in the related papers were used
and in the case of the DMA we set the ‘‘forgetting’’ parameters
λ = α = 0.99, as the paper suggested. We also use a rolling
window BayesianModel Averaging (BMA) approachwith a g-prior
for prediction.Weuse the default choices of Fernandez et al. (2001)
for the g-prior with the previous k observations, i.e. yt−k, . . . , yt−1,
to predict yt at each time point. Finally, we use the random walk
model of Atkeson and Ohanian (2001) as a Benchmark model. We
focus on one step ahead forecasts and our comparisonmetric is the
root mean square error (RMSE) using the posterior mean as our
estimate calculated on the second half of the data 1

T − s

T
t=s+1

(yt − E [yt |y1, . . . , yt−1, x1, . . . , xt ])2

where xt = (x0,t , x1,t , . . . , xm,t) and s = ⌊
T
2 ⌋ (i.e. the largest in-

teger less than or equal to T/2). It could be argued that the pos-
terior median and the mean absolute error are more appropriate
here given the multi-modal posterior distributions of βi,t (Gneit-
ing, 2011) but we concentrate on the more commonly used RMSE.
The posterior predictive means of yt for t = s+ 1, . . . , T were cal-
culated using particle filtering methods and includes uncertainty
in all parameters.

Table 1 displays the RMSE for all three datasets under the
different models. There are three versions of TVD which make
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Fig. 11. GDP deflator: Posterior medians (solid line) of the time-varying regression coefficients, βi,t . (yaxis = values of βi,t , xaxis = time) with 95% CI (grey shading).
Fig. 12. GDP deflator: Histograms of the posterior distribution of the time-varying regression coefficients of INF EXP in the second quarter of 1973, 1983, 1993 and 2003.
Table 1
RMSE of out-of-sample prediction with different priors for the three datasets. The
smallest RMSE for each dataset is written in bold.

Equity premium PCE inflation GDP inflation

RW 1.100 0.635 0.373
NGAR 0.977 0.611 0.410
DMA 1.01 0.660 0.422
TVD1 2.193 2.688 2.688
TVD2 0.986 0.623 0.481
TVD3 0.992 0.628 0.500
HierShrink 1.547 1.131 2.556
gprior1 2.822 0.796 0.660
gprior2 1.648 0.712 0.588
gprior3 1.282 0.681 0.516
different assumptions about the evolution of the regression
coefficients and which are fully described in Chan et al. (2012).
The window lengths for the three g-priors were 100 (gprior1),
200 (gprior2) and 300 (gprior3) for the equity premium data
and 50 (gprior1), 70 (gprior2) and 90 (gprior3) for the inflation
data. The choice of the window is controlled by the number of
regressors included (which must be less than the window length)
and the number of observations in the sample. The DR model
with NGAR process prior is the best performing approach for
two datasets (equity premium and PCE inflation) and the second
best performing for the GDP inflation data (with only the random
walk giving better predictions). The TVD2 and TVD3 model and
DMA also perform well across the three datasets. In general,
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(a) (b) (c)

Fig. 13. GDP deflator: (a) the posterior median (solid line) and 95% CI (grey shading) of the relevances of the intercept

ψ0,t , (b) the posterior median (solid line) and 95%

CI (grey shading) of the intercept β0,t , and (c) posterior median (solid line) and 95% CI (grey shading) of the time-varying innovation volatility, σt . (yaxis = values of

ψ0,t ,

β0,t and σ 2
t respectively, xaxis = time).
the approaches which allow the complexity of the regression
model to change over time (NGAR, TVD and DMA) outperform
the other approaches (HierShrink and rolling window g-prior).
This illustrates the importance of allowing time-variation in the
relevance of regression coefficients. The poor performance of the
HierShrink prior suggests that the double exponential prior may
be unsuitable with these data and imply too little sparsity. This
illustrates the importance of allowing for time-varying sparsity in
these data.

6. Discussion

This paper introduces a new approach to time-varying sparsity
in dynamic regression models. The time-varying regression
coefficients follow a stochastic process with a normal-gamma
marginal distribution and smaller values of the shape parameter
imply that the processwill spendmore time at values close to zero.
This allows us to identify periods when regression coefficients are
very close to zero and so are effectively removed from themodel. A
normal-gamma prior on the variance of the marginal distribution
of βi,t encourages shrinkage of the whole path of βi,t close to
zero. The empirical examples illustrate that the method leads to
a smaller out-of-sample predictive RMSE than several recently
proposed approaches to dynamic regression models with many
regressors.
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Appendix A. Gibbs sampler

Updating ψ

The full conditional density of ψi,1 is proportional to

ψi,1
λi+κi,1−3/2


λiρi

(1 − ρi)µi

κi,1
exp


−

ψi,1λi

µi (1 − ρi)



× exp

−
1
2

 β2
i,1

ψi,1
+


βi,2 − ϕi


ψi,2
ψi,1
βi,1

2
ψi,2


1 − ϕi

2



 ,

the full conditional density of ψi,t is proportional to

ψi,t
λi+κi,t−1+κi,t−3/2


ρiλi

(1 − ρi)µi

κi,t
(1 − ϕ2)1/2
× exp

−
λiψi,t

µi


1 +

2ρiλi
(1 − ρi)µi



× exp

−
1
2



βi,t − ϕi


ψi,t
ψi,t−1

βi,t−1

2
ψi,t


1 − ϕi

2


+


βi,t+1 − ϕi


ψi,t+1
ψi,t

βi,t

2
ψi,t+1


1 − ϕi

2





if 1 < t < T and the full conditional density ofψi,T is proportional
to

ψ
λi+κi,T−1−3/2
i,T (1 − ϕ2

i )
−1/2 exp


−

λiψi,T

(1 − ρi)µi



× exp

−
1
2



βi,T − ϕi


ψi,T
ψi,T−1

βi,T−1

2
ψi,T


1 − ϕi

2



 .

Each parameter can be updated using an AMHRW step where the
newvalueψ ′

i,t is proposed according to logψi,t
′
∼ N


logψi,t , τ

ψ

i,t


with the variances updated as in (4).

Updating κ

The full conditional distribution of κi,t is proportional to
λi

(1 − ρi)µi

λi+κi,t  ψi,tλiρi

(1 − ρi)µi

κi,t
ψ
λi+κi,t−1
i,t+1

1
κi,t !Γ (λi + κi,t)

for 1 ≤ t ≤ T − 1. We update this parameter using an
AMHRW step, which is a variation of the method of Atchadé and
Rosenthal (2005). At the γth iteration, the proposed value κ ′

i,t =

κ
γ

i,t + dϵ where p(d = −1) = p(d = 1) = 1/2 and ϵ ∼

Ge

1


1 + zγ

i,t


. Here x ∼ Ge(q) denotes that x follows a

geometric distribution whose probability mass function is

p(x) = q(1 − q)x, x = 0, 1, 2, . . . .

The proposed value is rejected is κ ′

i,t < 0 and otherwise accepted
using the standard Metropolis–Hastings acceptance probability
for a random walk proposal. The parameter zγ

i,t is updated using
zγ+1
i,t = zγ

i,t +γ−η(αi − α̂).
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Table 2
Equity return data.
Source: Goyal and Welch (2008).

Name Description

B/M Ratio of book to market value for the Dow Jones Industrial Average
TBL 3m Treasury Bill: Secondary Market Rate
LTY Difference between the long term yield on government bonds and treasury bill
NTIS Ratio of 12m moving sums of net issues by NYSE listed stocks to total year end market cap
INFL Consumer Price Index
LTR Long term government bond yield
SVAR Sum of squared daily returns of S&P500
CSP Cross-sectional beta premium (relative valuation of high and low beta firms)
D/Y Dividend yield: difference between the log of dividends and the log of lagged prices (S&P500)
EPR Earnings price ratio: difference between the log of earnings and the log of prices (S&P500)
DE Dividend payout ratio: difference between the log of dividends and the log of earnings (S&P 500)
DFY Default yield spread: difference between BAA and AAA-rated corporate bond yields
DRF Default return spread: difference between long term corporate bond and long term government bond returns
Updating σ 2

The full conditional distribution of σ 2
t follows a generalised

inverse Gaussian distribution which has density

(c/d)h/2

2Kh(
√
cd)
(σ 2

t )
h−1 exp


−

1
2


cσ 2

t +
d
σ 2
t


,

where Kh is a modified Bessel function of the second kind. The
parameter values of the full distribution for σ 2

t are

d =


yt −

m
i=0

βi,txi,t

2

, t = 1, . . . , T ,

c =


2λσ

µσ (1 − ρσ )
, t = 1, T

2
λσ + ρσλσ

µσ (1 − ρσ )
, 1 < t < T

and

h =


κσt + λσ − 0.5, t = 1
κσt + κσt−1 + λσ − 0.5, 1 < t < T
κσt−1 + λσ − 0.5, t = T .

Updating κσ

The full conditional distribution of κσt is proportional to
λσ

(1 − ρσ )µσ

λσ+κσt


σ 2
t λ

σρσ

(1 − ρσ )µσ

κσt
(σ 2

t+1)
λσ+κσt −1

×
1

κσt !Γ (λσ + κσt )

for 1 ≤ t ≤ T − 1. We update this parameter using an adaptive
Metropolis–Hastings random walk step. At the γth iteration, the
proposed value κσt

′
= κσt

γ
+ dϵ where p(d = −1) = p(d = 1)

= 1/2 and ϵ ∼ Ge

1/(1 + zσt

γ)

. The proposed value is rejected

is κσt
′ < 0 and otherwise accepted using the standard Metropo-

lis–Hastings acceptance probability for a random walk proposal.
The parameter zσt

γ is updated using zσt
γ

= zσt
γ
+γ−η(αγ − α̂).

Updating θ , θσ and β

At each iteration, a vector s1, . . . , sm is generated where p(si =

1) =
5
m and p(si = 0) = 1 −

5
m for i = 1, . . . ,m. Let βM =

{βi|si = 1} and βC = {βj|sj = 0}. The parameter θ and θσ are
updated conditional on βC and marginalising over βM . The value
of p(y|X, ψ, σ 2, ϕ, βC ) can be easily calculated using the Kalman
filter.

The parameter {θj|sj = 1} are update in turn using a Gibbs sam-
pler. The transformation ζi = (log λi, logµi, log ρi − log(1 − ρi),
logϕi − log(1 − ϕi)) is used with an ASWAM step. The proposed
values of ψi and κi are denoted ψ ′

i and κ ′

i and are simulated us-
ing the method of Section 3. The acceptance ratio for the Metropo-
lis–Hastings algorithm is

αθ = min


1,

p

y|X, ψ ′, σ 2, ϕ, βC


p(θ)q(θ ′, θ)

p

y|X, ψ, σ 2, ϕ, βC


p(θ)q(θ, θ ′)


.

The parameters θσ are also updated using an ASWAM stepwith
the transformation ζ σ = (log λσ , logµσ , log ρσ − log (1 − ρσ )).
The proposed values of σ 2 and κσ are denoted σ 2′ and κσ ′ and are
sampled using the method of Section 3. The acceptance ratio for
the Metropolis–Hastings algorithm is

αθσ = min

1,
p

y
X, ψ, σ 2′

, ϕ, βC


p (θσ ) q


θσ ′, θσ


p

y
X, ψ, σ 2, ϕ, βC


p (θσ ) q


θσ , θσ ′


 .

Updating µ⋆

The full conditional density of µ⋆ is proportional to

(µ⋆ + 2b⋆)−3

λ⋆

µ⋆

mλ⋆

exp


−
λ⋆

µ⋆

m
i=1

µi


.

The parameter can be updated using an AMHRW step where
the proposed value µ⋆′ is simulated according to logµ⋆′ ∼

N

logµ⋆, τµ

⋆
with the variance updated as in (4).

Updating λ⋆

The full conditional density of λ⋆ is proportional to

exp

−λ⋆/s⋆

 λ⋆λ
⋆

µ⋆λ
⋆
Γ (λ⋆)

m

exp


−
λ⋆

µ⋆

m
i=1

µi


m
i=1

µλ
⋆

i .

The parameter can be updated using an AMHRW step where
the proposed value λ⋆′ is simulated according to log λ⋆′ ∼

N

log λ⋆, τ λ

⋆
. The variance is updated as in (4).

Appendix B. Data appendix

See Tables 2 and 3.
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Table 3
Inflation data. Sources: FRED database, Federal Reserve Bank of St.Louis, University of Michigan Consumer Survey Database, Federal Reserve Bank
of Philadelphia, and Institute of Supply Management.

Name Description

GDP Difference in logs of real gross domestic product
PCE Difference in logs of real personal consumption expenditure
GPI Difference in logs of real gross private investment
RGEGI Difference in logs of real government consumption expenditure and gross investment
IMGS Difference in logs of imports of goods and services
NFP Difference in logs non farm payroll
M2 Difference in logs M2 (commercial bank money)
ENERGY Difference in logs of oil price index
FOOD Difference in logs of food price index
MATERIALS Difference in logs of producer price index (PPI) industrial commodities
OUTPUT GAP Difference in logs of potential GDP level
GS10 Difference in logs of 10yr Treasury constant maturity rate
GS5 Difference in logs of 5yr Treasury constant maturity rate
GS3 Difference in logs 3yr Treasury constant maturity rate
GS1 Difference in logs 1yr Treasury constant maturity rate
PRIVATE EMPLOYMENT Log difference in total private employment
PMI MANU Log difference in PMI-manufacturing index
AHEPNSE Log difference in average hourly earnings of private non management employees
DJIA Log difference in Dow Jones Industrial Average Returns
M1 Log difference in M1 (narrow-commercial bank money)
ISM SDI Institute for Supply Management (ISM) Supplier Deliveries Inventory
CONSUMER University of Michigan consumer sentiment (level)
UNRATE Log of the unemployment rate
TBILL3 3m Treasury bill rate
TBILL SPREAD Difference between GS10 and TBILL3
HOUSING STARTS Private housing (in thousands of units)
INF EXP University of Michigan inflation expectations (level)
LAG1, LAG2, LAG3, LAG4 The first, second, third and fourth lags of the response variable
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