700

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2013

Nonlocal Image Restoration With Bilateral Variance
Estimation: A Low-Rank Approach

Weisheng Dong, Guangming Shi, Senior Member, IEEE, and Xin Li

Abstract— Simultaneous sparse coding (SSC) or nonlocal
image representation has shown great potential in various
low-level vision tasks, leading to several state-of-the-art image
restoration techniques, including BM3D and LSSC. However, it
still lacks a physically plausible explanation about why SSC is
a better model than conventional sparse coding for the class of
natural images. Meanwhile, the problem of sparsity optimization,
especially when tangled with dictionary learning, is computation-
ally difficult to solve. In this paper, we take a low-rank approach
toward SSC and provide a conceptually simple interpretation
from a bilateral variance estimation perspective, namely that
singular-value decomposition of similar packed patches can be
viewed as pooling both local and nonlocal information for esti-
mating signal variances. Such perspective inspires us to develop
a new class of image restoration algorithms called spatially
adaptive iterative singular-value thresholding (SAIST). For noise
data, SAIST generalizes the celebrated BayesShrink from local
to nonlocal models; for incomplete data, SAIST extends previous
deterministic annealing-based solution to sparsity optimization
through incorporating the idea of dictionary learning. In addition
to conceptual simplicity and computational efficiency, SAIST has
achieved highly competent (often better) objective performance
compared to several state-of-the-art methods in image denoising
and completion experiments. Our subjective quality results
compare favorably with those obtained by existing techniques,
especially at high noise levels and with a large amount of
missing data.

Index Terms— Deterministic annealing, iterative
regularization, low-rank method, simultaneous sparse coding,
singular-value thresholding.

I. INTRODUCTION

ONLOCAL image representations have received increas-
ingly more attention in recent years. Since the
appearance of nonlocal-mean denoising [1], a flurry of
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advanced nonlocal image restoration algorithms have been
developed [2H12]. Among them a denoising algorithm named
block-matching 3D filtering (BM3D) [3] is likely to be the
most well-known due to its outstanding experimental perfor-
mance. However, the mechanism of nonlocal image denoising
remains elusive! - e.g., why exploiting nonlocal similarity is
a good idea? how to gain a deeper understanding of sparsity
under a nonlocal framework? and more importantly, how to
further improve the performance of nonlocal image restoration
algorithms?

We attempt to partially answer those questions by adapting
an old folk-song (low-rank methods) to a fast new tune
(nonlocal image restoration) [13], [14]. Despite the long
history of low-rank methods (e.g., excellent energy compaction
property of SVD has been known for decades [15]), its com-
putational complexity used to be thought of prohibitive [16].
Only recently, low-rank methods were rediscovered “on the
heels of compressed sensing” [14] and successfully applied to
various matrix completion problems including collaborative
filtering [13], image alignment [17], shadow removal [18]
and video denoising [9]. However, the connection between
nonlocal image models and low-rank methods has largely
remained elusive in the open literature to the best of our
knowledge. To fill in this gap, our contributions in this paper
are two-fold.

On one hand, we propose a powerful image model in the
patch space that connects low-rank methods with simultaneous
sparse coding. For the first time, we demonstrate an interesting
relationship between singular values of a data matrix (likeli-
hood term) and pseudo-metric norm [|A][1> (prior term) in
simultaneous sparse coding [7]. Such connection allows us to
obtain a novel interpretation of singular value decomposition
(SVD) from a bilateral variance estimation perspective. It will
be shown for a data matrix consisting of similar patches,
left-multiplying and right-multiplying matrices of SVD jointly
characterize the local variation in the row space and nonlocal
variation in the column space respectively. Under the context
of image modeling, we argue that local and nonlocal variations
are the two sides of the same coin; therefore it is important
to strike a good balance between them.

On the other hand, the proposed image model allows
us to cast various image restoration tasks as Bayesian
inference problems and solve them in a principled fash-
ion. Our approach unifies previously known methods for
noisy (e.g., BayesShrink [19], robust principal component
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analysis [20]) or incomplete (e.g., Bayesian inpainting [21],
Bayesian compressed sensing [22], [23]) observations and
extends them from local to nonlocal models. Moreover, our
analysis suggests an intrinsic connection between deterministic
annealing [24] and iterative regularization [25] - namely, both
of them can be interpreted as the strategies of achieving spatial
adaptation. We argue that the strategy of spatial adaptation
is critical to the art of tuning the proposed image model to
real-world data (i.e., natural images). The newly developed
algorithm - dubbed Spatially Adaptive /terative Singular-value
Thresholding (SAIST) - has achieved highly competitive (and
often better) performance in both tasks of image denoising and
image completion.

The rest of this paper is organized as follows. In Sec. II
(model), we present a low-rank approach toward modeling
nonlocal similarity in natural images and discuss its connection
with existing idea of simultaneous sparse coding. In Sec. III
(algorithm), we develop our SAIST algorithm borrowing
ideas of iterative regularization and deterministic annealing.
In Sec. IV (applications), we report our experimental results
to demonstrate the excellent performance of SAIST in two
scenarios: image denoising and image completion. In Sec. V
(connections), we discuss the issues of sparsity in signal
modeling and convexity in optimization algorithms. Some
concluding remarks are included in Sec. VL.

II. MODELING NONLOCAL SIMILARITY OF NATURAL
IMAGES: A LOW-RANK APPROACH

A. Simultaneous Sparse Coding via Low-Rank Approximation

Sparse coding in the patch space attempts to represent an
image x by a dictionary U? and a collection of sparse vectors
a;’s - namely

N TN

x%ané(ZRiTRi) Z(RiTUoci) (1)
i=1 i=1

where R; denotes a matrix extracting an image patch from

the i-th position. Various image restoration tasks can be

formulated into the following minimization problem [26]

N N
(U, o) = argmin > |lyi = Ui |3 +7 > lleulh (2)
=1 i
where y; € R" (n-patch size) denotes the degraded version of
x;, & € R" is the sparse code with respect to dictionary U
and 7 is the regularization parameter.

A major drawback of Eq. (2) is the assumption about
the independence between sparsely-coded patches. To better
exploit the dependencies among patches, the basic idea of
simultaneous sparse coding [7] - also known as group/
structured sparsity [27] - is to group a set of similar patches
Y =[y1,¥,..., ¥m] € R (e.g., m = k + 1 if one finds
the k-nearest-neighbor of an exemplar patch y;) and consider
the group sparsity defined by a pseudo-matrix norm [|A[|, 4

U, A) = argflin 1Y — VA% + zllAllp.q 3)

2The dictionary can be either fixed such as discrete-cosine-transform or
learned through principal component analysis.

low group-sparsity high group-sparsity

(@) (b)

Fig. 1. Art of modeling image evolves from (a) SC to (b) SSC.

where A = [a!; a2, ..., a"] is related to image patches by

X = UA. We note that the pseudo-matrix norm |[| - ||, 4 is
defined by [28]

n
Allp.g = D N[l )
i=1

where o' = [ai1,...,0i,] denotes the i row of matrix A
in R™*™_ However, unlike the original sparsity (please refer
to Fig. 1), we note that the above formulation of group-
sparsity encourages the alignment of sparse coefficients along
the row direction only. In other words, it does not treat the
row and column spaces equally - namely, a matrix A and
its transpose AT will be characterized by varying amount
of group-sparsity (though they have the same amount of
sparsity). This is undesirable because the row and column
spaces of A respectively characterize the nonlocal and local
variations associated with the exemplar patch. There is no prior
knowledge to favor either local or nonlocal view during the
formulation of group-sparsity.

One possible approach of restoring the symmetry between
row and column spaces is to introduce a right-multiplying
matrix V and rewrite the matrix A into

A=z3xVT 3)

where ¥ = diag{i,A2,..., 2k} (K = min(m,n)) is a
diagonal matrix in R€¥*K and each column of V in R"*K
is decomposed of v; = %i(oci)T. In other words, the new
sparsifying matrix V plays the dual role of the dictionary U
(one works with rows and the other with columns). Therefore,
Eq. (3) can be rewritten into

(U, 2,V) = argmin ||Y — UEVT||12F + 7l|Allp,g.  (6)
U,z vV
We note that the connection between data term and regular-
ization term is not obvious at this point; it remains to interpret
[|Allp,4 in the newly-defined X-domain as we will elaborate
next.

The key observation behind our approach is that when
p = 1l,qg = 2, the group sparsity regularizer ||Al[{,2 in
fact computes the sum of standard deviations associated with
sparse coefficient vector in each row, i.e.,

K K
1’222\/‘121 tal, 4+ tal, => Jmoi (D)

i=1 i=1

1A

where g; denotes the standard deviation of the sparse coef-
ficients &' in the i-th row. Therefore, we have o' = /Il-viT
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02 = Sllal3 = Sz 15 = 2 ®)

m m m
where the first identity comes from Eq. (7) and the last one is
due to the unitary property of V. The significance of Eq. (8)
lies in its implication that any operation designed for sparse
coefficient vector a’s can be conveniently implemented with
o; or ; (only differs by a constant scalar). Substituting Eq. (8)
into Eq. (6), we obtain

1

K
(U, £,V) = argmin |[Y = UZVT||3 + 7 > J;

5 &

©)
i=1
which is a standard low-rank approximation problem [13] and
admits the following singular value decomposition (SVD)-
based solution [13]
(U, Z,V) =svd(Y);
( ) (Y) (10)
2 =8.(2);
where S; denotes the soft thresholding operator with threshold
7 (regularization parameter) and the reconstructed data matrix
is conveniently obtained by X = UX V7.

B. Singular Value Decomposition as Bilateral Variance
Estimation

To gain a deeper understanding of the above SVD-based
approach, we propose to study the role of left-multiplying
and right-multiplying matrices (U, V) from a signal variance
estimation perspective. An image is viewed as a mapping from
spatial domain [1, H] x [1, W] to intensity range [0, 255].
In local image models (e.g., wavelet-based or DCT-based),
signal variance estimation is often based on the domain-
Markovian assumption (e.g., [29]) - namely, the probability
distribution function of a coefficient - when conditioned on a
local window (its spatial neighborhood) - is independent of
the coefficients outside the window. The legitimacy of such
assumption is largely dependent on the transient behavior of
the signal as well as the locality property of basis functions
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Fitting the empirical distribution of o; (standard deviation of sparse coefficients al) by Laplacian on two standard test images. (a) Lena.

[30]. For example, a basis function with short support is often
preferred for sharp edges; while slowly-varying signals call
for a basis function with long support.

Alternatively, one can make a range-Markovian assumption
about the image source as implicitly made in a flurry of
nonlocal image denoising algorithms (e.g., [1], [3], [11]). More
specifically, the local window does not refer to the spatial
neighborhood of a pixel/coefficient but the k-Nearest-Neighbor
(kNN) of the image patch associated with that pixel®. It
follows that the procedure of variance estimation (equivalently
the calculation of standard deviation from a local window)
can also be done nonlocally with respect to kNN rather than
locally within a spatial neighborhood. We claim that such idea
of nonlocal variance estimation is implemented by the right-
multiplying matrix V in our low-rank approach.

Let us recall X = UA where U is the dictionary of
orthogonal local-basis functions and A = [ey, a2, ..., 0]
is the sparse coefficients associated with the kNN of an
exemplar patch. Also note that in our notation subscripts
and superscripts respectively denote the column and row
vectors of matrix A. If the sparse coefficient vector of each
row &' is assumed to observe a Gaussian distribution N (0, aiz),
how would one calculate its standard deviation? A common
approach is as follows

Y

Comparing Eq. (11) with Egs. (7) and (8), we can see that the
singular values of X can be interpreted as the result of nonlocal
variance estimation. In other words, the diagonalization of A
can be viewed as a parallel implementation of calculating the
standard deviations for sparse coefficient vectors of n rows
thanks to the unitary property of right-multiplying matrix V.
To summarize, left-multiplying and right-multiplying matrices

3Indeed any pixel could be associated with multiple patches; such issue is
related to the redundancy of patch-based image models and has been addressed
under the framework of Bayesian model averaging in [31].
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Algorithm 1 Image Denoising via SAIST

o Initialization: X = y;
e Iterateoni =1,2,...,iter

- Patch clustering: find the KNN for each exemplar patch
and create data matrices Y;’s for each cluster;

- Tterative regularization: y**1D = 2® 4 5(y — 2®),

- Noise variance update: re-estimate auz) from y®*+D
via Eq. 15;

- SVD for each noisy data matrix Y;: (U;, Z;,V;) =
svd(Y);

- Thresholds update: compute z; using Eqs. (12) and (13);

- Singular value thresholding: /AI,- = S;(4;) with
computed 7;;

- Image update: obtain an improved denoised image &%)
by weighted averaging all denoised patches X, =U; iiViT ;
e Output: £®).

(U, V) respectively characterize the local (column-wise) and
nonlocal (row-wise) variations of data matrix X. We argue
that such a bilateral interpretation of SVD is physically more
plausible and important to our conceptual understanding of the
match between the proposed image model and real-world data.

How would the empirical distribution of singular values
Ai’s look like? Fig. 2 shows the fitting result of empirical
distributions of & on two typical test images: /ena and
monarch. It can be observed that both empirical distributions
can be reasonably well approximated by Laplacian - we note
that such statistical modeling experiment is analogous to well-
known studies on wavelet coefficients (e.g., [32]) but has to
be understood under a different context (simultaneous sparse
coding instead of sparse coding) because each data matrix
X is decomposed of nonlocal similar patches - it shows the
prevalence of heavy-tail distribution [33] in nonlocal sparse
representations too.

III. ITERATIVE SINGULAR-VALUE THRESHOLDING
WITH DETERMINISTIC ANNEALING

In this section, we develop a class of image restoration
algorithms based on nonlocal sparse representations discussed
above. Under the framework of Bayesian inference, we focus
on two types of observation models (or likelihood functions):
noisy and incomplete data. As the observation model changes,
the strategy of choosing the threshold varies but share a
common objective of achieving spatial adaption. As we will
see, it is enlightening to understand recently proposed iter-
ative regularization techniques from the spatially adaptive
perspective - namely, different classes of image structures
correspond to different types of saddle points and iterative
regularization represents a deterministic annealing (DA)-like
strategy of traversing the image space.

A. Image Restoration from Noisy Observation Data

Given noisy observation Y = X 4+ W, we note that studies
on wavelet-based image denoising (e.g., [19]) have shown
the following thumb rule for choosing the threshold: 7 =
24/262 /o, under the assumption that wavelet coefficients

observe i.i.d. Laplacian distribution. As shown in Fig. 2, the
empirical distribution of singular values can also be modeled
by a Laplacian with spatially changing variances. With a
spatially adaptive Laplacian prior, we can set the threshold
parameter to be [19]

24202

Oi

T = (12)
where o; denotes the locally estimated variance at the
position i. Following the arguments of bilateral variance esti-
mation, we can show that the one-sample maximum-likelihood
(ML) estimation of signal variance ¢; is given by [19]

13)

w?

6; = \/max(liz/m —02,0)

where 1; denotes the singular-value calculated from the noisy
data matrix Y. In fact, the above formula can be interpreted
as the bilateral extension of BayesShrink [19] from wavelet-
domain (local information only) to SVD-domain (exploiting
both local and nonlocal information).

Additionally, we suggest that recently developed iterative
regularization techniques [25] offers an alternative approach
toward spatial adaptation. The basic idea of iterative regular-
ization is to add filtered noise back to the denoised image - i.e.,

y(k+1) =z® 4 Sy — ,g(k)) (14)

where k denotes the iteration number and J is a relaxation
parameter. Performance improvement by iterative regulariza-
tion has been reported for wavelet-based [34], total-variation
and bilateral filtering models [35]. Here, we propose to extend
the idea of iterative regularization to update the estimation
of noise variance (due to the feedback of filtered noise) and
signal variance (due to the update of clustering results) alter-
natively - i.e.,

5 = V\/U% —[ly — y&+Dy|y,

where y is a scaling factor controlling the re-estimation of
noise variance and

15)

5.[_(k+1) _ \/max((zgk))Z/m _ (5—15)]‘))2, 0). (16)

An intuitive explanation of Egs. (15) and (16) is as follows.
As the iteration starts, only strong signals (with large singular
values) can survive soft-thresholding and contribute to the
initial guess of x; however, partially recovered signal will be
fed back to the noisy observation through Eq. (14), which
helps lower the estimation of noise. In return, weaker signals
can be identified and added to the signal estimate. As the iter-
ation progresses, we usually observe that the estimated noise
variance monotonically decreases; meanwhile image struc-
tures are progressively recovered until the convergence. To
facilitate the conceptual understanding, an animation record-
ing the intermediate denoised image results can be accessed
at http://www.csee.wvu.edu/~xinl/demo/saist.html. A step-by-
step description of SAIST denoising algorithm is given below.

The implementation of SAIST denoising algorithm (Algo-
rithm 1) under MATLAB is relatively easy - only two para-
meters need to be specified by the user: the patch size and the
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Algorithm 2 Image Completion via SAIST

o Initialization: set initial estimate £© and threshold r = 70;
e Iterateoni =0,1,2,...,iter

- Patch clustering: find the kNN for each exemplar patch
and create data matrices X;’s for each cluster;

- Landweber iteration (®, ®' denote measurement opera-
tor and its adjoint): run £ D = £® 4+ 10! (y — ©£®)) for
r-times;

- Perform SVD for each data matrix X;: (U;, £;,V;) =
sod(X;);

- Singular value thresholding: A=
computed 7;;

- Image update: obtain a new reconstructed image &)
by weighted averaging all reconstructed patches )A(lur] =
U SV

- Deterministic annealing: 7 = (1—¢€)*zo, Ymod(k, T) = 0;
e Output: £®),

S. (%) with

number of similar patches. The core component of singular-
value thresholding only takes about 10 lines of MATLAB
codes. Similar to BM3D [3], we only use exemplars every five
pixels along both horizontal and vertical directions to speed
up the computation; the final output of each pixel is weighted
average across multiple patches containing that pixel. The
weight is empirically set as w; = 1 —s;/n, where s; denotes
the number of nonzero singular values of the denoised X;. In
our current MATLAB implementation, we have exploited the
vectorized functions (e.g., repmat) to obtain the kNN search
results fast. It takes SAIST less than 20 seconds to denoise a
256 x 256 image on a Intel Dual Core i7 CPU 2.67 GHz.

B. Image Completion from Incomplete Observation Data

Given incomplete data Y = ®X|o (®,Q denote the
operator and the support of measurement process), we can
observe the interesting duality between matrix completion
[13], [36] and image completion (a.k.a. image inpainting [37]
and image recovery [38]). However, unlike matrix completion,
image completion often involves the filling of missing data
in a number of data matrices each corresponding to the
kNN of a chosen exemplar patch. Moreover, there is no
universal low-rank prior for different class of image structures
(e.g., smooth areas vs. edges). Therefore, the technique of
singular-value thresholding has to be used with caution when
applied to the task of image completion - for example, group-
sparsity optimization is often tangled with dictionary learning,
which makes the problem nonconvex. Accordingly, several
researchers have opted to decouple the two and learn the dic-
tionary from a large set of training data (e.g., [7], [12]). Here,
we propose to borrow the strategy of deterministic annealing
to tackle such nonconvex sparsity optimization problem.

The idea of deterministic annealing (DA) is simple - one
starts with a large threshold and then progressively decrease
the threshold value according to some annealing schedule [39].
It was first discovered that DA can dramatically improve the
performance of DCT-based [40] and wavelet-based [41] image
recovery algorithms as well as BM3D-based compressed
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sensing [42] and interpolation [43]. Later, the idea of DA
was used jointly with hybrid sparse representations [44] and
explained from the viewpoint of spatial adaptation. Since the
left-multiplying and right-multiplying matrices (U, V) of SVD
characterize the local and nonlocal variations of data matrix
respectively, it is plausible to extend the idea of DA into
singular-value thresholding (SVT). We also give a complete
description of SAIST completing algorithm as follows.

It is worth noting that Algorithm 2 is general enough
to be applied into different scenarios. When ® is spatial
sampling, Algorithm 2 becomes image inpainting [37] (if
Q¢ is set to be the so-called inpainting domain), regularly
sampled image interpolation [45] (if Q is set to be odd-
indexed rows and columns) or irregularly sampled image
interpolation [46] (if Q is set to be random samples in the
spatial domain). When ® is Fourier sampling and Q denotes
a collection of radial lines in the Fourier space, Algorithm 2
becomes the image reconstruction tool useful for compressed-
sensing [47]. We acknowledge that the parameter setting of
Algorithm 2 has to vary from application to application; but
as we will show next, the general principle is the same and
Algorithm 2 is capable of advancing the state-of-the-art in
several applications.

IV. REPRODUCIBLE EXPERIMENTAL RESULTS

In this section, we report our experimental results with
SAIST denoising/completion algorithms described in the pre-
vious section. These experimental results are used to support
the effectiveness of the proposed image model and the idea
of bilateral variance estimation. All the benchmark schemes
used in our experimental comparison are the latest works
published with reproducible results. To promote the culture
of reproducible research, source codes and saved experi-
mental results accompanying this work can be accessed at
http://www.csee.wvu.edu/~xinl/demo/saist.html.

A. Image Denoising

We first compare the proposed SAIST denoising algo-
rithm and three leading methods for removing additive white
Gaussian noise: block-matching 3D (BM3D) [3], learning
simultaneous sparse coding (LSSC) [7] and clustering-based
sparse representation (CSR) [10]. It should be noted that LSSC
and CSR are the only two schemes in the open literature whose
denoising performance has shown convincing improvements
over BM3D (published over five years ago). The denoising
results of all benchmark schemes are generated from the
source codes or executables released by their authors. The
PSNR performance of four competing denoising algorithms
are reported in Table 1 (the highest PSNR value is highlighted
in each cell to facilitate the comparison). From Table 1 we
can see that SAIST achieves at least comparable denoising
performance to other three methods. On the average, our
SAIST outperforms all other three benchmark methods at all
noise levels and the gain becomes more significant as the noise
level increases.

The visual quality improvements achieved by SAIST seem
even more convincing. In Figs. 3—4, we have compared the
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TABLE I
COMPARISON OF PSNR (dB) RESULTS AMONG FOUR COMPETING DENOISING METHODS. IN EACH CELL, FOUR DENOISING
RESULTS ARE REPORTED. TOP LEFT: BM3D [3]. ToOP RIGHT: LSSC [7]. BOTTOM LEFT: CSR [10]. BOTTOM RIGHT:
LASSC (THIS PAPER). THE BEST RESULT AMONG FOUR IS HIGHLIGHTED IN EACH CELL

L« o [ s [ 20 [J 30 J s [ 10 ]

Lena 3594 | 3585 34.29 | 34.16 33.07 | 32.89 31.28 | 31.19 29.08 | 28.95 2591 | 25.96
3590 | 35.90 3420 | 34.21 3296 | 33.08 31.16 | 31.27 28.79 | 29.01 25.33 | 25.93

Monarch 34.14 | 34.49 31.88 | 32.16 30.38 | 30.59 28.36 | 28.08 25.69 | 25.59 2233 | 21.82
34.49 | 34.80 3225 | 32.52 30.71 | 30.81 28.56 | 28.68 25.79 | 25.89 2175 | 2241

Barbara 3497 | 34.97 33.09 | 32.98 31.74 | 31.54 29.77 | 29.62 27.28 | 27.13 23.62 | 23.56
35.10 | 35.23 33.17 | 33.32 31.78 | 32.10 29.72 | 30.09 26.95 | 27.54 23.05 | 24.13

Boat 3392 | 34.01 32.15 | 32.18 30.89 | 30.87 29.11 | 29.02 26.84 | 26.76 24.04 | 23.94
33.88 | 33.91 32.05 | 32.09 30.78 | 30.81 28.94 | 28.93 26.67 | 26.66 23.58 | 23.90

C. Man 34.13 | 34.16 3191 | 31.97 30.51 | 30.54 28.70 | 28.64 26.28 | 26.36 23.18 | 23.14
34.06 | 34.24 31.89 | 32.01 30.49 | 30.50 28.64 | 28.46 26.27 | 26.19 22.61 | 23.22

Couple 34.02 | 33.97 32.10 | 32.07 30.75 | 30.70 28.84 | 28.71 26.48 | 26.32 23.56 | 23.34
3395 | 33.90 32.00 | 31.94 30.60 | 30.61 28.62 | 28.68 26.20 | 26.30 2320 | 23.35

F Print 32.53 | 32.58 30.35 | 30.32 28.87 | 28.78 26.88 | 26.67 24.59 | 24.21 21.58 | 21.18
3270 | 32.71 30.47 | 30.45 28.97 | 29.03 26.95 | 26.98 24.53 | 24.55 21.09 | 21.59

Hill 33.62 | 33.69 31.88 | 31.90 30.73 | 30.71 29.14 | 29.05 27.16 | 26.99 24.49 | 2431
33.66 | 33.67 31.87 | 31.85 30.65 | 30.68 28.97 | 28.99 26.90 | 26.94 24.14 | 24.27

House 36.82 | 37.07 35.07 | 35.34 3392 | 34.16 3221 | 32.46 29.73 | 29.90 26.03 | 25.63
36.88 | 36.67 35.11 | 3491 33.86 | 33.90 32.11 | 32.39 29.39 | 30.20 2537 | 26.75

Man 33.94 | 34.04 31.88 | 31.99 30.54 | 30.61 28.81 | 28.77 26.81 | 26.73 24.16 | 24.00
33.96 | 34.08 3191 | 31.99 30.56 | 30.60 28.75 | 28.74 26.68 | 26.66 23.87 | 24.02

Peppers 3472 | 34.82 3275 | 32.88 31.31 | 31.48 29.31 | 29.38 26.69 | 26.87 2323 | 23.14
34.64 | 34.82 32.69 | 32.87 31.25 | 31.39 29.22 | 29.33 26.49 | 26.76 22.34 | 23.32

Straw 30.99 | 31.39 28.67 | 28.96 27.10 | 27.36 2499 | 25.19 22.50 | 22.67 19.70 | 19.50
31.51 | 31.62 29.14 | 29.23 27.50 | 27.61 25.16 | 25.46 22.52 | 22.85 19.46 | 19.54

Average 34.15 | 34.25 32.17 | 32.24 30.82 | 30.85 28.95 | 28.90 26.59 | 26.54 23.49 | 23.29
3423 | 34.30 3223 | 32.28 30.84 | 30.93 28.90 | 29.00 26.43 | 26.63 2298 | 23.54

Fig. 3. Denoising performance comparison for Monarch image at noise level o, = 30. (a) BM3D [3] (PSNR = 28.36 dB, SSIM = 0.8863). (b) LSSC [7]
(PSNR = 28.08 dB, SSIM = 0.8777). (c) CSR [10] (PSNR = 28.56 dB, SSIM = 0.8868). (d) SAIST (PSNR = 28.68 dB, SSIM = 0.8930).

cropped portions of denoised images by four different methods
at two medium noise levels: 30 and 50 - the improvement is
noticeable but not striking. Then as we increase the noise level
to 100, visual quality difference becomes striking. As can be
seen from Figs. 5-6, our SAIST convincingly outperform other
denoising methods in the presence of heavy noise. We argue
that such advantage can be better appreciated from the signal-
variance estimation point of view. According to the Wiener

filtering formula, MM SE — axz as o, — 00. Therefore, the

performance gain achieved by SAIST can be interpreted as a
more robust solution to signal-variance estimation.

We have also compared SAIST and BM3D denoising
on some more challenging real-world data set. In the real-
world scenario, noise associated with raw image data is
not additive white Gaussian - e.g., the class of speckle
noise is often associated with ultrasound and short-wavelength
infrared (SWIR) imaging. Fig. 7 includes the comparison of
a phantom image acquired by a SWIR camera and its two
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(d)

Fig. 4. Denoising performance comparison for Barbara image at noise level o, = 50. (a) BM3D [3] (PSNR = 27.28 dB, SSIM = 0.7964). (b) LSSC [7]
(PSNR = 27.13 dB, SSIM = 0.7919). (c) CSR [10] (PSNR = 26.95 dB, SSIM = 0.7895). (d) SAIST (PSNR = 27.54 dB, SSIM = 0.8076).
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(c) (d)

Denoising performance comparison for House image at noise level o, = 100. (a) BM3D [3] (PSNR = 26.03 dB, SSIM = 0.7146). (b) LSSC [7]

(PSNR = 25.63 dB, SSIM = 0.7394). (c) CSR [10] (PSNR = 25.37 dB, SSIM = 0.6866). (d) SAIST (PSNR = 26.75 dB, SSIM = 0.7600).

Fig. 6.

Denoising performance comparison for Boat image at noise level o, = 100. (a) BM3D [3] (PSNR = 24.04 dB, SSIM = 0.5872). (b) LSSC [7]

(PSNR = 23.94 dB, SSIM = 0.5918) (c) CSR [10] (PSNR = 23.58 dB, SSIM = 0.5679). (d) SAIST (PSNR = 23.90 dB, SSIM = 0.5922).

denoised versions (BM3D vs. SAIST)*. It can be observed that
SAIST is capable of delivering visually more pleasant images
from the noisy data than BM3D - in fact, it has been observed
before that the performance of BM3D degrades noticeably
even in the situation of Gaussian noise when the noise power
is high. For example, BM3D has the tendency of being fooled
by faulty clustering results in the presence of heavy noise and
producing undesirable artifacts in smooth regions. By contrast,
the proposed SAIST denoising is much more robust to noise
type and strength which seems to make it more appealing in
real-world applications.

B. Image Completion

We first report our experimental results for a collection
of six small-size (64 x 64) toy-example images as the
representatives of regular edge and texture structures. Our
reason for including such comparison is that they facilitate
our understanding of the SAIST image completion algorithm
from an image modeling perspective. When image size is kept

4Manual tuning of denoising parameters is necessary for both schemes since
noise is not AWGN any more.

small, it becomes easier to assess the match or mismatch
between the model and the data; by contrast, large-size test
images are often decomposed of the mixture of different
classes of structures. Our experimental setup is identical to
that in [40] and [44] - the inpainting domain is the cental
16 x 16 block and the PSNR is calculated for those missing
pixels only. As shown in Fig. 8§, we can see that SAIST
dramatically outperforms other competing schemes including
exemplar-based [48], morphological component analysis
(MCA)-based [49] and our own recent work (DA-based [44].
Especially when compared with [44], the key difference lies
in the adoption of SVD rather than 2D-FFT as the sparsifying
tool.

We have also tested the performance of SAIST-based inter-
polation in two contrasting settings: irregularly sampled data
set and regularly-decimated data set. The experimental setup
for image interpolation from irregularly samples is adopted
from [46] - we randomly delete 85% pixels from an image
and compare the reconstructed images from the remaining
15% samples. It can be observed from Fig. 9 that SAIST
can outperform Delaunay-spline interpolation and Iterative
steering kernel regression (ISKR) by about 2.2 dB and 1.2 dB
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Fig. 7.

Denoising performance comparison on real-world data. a) Noisy raw data acquired by a SWIR camera. b) Denoised image given by BM3D.

¢) Denoised image given by SAIST. Please note the excellent noise suppression result of SAIST in smooth regions.
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Fig. 8. Inpainting performance comparison among several competing
methods: exemplar-based [48], MCA-based [49], DA-based [44], and SAIST-
based for six toy-example images (three regular textures and three regular
edges).

respectively. Visual quality improvements are also impressive
in particular around hair and hat regions. Since ISKR is based
on a local model, we conclude that the gain is largely attributed
to the exploitation of nonlocal similarity in the given image.

Next, we compare SAIST-based image interpolation and
three other leading methods (bicubic, NEDI [45] and SAI [50])
for regularly-decimated samples. It should be noted that 1) all
three benchmark methods are based on local models - NEDI
improves upon on bicubic by spatially adapting the inter-
polation coefficients and SAI further improves this idea by
enforcing local consistency of autoregressive models; 2) sub-
jective quality of interpolated image is often not faithfully
reflected by the PSNR value (e.g., NEDI does not neces-
sarily produces higher PSNR results than bicubic). Referring
to Fig. 10, we observe that 1) SAIST can achieve higher
PSNR performance than bicubic and NEDI; but falls behind
SAI by less than 0.5dB; 2) SAIST seems to be the only
one capable of recovering the fine-detail structures in the
hat region. To facilitate the visual inspection, we have included
the zoomed version of hat region in Fig. 11. It is interesting

to see that aliasing artifacts are effectively suppressed in
SAIST-interpolated images thanks to the presence of weak yet
abundant nonlocal texture patterns (more discussions on this
matter can be found in the next section).

Finally, we have compared SAIST and BM3D on a popu-
lar experimental setting related to compressed sensing. The
challenge is to reconstruct an image from its incomplete
samples in Fourier domain. In our experiment, we have
adopted the csphantom image - an improved version con-
taining more fine-detailed structures than the one created by
the matlab function phantom. For this image, it is easy
to verify that local regularization techniques (e.g., 11-magic)
does not work effectively because TV-based model does not
represent a good fit with those fine-detailed structures. Fig. 12
includes the PSNR performance comparison between BM3D
(to the best of our knowledge, BM3D-CS has achieved the
best experimental result of image completion from partial
Fourier samples among all reproducible CS software.) and
SAIST on csphantom image. It can be observed that as
much as 11-12 dB is achieved by SAIST over BM3D at
the convergence. Due to space limitations, more experimental
comparison between SAIST and BM3D can be found at the
above-mentioned website accompanying this work.

V. DISCUSSION

A. Modeling: Local Variation Versus Nonlocal Invariance

Is the world transient or invariant? Wavelet theory advocates
for the importance of modeling transient events [51] because
they carry important information. Recent advances in nonlocal
image processing and low-rank methods seem to suggest
otherwise - one has to model invariant events in order to
gain a deeper understanding of transient ones. Mathematical
formulation of changes by local derivatives and memory by
Markovian assumptions are powerful tools but should be used
with caution. Classical physics might be based on the idea that
nature can be described locally [52]; but as the complexity
of physical systems increases such that long-range interac-
tions prevail in chemical and biological systems, nonlocal
view becomes necessary (e.g., reaction-diffusion systems [53],
[54]). Since photographic images are digital representations of
natural scenes, they inherit those nonlocal invariant properties
including self-similarity [55] and scale-invariance [56].

How do we unify the local and nonlocal views in a
common framework? We argue that low-rank approximation
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Image reconstruction performance comparison from irregular samples for Lena image. (a) Irregularly sampled data set (15% of pixels at random

locations are preserved). (b) Delaunay-spline interpolation (PSNR = 28.86 dB, SSIM = 0.8419). (c) Iterative steering kernel regression [46] (PSNR = 29.80 dB,

SSIM = 0.8524). (d) SAIST (PSNR = 31.32 dB, SSIM = 0.8861).

Fig. 10.

Image reconstruction performance comparison from a regularly decimated version for Lena image. (a) Bicubic interpolation (PSNR = 34.00 dB,

SSIM = 0.9146). (b) NEDI [45] (PSNR = 33.94 dB, SSIM = 0.9141). (c) SAI [50] (PSNR = 34.70 dB, SSIM = 0.9174). (d) SAIST (PSNR = 34.27 dB,

SSIM = 0.9137).

Fig. 11.

Successful recovery of weak texture patterns by SAIST with a proper annealing schedule. (a) Hat region in the original Lena image. (b) Interpolated

hat region by SAI suffering from aliasing artifact (similar weakness can be observed in images interpolated by bicubic and NEDI). (c) Interpolated hat region

by SAIST (Tp = 5.5, € = 0.05).

by SVD offers one promising approach in that local variation
and nonlocal invariance are respectively characterized in the
row and column spaces. It is enlightening to interpret left-
multiplying and right-multiplying matrices of SVD - whose
energy compaction property has been well known - as the
joint sparsification tool and the singular values as the nonlocal
variance estimation under a properly chosen dictionary of
local bases. From an image modeling perspective, this work is
based on two classes of important ideas in the recent literature
- dictionary learning (e.g., [57]) and patch clustering (e.g., [3]).
What seems a nice surprise is that low-rank approximation

achieves nearly-optimal performance for the class of regular
edges and textures. Nevertheless, local variation and nonlocal
invariance are two sides of the same coin.

B. Optimization: Global Minimum Versus Saddle Point

In our experimental studies, we opted to terminate the
SAIST algorithm before reaching the convergence no matter
of iterative regularization or deterministic annealing. We have
also found that the choices of relaxation parameter in
iterative regularization and annealing schedule in deterministic
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PSNR performance comparison of MRI reconstruction from 22 radial lines between BM3D-CS [42] and ISVT-DA on csphantom (note that for

the same image and sampling rate, /1magic can only achieve PSNR = 26.78 dB).

annealing play critical role in the performance of SAIST
image denoising and complete algorithms. Moreover, increas-
ingly more empirical evidences have suggested a tantalizing
dilemma for image processing researchers - one can often
obtain better algorithms by pursuing a nonconvex sparsity opti-
mization [40], [42], [41], [44]; even though the analytical proof
or computationally efficient solution to nonconvex problems
is often elusive. It is natural to ask: does nature speak the
language of nonconvexity?

Maybe. Emergent properties in nature (e.g., self-organizing
systems [58], dissipative systems [59]) have been widely
studied under the context of biological cybernetics and non-
equilibrium thermodynamics. If we define image processing
as a tool of probing into the mechanism of sensory processing
by human vision systems (HVS), it is likely that HVS has
developed a strategy of adapting to the emergent properties of
natural scenes through evolution and development [60]. In fact,
multi-stable perception [61] represents a concrete evidence for
the presence of nonconvexity in HVS. As coercively argued by
Ashby in [58], the study of a large system built of parts that
have “many states of equilibrium” could lead us to identify
the “physical basis of the brain’s memory”. Since nature
does not have foresight, we argue that the pursuit of saddle
point is physically more plausible than the pursuit of global
minimum.

VI. CONCLUSION

A low-rank (SVD-based) approach toward modeling
nonlocal similarity in images was presented, which leads
to a conceptually simple image restoration algorithm called
Spatially-Adaptive Iterative Singular-value Thresholding
(SAIST). The left-multiplying and right-multiplying matrices
of SVD jointly characterize the local and nonlocal variations
in the row and column spaces of a data matrix. Although
excellent energy compaction property of SVD has been well-
known, applying it to sparse representation of similar patches

gives singular-values a physically plausible interpretation
from the bilateral variance estimation point of view. The
derived SAIST algorithm can be viewed as a natural extension
of soft-thresholding from local wavelet-based to nonlocal
SVD-based models. Spatial adaptation of SVD-based models
can be achieved by the strategies of iterative regularization
and deterministic annealing for noisy and incomplete data
respectively. Excellent experimental results of SAIST have
been achieved for both image denoising and completion
experiments.

To the best of our knowledge, this is the first time that
two promising lines of research - namely low-rank method
and nonlocal similarity - are unified in a principled way.
It might open doors to several promising lines of research.
At the modeling level, how do we go beyond transla-
tional invariance? How do we accommodate more generic
geometric invariance (relevant to object recognition) into
the proposed image model? Maybe the boundary between
low-level and high-level vision has always been artificial.
On the algorithmic side, we believe there is still plenty of
room for further improvement - e.g., how to choose patch size
and neighborhood size (parameter k in kNN) in a less ad-
hoc fashion? how to develop computationally more efficient
solution to large-scale (i.e., sample size — 00) and parallel
(i.e., simultaneously for multiple exemplars) kNN search?
We also believe there are plenty of real-world applications
(e.g., computational photography, low-light remote sensing,
faster MRI) that could benefit from the proposed image model
and SAIST algorithm.
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