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Abstract—Existing blind image quality assessment (BIQA)
methods are mostly opinion-aware. They learn regression models
from training images with associated human subjective scores to
predict the perceptual quality of test images. Such opinion-aware
methods, however, require a large amount of training samples
with associated human subjective scores and of a variety of distor-
tion types. The BIQA models learned by opinion-aware methods
often have weak generalization capability, hereby limiting their
usability in practice. By comparison, opinion-unaware methods
do not need human subjective scores for training, and thus have
greater potential for good generalization capability. Unfortunate-
ly, thus far no opinion-unaware BIQA method has shown con-
sistently better quality prediction accuracy than opinion-aware
methods. Here we aim to develop an opinion-unaware BIQA
method that can compete with, and perhaps outperform existing
opinion-aware methods. By integrating natural image statistics
features derived from multiple cues, we learn a multivariate
Gaussian model of image patches from a collection of pristine
natural images. Using the learned multivariate Gaussian model, a
Bhattacharyya-like distance is used to measure the quality of each
image patch, then an overall quality score is obtained by average
pooling. The proposed BIQA method does not need any distorted
sample images nor subjective quality scores for training, yet
extensive experiments demonstrate its superior quality-prediction
performance to state-of-the-art opinion-aware BIQA methods.
The Matlab source code of our algorithm is publicly available at
www.comp.polyu.edu.hk/∼cslzhang/IQA/ILNIQE/ILNIQE.htm.

Index Terms—Blind image quality assessment, natural image
statistics, multivariate Gaussian.

I. INTRODUCTION

IT is a highly desirable goal to be able to faithfully evaluate
the quality of output images in many applications, such

as image acquisition, transmission, compression, restoration,
enhancement, etc. Quantitatively evaluating an image’s percep-
tual quality has been among the most challenging problems of
modern image processing and computational vision research.
Perceptual image quality assessment (IQA) methods fall into
two categories: subjective assessment by humans, and objec-
tive assessment by algorithms designed to mimic the subjective
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judgments. Though subjective assessment is the ultimate crite-
rion of an image’s quality, it is time-consuming, cumbersome,
expensive, and cannot be implemented in systems where real-
time evaluation of image or video quality is needed. Hence,
there has been an increasing interest in developing objective
IQA methods that can automatically predict image quality in
a manner that is consistent with human subjective perception.

Early no-reference IQA (NR-IQA) models commonly oper-
ated under the assumption that the image quality is affected by
one or several particular kinds of distortions, such as blocki-
ness [1], [2], ringing [3], blur [4], [5], or compression [6]–[9].
Such early NR-IQA approaches therefore extract distortion-
specific features for quality prediction, based on a model of
the presumed distortion type(s). Hence, the application scope
of these methods is rather limited.

Recent studies on NR-IQA have focused on the so-called
blind image quality assessment (BIQA) problem, where prior
knowledge of the distortion types is unavailable. A majority
of existing BIQA methods are “opinion aware”, which means
that they are trained on a dataset consisting of distorted images
and associated subjective scores [10]. Representative methods
belonging to this category include [11]–[18] and they share
a similar architecture. In the training stage, feature vectors
are extracted from the distorted images, then a regression
model is learned to map the feature vectors to the associated
human subjective scores. In the test stage, a feature vector is
extracted from the test image and then fed into the learned
regression model to predict its quality score. In [11], Moorthy
and Bovik proposed a two-step framework for BIQA, called
BIQI. In BIQI, given a distorted image, scene statistics are
at first extracted and used to explicitly classify the distorted
image into one of n distortions; then, the same set of statistics
are used to evaluate the distortion-specific quality. Following
the same paradigm, Moorthy and Bovik later extended BIQI to
DIIVINE using a richer set of natural scene features [12]. Both
BIQI and DIIVINE assume that the distortion types in the test
images are represented in the training dataset, which is, how-
ever, not the case in many practical applications. By assuming
that the statistics of DCT features can vary in a predictable
way as the image quality changes, Saad et al. [13] proposed
a BIQA model, called BLIINDS, by training a probabilistic
model based on contrast and structure features extracted in
the DCT domain. Saad et al. later extended BLIINDS to
BLIINDS-II [14] using more sophisticated NSS-based DCT
features. In [15], Mittal et al. used scene statistics of locally
normalized luminance coefficients to quantify possible losses
of naturalness in the image due to the presence of distortions,
and the resulting BIQA model is referred to BRISQUE. The



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015 2

model proposed in [16] extracts three sets of features based
on the statistics of natural images, distortion textures, and
blur/noise; three regression models are trained for each feature
set and finally a weighted combination of them is used to
estimate the image quality.

In [17], Ye et al. proposed an unsupervised feature learning
framework for BIQA, called CORNIA, which consists of
the following major steps: local feature extraction, codebook
construction, soft-assignment coding, max-pooling, and linear
regression. In [18], Li et al. extracted four kinds of features
from images being quality-tested: the mean value of a phase
congruency [19] map computed on an image, the entropy of
the phase congruency map, the entropy of the image, and the
gradient of the image. A generalized regression neural network
(GRNN) [20] was deployed to train the model. In [21],
Zhang and Chandler extracted image quality-related statistical
features in both the spatial and frequency domains. In the
spatial domain, locally normalized pixels and adjacent pixel
pairs were statistically modeled using log-derivative statistics;
and in the frequency domain, log-Gabor filters [22] were used
to extract the fine scales of the image. Based on the observation
that image local contrast features convey important structural
information that is related to image perceptual quality, in [23],
Xue et al. proposed a BIQA model utilizing the joint statistics
of the local image gradient magnitudes and the Laplacian of
Gaussian image responses.

The opinion-aware BIQA methods discussed above require
a large number of distorted images with human subjective
scores to learn the regression model, which causes them to
have rather weak generalization capability. In practice, image
distortion types are numerous and an image may contain
multiple interacting distortions. It is difficult to collect enough
training samples for all such manifold types and combinations
of distortions. If a BIQA model trained on a certain set
of distortion types is applied to a test image containing a
different distortion type, the predicted quality score will be
unpredictable and likely inaccurate. Second, existing trained
BIQA models have been trained on and thus are dependant to
some degree on one of the available public databases. When
applying a model learned on one database to another database,
or to real-world distorted images, the quality prediction per-
formance can be very poor (refer to Section IV-D for details).

Considering the shortcomings of opinion-aware BIQA
methods, it is of great interest to develop “opinion-unaware”
IQA models, which do not need training samples of distor-
tions nor of human subjective scores [10]. However, while
the goal of opinion-unaware BIQA is attractive, the design
methodology is more challenging due to the limited available
information. A few salient works have been reported along
this direction. In [24], Mittal et al. proposed an algorithm that
conducts probabilistic latent semantic analysis on the statistical
features of a large collection of pristine and distorted image
patches. The uncovered latent quality factors are then applied
to the image patches of the test image to infer a quality score.
The Natural Image Quality Evaluator (NIQE) model proposed
by Mittal et al. [10] extracts a set of local features from an
image, then fits the feature vectors to a multivariate Gaussian
(MVG) model. The quality of a test image is then predicted

by the distance between its MVG model and the MVG model
learned from a corpus of pristine naturalistic images. However,
since NIQE uses a single global MVG model to describe an
image, useful local image information which could be used
to better predict the image quality is lost. In [25], Xue et
al. simulated a virtual dataset wherein the quality scores of
distorted images are first estimated using the full reference
IQA algorithm FSIM [26]. A BIQA model is then learned from
the dataset by a process of patch based clustering. However,
this “quality aware clustering” (QAC) method is only able to
deal with four commonly encountered types of distortions;
hence, unlike NIQE, QAC is not a “totally blind” BIQA
method.

One distinct property of opinion-unaware BIQA methods
is that they have the potential to deliver higher generalization
capability than their opinion-aware counterparts due to the fact
that they do not depend on training samples of distorted images
and associated subjective quality scores on them. However,
thus far, no opinion-unaware method has shown better quality
prediction power than currently available opinion-aware meth-
ods. Thus, it is of great interest and significance to investigate
whether it is possible to develop an opinion-unaware model
that outperforms state-of-the-art opinion-aware BIQA models.

We make an attempt to achieve the above goal in this paper.
It is commonly accepted that the statistics of a distorted image
will be measurably different from those of pristine images.
We use a variety of existing and new natural scene statistics
(NSS) features computed from a collection of pristine natural
image patches, and like NIQE, fit the extracted NSS features
to an MVG model. This MVG model is therefore deployed
as a pristine reference model against which to measure the
quality of a given test image. On each patch of a test image,
a best-fit MVG model is computed online, then compared
with the learned pristine MVG model. The overall quality
score of the test image is then obtained by pooling the patch
scores by averaging them. We conducted an extensive series
of experiments on large scale public benchmark databases,
and found that the proposed opinion-unaware method exhibits
superior quality prediction performance as compared to state-
of-the-art opinion-aware NR IQA models, especially on the
important cross-database tests that establish generalization
capability.

Our work is inspired by NIQE [10]; however, it performs
much better than NIQE for the following reasons. First, going
beyond the two types of NSS features used in [10], we intro-
duce three additional types of quality-aware features. Second,
instead of using a single global MVG model to describe the
test image, we fit the feature vector of each patch of the test
image to an MVG model, and compute a local quality score
on it. We believe that integrating multiple carefully selected
quality-aware features that are locally expressed by a local
MVG model yields a BIQA model that more comprehensively
captures local distortion artifacts. We refer to this significantly
improved “completely blind” image quality evaluator by the
monicker Integrated Local NIQE, or IL-NIQE.

The most important message of this paper is: we
demonstrate that “completely blind” opinion-unaware
IQA models can achieve more robust quality prediction
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performance than opinion-aware models. Such a model and
algorithm can be used in innumerable practical applications.
We hope that these results will encourage both IQA
researchers and imaging practitioners to more deeply
consider the potential of opinion-unaware “completely blind”
BIQA models. To make our results fully reproducible,
the Matlab source code of IL-NIQE and the associated
evaluation results have been made publicly available at
www.comp.polyu.edu.hk/∼cslzhang/IQA/ILNIQE/ILNIQE.htm.

The rest of this paper is organized as follows. Section II
introduces the quality-aware features used in IL-NIQE. Sec-
tion III presents the detailed design of the new BIQA index
IL-NIQE. Section IV presents the experimental results, and
Section V concludes the paper.

II. QUALITY-AWARE NSS FEATURES

It has been shown that natural scene statistics (NSS) are
excellent indicators of the degree of quality degradation of
distorted images [10]–[16]. Consequently, NSS models have
been widely used in the design of BIQA algorithms. For
example, parameters of the generalized Gaussian distribution
(GGD) which effectively model natural image wavelet co-
efficients and DCT coefficients have been used as features
for quality prediction [11]–[14]. In [16], a complex pyramid
wavelet transform was used to extract similar NSS features.
All of these NSS model based BIQA methods are opinion-
aware methods, and all learn a regression model to map the
extracted NSS feature vectors to subjective quality scores.

Previous studies have shown that image quality distortions
are well characterized by features of local structure [27],
contrast [23], [26], [27], multi-scale and multi-orientation
decomposition [21], [28], and color [26]. Using these con-
siderations, we designed a set of appropriate and effective
NSS features for accomplishing opinion-unaware BIQA. To
characterize structural distortion, we adopt two types of NSS
features (originally proposed in [10]) derived from the dis-
tribution of locally mean subtracted and contrast normalized
(MSCN) coefficients and from the distribution of products
of pairs of adjacent MSCN coefficients. To more effectively
characterize structural distortions and to also capture contrast
distortion, we deploy quality-aware gradient features (see Sect.
II-C). In order to extract quality-related multi-scale and multi-
orientation image properties, we use log-Gabor filters and
extract statistical features from the filter responses (see Sect.
II-D). Color distortions are described using statistical features
derived from the image intensity distribution in a logarithmic-
scale opponent color space (see Sect. II-E). Overall, five
types of features are employed. Although all of these features
are well known in the NSS literature, we collectively adapt
them for the task of completely-blind BIQA for the first
time. Our experiments demonstrate that the new features can
significantly improve image quality prediction performance
(see Sect. IV-E for details).

A. Statistics of Normalized Luminance

Ruderman [29] pointed out that the locally normalized
luminances of a natural gray-scale photographic image I

conform to a Gaussian distribution. This normalization process
can be described as:

I(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(1)

where i and j are spatial coordinates, and

µ(i, j) =
K∑

k=−K

L∑
l=−L

ωk,lI(i+ k, j + l) (2)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l[I(i+ k, j + l)− µ(i, j)]2 (3)

are the local image mean and contrast, where ω = {ωk,l|k =
−K, ...,K, l = −L, ..., L} defines a unit-volume Gaussian
window. The so-called MSCN coefficients I(i, j) have been
observed to follow a unit normal distribution on natural images
that have not suffered noticeable quality distortions [29]. This
Gaussian model, however, is violated when images are sub-
jected to quality degradations caused by common distortions.
Measurements of the deviation of {I(i, j)} from the Gaussian
model are indicative of distortion severity.

As suggested in [10], [15], we use a zero-mean generalized
Gaussian distribution (GGD) to more broadly model the dis-
tribution of I(i, j) in the presence of distortion. The density
function associated with the GGD is given by:

g(x;α, β) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(4)

where Γ(·) is the gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0. (5)

The parameters α and β are effective “quality-aware” features
that can be reliably estimated using the moment-matching
based approach in [30].

B. Statistics of MSCN Products

As pointed out in [10], [15], image quality information
is also captured by the distribution of the products of pairs
of adjacent MSCN coefficients, in particular I(i, j)I(i, j +
1), I(i, j)I(i + 1, j), I(i, j)I(i + 1, j + 1), and I(i, j)I(i +
1, j−1). On both pristine and distorted images, these products
are well modeled as following a zero mode asymmetric GGD
(AGGD) [31]:

gα(x; γ, βl, βr) =



γ

(βl + βr)Γ

(
1
γ

) exp

(
−

(
−x

βl

)γ)
,∀x ≤ 0

γ

(βl + βr)Γ

(
1
γ

) exp

(
−

(
x

βr

)γ)
,∀x > 0

(6)



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015 4

(a)

(b) (c)

(d) (e)

Fig. 1: (a) A reference image. Distorted versions of (a): (b)
minor Gaussian blur, (c) severe Gaussian blur, (d) minor
JPEG2K compression, and (e) severe JPEG2K compression.
The subjective MOS scores of the four distorted images in
(b)∼(e) are 4.6765, 2.7714, 4.5714 and 0.8235, respectively.

The mean of the AGGD is

η = (βr − βl)

Γ

(
2
γ

)

Γ

(
1
γ

) . (7)

The parameters (γ, βl, βr, η) are also powerful “quality-aware”
features. By extracting these features along four orientations,
16 additional parameters are obtained.

C. Gradient Statistics

The image gradient is a rich descriptor of local image
structure, and hence of the local quality of an image. We
have found that by introducing distortions to an image, the
distributions of its gradient components (partial derivatives)
and gradient magnitudes are changed. We use an example
to demonstrate this fact. Fig. 1 shows five images selected
from the TID2013 dataset [32]. Fig. 1(a) is a reference image
while the other four are distorted versions of it: 1(b) with
minor Gaussian blur, 1(c) with severe Gaussian blur, 1(d) with
minor JPEG2K compression, and 1(e) with severe JPEG2K
compression. The subjective scores (MOS, on a scale of 0 to
5) that were recorded on the images in Figs. 1(b), 1(c), 1(d),
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Fig. 2: (a) Histograms of the Gaussian-smoothed gradient
components (including both Ih and Iv) computed from the
five images shown in Fig. 1. (b) Histograms of the gradient
magnitudes computed from the five Gaussian-smoothed im-
ages shown in Fig. 1.

and 1(e) are 4.6765, 2.7714, 4.5714, and 0.8235, respectively.
A higher subjective score indicates better perceptual quality. In
Fig. 2(a), we plot the histograms of the gradient components
of the five images in Fig. 1, while in Fig. 2(b) we plot
the histograms of their gradient magnitudes. Fig. 2 reveals
a number of interesting findings. First, when distortions are
introduced, the empirical distributions of the image’s gradient
components and gradient magnitudes are affected. Secondly,
more severe distortions cause greater changes in the distri-
butions than less severe ones. The distortions applied to the
images in Figs. 1(b) and 1(d) are less severe than those present
in Figs. 1(c) and 1(e), and as expected, as shown in Fig. 2(a),
the histograms of the images in Figs. 1(b) and 1(d) are similar
to that of the reference image in Fig. 1(a), while the histograms
of the images shown in Figs. 1(c) and 1(e) significantly
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deviate from that of the reference image. Similar observations
can be made regarding Fig. 2(b). We have observed this
statistical phenomena to broadly hold on natural photographic
images, as demonstrated by our later results. Based on these
observations (see also [23]), we use the empirically measured
distribution parameters of image gradient components and
gradient magnitudes as quality-aware NSS features for the
opinion-unaware BIQA task.

We compute the (smoothed) gradient component images,
denoted by Ih and Iv , by convolving I with two Gaussian
derivative filters along the horizontal and vertical directions,
respectively. It has been found that natural (smoothed) im-
age gradient components are well modeled as following a
GGD [33]. Thus, we use the parameters α and β computed
by fitting the histograms of the gradient components Ih and
Iv to the GGD model (Eq. (4)) as quality-aware NSS features.

The gradient magnitude image is computed as
√
I2h + I2v .

The gradient magnitudes of natural images can be well mod-
eled as following a Weibull distribution [34]:

p(x; a, b) =


a

ba
xa−1 exp

(
−

(
x

b

)a)
, x ≥ 0

0, x < 0

(8)

Larger values of the parameter a roughly correspond to more
texture in the gradient magnitude map, while larger values of b
imply greater local contrast [34], [35]. Recent studies in neu-
roscience suggest that the responses of visual neurons strongly
correlate with Weibull statistics when processing images [35].
Quality degradations will alter the gradient magnitudes of an
image, hence we use the parameters a and b of empirical
fits of the Weibull distribution to image gradient magnitude
histograms as highly relevant quality-aware NSS features in
our BIQA task.

To exploit the expression of distortions in image color space,
we also transform RGB images into a perceptually relevant
opponent color space [36] prior to computing the NSS gradient
features: O1

O2

O3

 =

 0.06 0.63 0.27
0.30 0.04 − 0.35
0.34 − 0.6 0.17

  R
G
B

 (9)

The weights in the above conversion are perceptually op-
timized on human visual data [37]. The NSS features just
described are also computed on each channel O1, O2, and
O3, respectively, and used as quality-aware features.

D. Statistics of Log-Gabor Filter Responses

Since neurons in visual cortex respond selectively to stim-
ulus orientation and frequency, the statistics of multi-scale,
multi-orientation filter responses to an image are also useful
for generating quality-aware BIQA features. Here we de-
ploy perceptually-relevant log-Gabor filters [22] to accomplish
multi-scale, multi-orientation filtering.

In the Fourier domain, a 2D log-Gabor filter can be ex-
pressed as:

G2 (ω, θ) = e
−
(log( ω

ω0
))

2

2σ2
r · e

− (θ−θj)
2

2σ2
θ (10)

(a)
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Fig. 3: (a) A reference image. Distorted versions of (a) by:
(b) additive noise in the color components and (c) contrast
compression. (d) Histograms of the l1 coefficients computed
from the three images shown in (a), (b), and (c). (e) and (f) are
histograms of the l2 and l3 coefficients of the same images.

where θj = jπ/J , j = {0, 1, ..., J−1} is the orientation angle,
J is the number of orientations, ω0 is the center frequency,
σr controls the filter’s radial bandwidth, and σθ determines
the angular bandwidth of the filter. Applying log-Gabor filters
having N different center frequencies and J different orien-
tations to filter an image f(x) yields a set of 2NJ responses
{(en,j(x), on,j(x)) : |n = 0, ..., N−1, j = 0, ..., J−1}, where
en,j(x) and on,j(x) are the responses of the real and imaginary
parts of a log-Gabor filter, respectively.

Given the 2NJ response maps {en,j(x)} and {on,j(x)},
we extract another set of NSS features from them using the
following scheme.

a) Use the GGD (Eq. (4)) to model the distributions of
{en,j(x)} and {on,j(x)}, and extract the best-fit model pa-
rameters α and β as features.

b) Use the GGD to model the smoothed directional gradient
components of {en,j(x)} and {on,j(x)}, and also use the best-
fit model parameters as quality-aware NSS features.

c) Likewise, use the Weibull distribution (Eq. (8)) to model
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the smoothed gradient magnitudes of {en,j(x)} and {on,j(x)}
and take the best-fit model parameters a and b as additional
NSS features.

E. Statistics of Colors

In order to further capture statistical properties that par-
ticularly pertain to color in images, we resort to a simple yet
classical NSS model [38]. In [38], Ruderman et al. showed that
in a logarithmic-scale opponent color space, the distributions
of photographic image data conform well to a Gaussian
probability model.

Given an RGB image having three channels R(i, j), G(i, j),
and B(i, j), first convert it into a logarithmic signal with mean
subtracted:

R(i, j) = logR(i, j)− µR

G(i, j) = logG(i, j)− µG

B(i, j) = logB(i, j)− µB

(11)

where µR, µG and µB are the mean values of logR(i, j),
logG(i, j) and logB(i, j), respectively, over the entire image.
Then, image pixels expressed in (R,G,B) space are projected
onto an opponent color space:

l1(x, y) = (R+ G + B)/
√
3

l2(x, y) = (R+ G − 2B)/
√
6

l3(x, y) = (R− G)/
√
2

(12)

As shown in [38], the distributions of the coefficients l1, l2 and
l3 of natural images nicely conform to a Gaussian probability
law. Thus, we use the following Gaussian model to fit the
empirical density function of l1, l2 and l3:

f(x; ζ, ρ2) =
1√
2πρ

exp

(
−(x− ζ)

2

2ρ2

)
. (13)

For each of the channels l1, l2 and l3, we estimate the two
model parameters ζ and ρ2 and take them as quality-aware
NSS features.

Here we use an example to show how the distributions
of l1, l2 and l3 vary as a function of distortion. Fig. 3(a)
shows a reference image while Figs. 3(b) and 3(c) show two
distorted versions of it. The image in Fig. 3(b) suffers from
additive noise in the color components while Fig. 3(c) suffers
from contrast compression. Figs. 3(d), 3(e) and 3(f) plot the
corresponding histograms of l1, l2 and l3. It may be observed
that the distributions of l1, l2 and l3 are significantly modified
by the presence of distortions, which indicates their potential
effectiveness as quality-aware NSS features for image quality
prediction.

III. THE IL-NIQE INDEX

Given the five types of quality-aware NSS features just
described, we next derive from them a powerful opinion-
unaware BIQA model called Integrated Local NIQE (IL-
NIQE). First, a pristine multivariate Gaussian (MVG) model of
the NSS features is learned from a collection of stored pristine
images. Then, from each patch of a given test image, an MVG
model is fitted to the feature vector and its local quality score

Fig. 4: The 90 images used to learn the pristine MVG model
used to create IL-NIQE.

is computed by comparing it with the learned pristine MVG
model. Finally, the overall quality score of the test image is
obtained by pooling the local quality scores.

A. Pristine MVG Model Learning

We learn a pristine MVG model to create a representation
of the NSS features of natural pristine images. In IL-NIQE,
the pristine MVG model serves as a “reference” against which
to evaluate the quality of a given natural image patch. To learn
the desired model, we collected a set of high quality natural
images from the Internet. Four volunteers (postgraduate stu-
dents from Tongji University, Shanghai, China) were involved
and each of them was asked to search for 100 high quality



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015 7

images from 4 categories: people, plants, animals, and man-
made objects. This is similar to the process used to create
a pristine corpus on which the NIQE index [10] was built. A
large percentage of natural images fall within these categories.
Then, each of the 400 collected images was visually examined
by seven volunteer observers (undergraduate students from
Tongji University). If no fewer than five of the seven observers
found that the quality of an image was very good, then the
image was retained. In the end, 90 images were thus selected
as pristine images and thumbnails of all of these images are
shown in Fig. 4. This process was more systematic than the
image selection of the NIQE database. Note that none of the
images used here can be found in any of the benchmark IQA
databases that will be later used to evaluate the BIQA methods.

In IL-NIQE, there are several parameters closely related
to the scale of the image, such as the parameters of log-
Gabor filters. Parameters that are tuned to be optimal for one
specific scale may not work well for a different scale. Like
SSIM [27] and FSIM [26], a simple and practical strategy
to solve this issue is to resize the images to a fixed size
so that one algorithm can deal with images with different
sizes. In our algorithm, each pristine image in the corpus was
resized to a fixed size P × P using the bicubic interpolation
method, then partitioned into patches of size p× p. The NSS
features described in Section II were then extracted from each
patch. To make the extracted NSS features more meaningful
for quality prediction, only a subset of the patches are used,
based on a measure of patch contrast. The contrast at each
pixel was computed as Eq. (3), then the patch contrast was
computed as the sum of contrasts within each patch. Only
those patches having a supra-threshold contrast greater than
a threshold were selected to learn the MVG model, where
the threshold was empirically determined by 78% of the peak
patch contrast over each image. In order to enhance the quality
prediction performance of IL-NIQE, all of the NSS features
were computed over two scales (by down-sampling the images
by a factor of 2) to capture multi-scale attributes of the images.

Each selected patch yields a d-dimensional feature vector
by stacking all the NSS features extracted from it. As might
be expected, some of the NSS features will be correlated
with others (e.g., the gradient components and the gradient
magnitude features). Therefore, we apply PCA to the feature
vector to reduce its dimension. This can both reduce the
computational cost and make the quality prediction process
more efficient. Denote by X = [x1, x2, ..., xn] ∈ Rd×n the
matrix of feature vectors extracted from n selected image
patches. By applying PCA to X, we can learn a projection
matrix Φ ∈ Rd×m, formed by the m (m < d) principle
projection vectors associated with the m most significant
eigenvalues of the covariance matrix of X. Given Φ, each
feature vector xi is transformed as

x′i = ΦT xi, x′
i ∈ Rm×1, i = 1, ..., n (14)

By assuming that x′i, i = 1, ..., n, are independent samples
from an m-dimensional MVG distribution, we can then learn
the MVG distribution from {x′i} using the standard maximum
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Fig. 5: Processing flow of the proposed IL-NIQE method.

likelihood estimation technique. The learned MVG model is:

f(x) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
(15)

where x ∈ Rm×1 is the vector variable, and µ and Σ are
the mean vector and the covariance matrix of x. Note that the
MVG model is fully described by the pair (µ,Σ).

B. The IL-NIQE Index

After the pristine MVG model (µ,Σ) is learned, we can use
it to measure the quality of any patch in a given naturalistic
test image. As in the training stage, the test image is resized to
P ×P and partitioned into k patches of size p×p. From each
patch i extract a d-dimensional NSS feature vector yi, then
reduce the dimension of yi using the pre-learned projection
matrix Φ:

y′i = ΦT yi, y′
i ∈ Rm×1, i = 1, ..., k. (16)

Having obtained the feature set {y′i}ki=1 of a test image, we
can now predict its quality score. Previous IQA studies have
shown that different local regions of an image can deliver
different contributions to the perception of the overall image
quality [26], [39]–[43]. Therefore, each patch i is fitted by
an MVG model, denoted by (µi,Σi), which is then compared
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with the pristine MVG model (µ,Σ), yielding a prediction of
the local quality score of patch i. The overall quality score
of the test image can then be obtained from the scores of all
patches using a pooling strategy. Here we use simple average
pooling.

The MVG model (µi,Σi) could be constructed using the
NSS feature vectors estimated from neighboring patches.
However, this can be very costly. For simplicity, we use the
NSS feature vector y′

i as µi, and the empirical covariance
matrix of the feature set {y′i} as Σi. That is, all patches share
the same covariance matrix, denoted by Σ′. Then the MVG
model assigned to patch i is (y′i,Σ′). We use the following
formula to measure the distortion level of patch i:

qi =

√√√√(µ − y′i)T
(
Σ+Σ′

2

)−1

(µ − y′i) (17)

which is a modified Bhattacharyya distance [10], [45] that
is also used in NIQE. In summary, Eq. (17) measures the
deviation of the statistics of patch i from the reference statistics
pre-learned from high quality natural images. Finally, the
overall quality score of the test image is pooled as the mean
of {qi}.

Fig. 5 illustrates the processing flow in IL-NIQE when
computing the quality score of a given test image.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation Details

There are a few parameters in the proposed IL-NIQE algo-
rithm. To determine the parameter values efficiently and effec-
tively, we tuned the parameters on a subset of the TID2008
database [44]. The subset contains the first 8 reference images
in TID2008 and the associated 544 distorted images. The
tuning criterion is that the parameter value leading to a higher
Spearman rank-order correlation coefficient (SRCC) is chosen.
As a result, in our implementation, we set P (the size of the
resized image) to 504, p (the patch size) to 84, and m (the
dimension of PCA transformed features) to 430. The param-
eters related to log-Gabor filters are set as follows: N = 3,
J = 4, σr = 0.60, σθ = 0.71, ω1

0 = 0.417, ω2
0 = 0.318, and

ω3
0 = 0.243, where ω1

0 , ω2
0 , and ω3

0 represent the three center
frequencies of the log-Gabor filters at three scales. The Matlab
source code of the IL-NIQE algorithm can be downloaded
at www.comp.polyu.edu.hk/∼cslzhang/IQA/ILNIQE/ILNIQE.
htm.

B. Database and Protocol

TABLE I: Benchmark IQA Datasets used to Evaluate IQA
Indices

Dataset Reference Distorted Distortion Contains
Images No. Images No. Types No. multiply-distortions?

TID2013 25 3000 24 YES
CSIQ 30 866 6 NO
LIVE 29 779 5 NO

LIVE MD1 15 225 1 YES
LIVE MD2 15 225 1 YES

Four large-scale benchmark IQA datasets were used to eval-
uate the proposed IL-NIQE index: TID2013 [32], CSIQ [46],
LIVE [47], and LIVE Multiply Distorted [48]. The LIVE
Multiply Distorted (MD) IQA dataset was constructed in two
stages and we treat them as two separate datasets, denoted
by LIVE MD1 and LIVE MD2, respectively. Information
regarding the distorted image content and subjective scores
of these datasets is summarized in Table X. It is worth noting
that the TID2013 and LIVE MD datasets include images with
multiple distortions.

We compare the proposed IL-NIQE model with five
state-of-the-art opinion-aware NR-IQA methods, including
BIQI [11], BRISQUE [15], BLIINDS2 [14], DIIVINE [12],
and CORNIA [17] and two state-of-the-art opinion-unaware
methods: NIQE [10] and QAC [25].

TABLE II: Results of Performance Evaluation on Each Indi-
vidual Dataset

Datasets Methods 80% 50% 10%
SRCC PLCC SRCC PLCC SRCC PLCC

TID2013

BIQI 0.349 0.366 0.332 0.332 0.199 0.250
BRISQUE 0.573 0.651 0.563 0.645 0.513 0.587
BLIINDS2 0.536 0.628 0.458 0.480 0.402 0.447
DIIVINE 0.549 0.654 0.503 0.602 0.330 0.391
CORNIA 0.549 0.613 0.573 0.652 0.508 0.603

NIQE 0.317 0.426 0.317 0.420 0.313 0.398
QAC 0.390 0.495 0.390 0.489 0.372 0.435

IL-NIQE 0.521 0.648 0.513 0.641 0.494 0.590

CSIQ

BIQI 0.092 0.237 0.092 0.396 0.020 0.311
BRISQUE 0.775 0.817 0.736 0.781 0.545 0.596
BLIINDS2 0.780 0.832 0.749 0.806 0.628 0.688
DIIVINE 0.757 0.795 0.652 0.716 0.441 0.492
CORNIA 0.714 0.781 0.678 0.754 0.638 0.732

NIQE 0.627 0.725 0.626 0.716 0.624 0.714
QAC 0.486 0.654 0.494 0.706 0.490 0.707

IL-NIQE 0.822 0.865 0.814 0.854 0.813 0.852

LIVE

BIQI 0.825 0.840 0.739 0.764 0.547 0.623
BRISQUE 0.933 0.931 0.917 0.919 0.806 0.816
BLIINDS2 0.924 0.927 0.901 0.901 0.836 0.834
DIIVINE 0.884 0.893 0.858 0.866 0.695 0.701
CORNIA 0.940 0.944 0.933 0.934 0.893 0.894

NIQE 0.908 0.908 0.905 0.904 0.905 0.903
QAC 0.874 0.868 0.869 0.864 0.866 0.860

IL-NIQE 0.902 0.906 0.899 0.903 0.899 0.903

MD1

BIQI 0.769 0.831 0.580 0.663 0.159 0.457
BRISQUE 0.887 0.921 0.851 0.873 0.829 0.860
BLIINDS2 0.885 0.925 0.841 0.879 0.823 0.859
DIIVINE 0.846 0.891 0.805 0.836 0.631 0.675
CORNIA 0.904 0.931 0.878 0.905 0.855 0.889

NIQE 0.909 0.942 0.883 0.921 0.874 0.912
QAC 0.418 0.597 0.406 0.552 0.397 0.541

IL-NIQE 0.911 0.930 0.899 0.916 0.893 0.907

MD2

BIQI 0.897 0.919 0.835 0.860 0.769 0.773
BRISQUE 0.888 0.915 0.864 0.881 0.849 0.867
BLIINDS2 0.893 0.910 0.852 0.874 0.850 0.868
DIIVINE 0.888 0.916 0.855 0.880 0.832 0.851
CORNIA 0.908 0.920 0.876 0.890 0.843 0.866

NIQE 0.834 0.884 0.808 0.860 0.796 0.852
QAC 0.501 0.718 0.480 0.689 0.473 0.678

IL-NIQE 0.928 0.915 0.890 0.895 0.882 0.896

Two commonly used metrics were employed to evaluate
the performances of the competing BIQA methods. The first
is the SRCC between the objective scores predicted by the
BIQA models and the subjective mean opinion scores (MOS
or DMOS) provided by the dataset. SRCC operates only on
the rank of the data points and ignores the relative distances
between data points, hence measures the prediction mono-
tonicity of an IQA index. The second performance metric is the
Pearson linear correlation coefficient (PLCC) between MOS
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and the objective scores following a nonlinear regression. The
nonlinear regression uses the following mapping function [47]:

f(x) = β1

(
1

2
− 1

1 + exp(β2(x− β3))

)
+ β4x+ β5 (18)

where βi, i = 1, 2, ..., 5 are the parameters to be fitted. A
better objective IQA index is expected to have higher SRCC
and PLCC values. More details regarding the underpinnings
of these two performance metrics can be found in [40].

Like NIQE, the new IL-NIQE model is “completely blind”.
It is independent of any IQA dataset in the learning stage, and
does not have any implicit or explicit restrictions on distortion
type during the testing stage. In order to make a fair and
comprehensive comparison with existing BIQA methods, in
the following Sections IV-C and IV-D, we followed established
experimental test methodologies when conducting experiments
on each dataset and we also performed cross-dataset experi-
ments.

C. Performance on Individual Datasets

We first evaluated the various BIQA models on each indi-
vidual dataset. Since opinion-aware methods require distorted
images to learn the model, we partitioned each dataset into a
training subset and a testing subset. We report results under
three partition proportions: distorted images associated with
80%, 50%, and 10% of the reference images were used for
training and the remaining 20%, 50%, and 90% were used for
testing. Each partition was randomly conducted 1,000 times
on each dataset and the median SRCC and PLCC scores were
computed as reported in Table II. Although IL-NIQE, NIQE
and QAC do not need training on the dataset, we report their
results on the partitioned test subset to make the comparison
consistent.

The results in Table II lead us to the following conclusions.
First, the prediction performance of opinion-aware methods
tends to drop with decreases in proportion of the training
subset. However, it is very interesting to observe that the
partition ratio has little effect on the performance of the
opinion-unaware methods. Indeed, when the partition ratio
is low (e.g., 10%), the opinion-unaware methods, especially
IL-NIQE, actually perform better than all the opinion-aware
methods. Second, IL-NIQE performs much better than the
other two opinion-unaware methods, NIQE and QAC. While
this is to be expected given that IL-NIQE may be viewed
as a feature-enriched version of NIQE, the increment in
performance is quite significant. Third, on TID2013, LIVE and
MD1, IL-NIQE achieves performance comparable with the
opinion-aware models CORNIA, BRISQUE and BLIINDS2,
and performs better than the other two opinion-aware methods
over all partition ratios. Finally, IL-NIQE performs signifi-
cantly better than all of the competing models on CSIQ and
MD2, even though it does not need distorted images or human
subjective scores on them to train the model.

D. Cross-dataset Performance Evaluation

The evaluation strategy used in Section IV-C is inadequate
to evaluate the generalization capability of a BIQA model. By

partitioning a single dataset into a training subset and a test
subset having the same distortions, there is no demonstration
of the efficacy of an IQA model on other possibly unknown
distortions. Therefore, such testing methodologies actually
are not “completely blind”. Here, we test the generalization
capability of opinion-aware models by training them on one
dataset, then testing them on other datasets. Of course, for
opinion-unaware methods, the training step is not needed.

The quality prediction models of the five competing
opinion-aware BIQA methods, all trained on the entire LIVE
dataset, were provided by the original authors of those models.
We used these to test performance on the other datasets. The
results are shown in Table III. For each performance measure,
the two best results are highlighted in bold. Table IV tabulates
the weighted-average SRCC and PLCC scores of all models
over the four datasets. The weight assigned to each dataset

TABLE III: Evaluation Results when Trained on LIVE

TID2013 CSIQ MD1 MD2
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BIQI 0.394 0.468 0.619 0.695 0.654 0.774 0.490 0.766
BRISQUE 0.367 0.475 0.557 0.742 0.791 0.866 0.299 0.459
BLIINDS2 0.393 0.470 0.577 0.724 0.665 0.710 0.015 0.302
DIIVINE 0.355 0.545 0.596 0.697 0.708 0.767 0.602 0.702
CORNIA 0.429 0.575 0.663 0.764 0.839 0.871 0.841 0.864
NIQE 0.311 0.398 0.627 0.716 0.871 0.909 0.795 0.848
QAC 0.372 0.437 0.490 0.708 0.396 0.538 0.471 0.672
IL-NIQE 0.494 0.589 0.815 0.854 0.891 0.905 0.882 0.897

TABLE IV: Weighted-average Performance Evaluation Based
on Table III

BIQI BRIS BLII DIIV CORN NIQE QAC IL-NIQE
QUE NDS2 INE IA

SRCC 0.458 0.424 0.424 0.435 0.519 0.429 0.402 0.599
PLCC 0.545 0.548 0.525 0.595 0.643 0.512 0.509 0.675

TABLE V: Evaluation Results when Trained on TID2013

LIVE CSIQ MD1 MD2
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BIQI 0.047 0.311 0.010 0.181 0.156 0.175 0.332 0.380
BRISQUE 0.088 0.108 0.639 0.728 0.625 0.807 0.184 0.591
BLIINDS2 0.076 0.089 0.456 0.527 0.507 0.690 0.032 0.222
DIIVINE 0.042 0.093 0.146 0.255 0.639 0.669 0.252 0.367
CORNIA 0.097 0.132 0.656 0.750 0.772 0.847 0.655 0.719
NIQE 0.906 0.904 0.627 0.716 0.871 0.909 0.795 0.848
QAC 0.868 0.863 0.490 0.708 0.396 0.538 0.471 0.672
IL-NIQE 0.898 0.903 0.815 0.854 0.891 0.905 0.882 0.897

TABLE VI: Weighted-average Performance Evaluation Based
on Table V

BIQI BRIS BLII DIIV CORN NIQE QAC IL-NIQE
QUE NDS2 INE IA

SRCC 0.074 0.384 0.275 0.172 0.461 0.775 0.618 0.861
PLCC 0.250 0.491 0.349 0.251 0.527 0.821 0.744 0.882

TABLE VII: Analysis of Performance (SRCC) Improvement
TID2013 CSIQ LIVE MD1 MD2

NIQE 0.311 0.627 0.906 0.871 0.795
L-NIQE 0.305 0.548 0.893 0.865 0.794
I-NIQE 0.463 0.770 0.883 0.879 0.876

IL-NIQE 0.494 0.815 0.898 0.891 0.882
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TABLE VIII: Performance (SRCC) Evaluation of BIQA Models on Each Individual Distortion Type

Datasets Distortion type BIQI BRISQUE BLIINDS2 DIIVINE CORNIA NIQE QAC IL-NIQE

TID2013

Additive Gaussian Noise 0.7842 0.8523 0.7226 0.8553 0.7561 0.8194 0.7427 0.8760
Additive Noise in Color Components 0.5405 0.7090 0.6497 0.7120 0.7498 0.6699 0.7184 0.8159

Spatially Correlated Noise 0.4653 0.4908 0.7674 0.4626 0.7265 0.6660 0.1693 0.9233
Masked Noise 0.4938 0.5748 0.5127 0.6752 0.7262 0.7464 0.5927 0.5120

High Frequency Noise 0.8773 0.7528 0.8245 0.8778 0.7964 0.8449 0.8628 0.8685
Impulse Noise 0.7480 0.6299 0.6501 0.8063 0.7667 0.7434 0.8003 0.7551

Quantization Noise 0.3894 0.7984 0.7816 0.1650 0.0156 0.8500 0.7089 0.8730
Gaussian Blur 0.7642 0.8134 0.8557 0.8344 0.9209 0.7954 0.8464 0.8142

Image Denoising 0.4094 0.5864 0.7116 0.7231 0.8315 0.5903 0.3381 0.7500
JPEG Compression 0.8567 0.8521 0.8643 0.6288 0.8743 0.8402 0.8369 0.8349

JPEG2000 Compression 0.7327 0.8925 0.8984 0.8534 0.9103 0.8891 0.7895 0.8578
JPEG Transmission Errors 0.3035 0.3150 0.1170 0.2387 0.6856 0.0028 0.0491 0.2827

JPEG2000 Transmission Errors 0.3670 0.3594 0.6209 0.0606 0.6784 0.5102 0.4065 0.5248
Non Eccentricity Pattern Noise 0.0073 0.1453 0.0968 0.0598 0.2857 0.0698 0.0477 0.0805
Local Block-wise Distortions 0.0812 0.2235 0.2098 0.0928 0.2188 0.1269 0.2474 0.1357

Mean Shift 0.0346 0.1241 0.1284 0.0104 0.0645 0.1626 0.3060 0.1845
Contrast Change 0.4125 0.0403 0.1505 0.4601 0.1823 0.0180 0.2067 0.0141

Change of Color Saturation 0.1418 0.1093 0.0178 0.0684 0.0807 0.2460 0.3691 0.1628
Multiplicative Gaussian Noise 0.6424 0.7242 0.7165 0.7873 0.6438 0.6940 0.7902 0.6932

Comfort Noise 0.2141 0.0081 0.0178 0.1156 0.5341 0.1548 0.1521 0.3599
Lossy Compression of Noisy Images 0.5261 0.6852 0.7193 0.6327 0.8623 0.8011 0.6395 0.8287

Color Quantization with Dither 0.6983 0.7640 0.7358 0.4362 0.2717 0.7832 0.8733 0.7487
Chromatic Aberrations 0.5435 0.6160 0.5397 0.6608 0.7922 0.5612 0.6249 0.6793

Sparse Sampling and Reconstruction 0.7595 0.7841 0.8164 0.8334 0.8624 0.8341 0.7856 0.8650

CSIQ

Additive Gaussian Noise 0.8797 0.9252 0.8011 0.8663 0.7458 0.8098 0.8222 0.8502
JPEG Compression 0.8672 0.9093 0.9004 0.7996 0.9075 0.8817 0.9016 0.8991

JPEG2000 Compression 0.7085 0.8670 0.8949 0.8308 0.9139 0.9065 0.8699 0.9063
Additive Pink Gaussian Noise 0.3242 0.2529 0.3789 0.1766 0.4199 0.2993 0.0019 0.8740

Gaussian Blur 0.7713 0.9033 0.8915 0.8716 0.9172 0.8953 0.8363 0.8578
Global Contrast Decrements 0.5855 0.0241 0.0117 0.3958 0.3017 0.2271 0.2446 0.5012

LIVE

JPEG2000 Compression — — — — — 0.9186 0.8621 0.8939
JPEG Compression — — — — — 0.9412 0.9362 0.9418

White Noise — — — — — 0.9718 0.9511 0.9807
Gaussian Blur — — — — — 0.9328 0.9134 0.9153

Bit Errors in JPEG2000 Stream — — — — — 0.8635 0.8231 0.8327
LIVE MD1 Blur + JPEG 0.6542 0.7912 0.6654 0.7080 0.8389 0.8709 0.3959 0.8911
LIVE MD2 Blur + Gaussian Noise 0.4902 0.2992 0.0151 0.6020 0.8413 0.7945 0.4707 0.8824

depends linearly on the number of distorted images contained
in that dataset. We also trained the opinion-aware methods
on the entire TID2013 dataset, then tested them on the other
datasets. The results are shown in Tables V and VI.

From the results in Tables II∼VI, we can draw a number
of interesting conclusions. First, the opinion-unaware methods
NIQE and IL-NIQE exhibit clear performance advantages over
their opinion-aware counterparts. (QAC is applicable to only 4
types of distortions, and hence its performance is not good.) In
particular, when trained on TID2013 and then applied to other
datasets, the opinion-aware methods deliver poor performance
owing to their limited generalization capability. Secondly, on
LIVE, IL-NIQE and NIQE achieve almost the same results,
which is unsurprising given that many top models achieve high
correlations on that legacy database. On the other four datasets,
it can be seen that IL-NIQE always performs better than NIQE,
which nicely demonstrates the much better generalization
capability of IL-NIQE. Thirdly, IL-NIQE achieves the best
results in nearly every scenario. In the cases where IL-NIQE
is not the best, its results nearly match the best one. The
superiority of IL-NIQE to other methods is clearly observable
in Tables IV and VI. These results lead us to express the
belief that a properly designed opinion-unaware IQA model
can compete with opinion-aware methods.

E. Analysis of Performance Improvement
As compared with NIQE [10], the novelty of the IL-NIQE

index lies largely in two directions. First, we enriched the

feature set by introducing three new types of quality-aware
NSS features. Second, instead of using a single global MVG
model to describe the test image, we locally fit each patch
of the test image with an MVG model. Here we explain and
demonstrate the performance improvement afforded by each
new aspect of IL-NIQE. Denote by L-NIQE an algorithm using
the exact set of features as NIQE but using the local MVG
model fit used by IL-NIQE to represent the test image. We
denote by I-NIQE an algorithm that uses all five types of
features in IL-NIQE but instead using a global MVG model (as
in NIQE) to represent the test image. Their performances in
terms of SRCC are reported in Table VII. We also present
the performance of NIQE and IL-NIQE in Table VII for
comparison.

From the results presented in Table VII, the following
conclusions can be drawn. First, L-NIQE performs worse
than NIQE, while IL-NIQE performs better than I-NIQE.
This strongly suggests that the enriched set of quality-aware
features not used by NIQE or L-NIQE provides the greatest
boost in performance. Interestingly, global MVG model repre-
sentation yields more stable performance than the local MVG-
based one when incorporated into NIQE, with the converse
being true for I-NIQE versus IL-NIQE. Clearly, the three
new types of quality-aware features can greatly improve the
performance of quality prediction. It is likely that the new
features better capture detailed local expressions of distortion,
given that local measurements further improve the model
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performance of IL-NIQE over I-NIQE.

F. Performance on Individual Distortion Types

Though in this paper we mainly focus on studying BIQA
models which are not designed for specific distortion types, it
is interesting to know their performance on each individual dis-
tortion type. In this experiment, we examine the performance
of competing methods on each type of distortion. For the
five opinion-aware methods, we trained their quality prediction
models on the entire LIVE dataset and hence we did not test
them on LIVE. SRCC was used as the performance metric.
The results are summarized in Table VIII. The best two results
are highlighted in bold.

From the results presented in Table VIII, we make the
following observations. First, for most commonly encountered
distortion types, such as “additive Gaussian noise”, “addi-
tive noise in color components”, “spatially correlated noise”,
“quantization noise”, “JPEG or JP2K compression”, “additive
pink Gaussian noise”, “Gaussian blur”, “blur + JPEG” and
“blur + Gaussian noise”, the proposed BIQA model IL-NIQE
delivers very promising results. Second, on several special
distortion types peculiar to TID2013, such as “non eccentricity
pattern noise”, “local block-wise distortion”, “mean shift”,
“contrast change” and “change of color saturation”, none of
the evaluated BIQA models was able to obtain satisfying
results. One possible reason is that these distortion types
are hard to characterize using the features of existing BIQA
models. It may also call into question the veracity of the
quality scores on those distortions. In future work, we may
need to investigate how to deal with these “hard” distortion
types more properly.

G. Performance Evaluation of Each Feature Type

In IL-NIQE, we used five types of features, including M-
SCN based features, MSCN products based features, gradients
based features, log-Gabor responses based features, and color
based features. In order to understand the relative contribution
of each type of feature in IL-NIQE, we separately evaluated
the performance of each feature on all the databases. SRCC
is used as the performance metric. The results are reported in
Table IX.

TABLE IX: Performance (SRCC) of Each of the Five Types
of Features Used in IL-NIQE

Datasets MSCN MSCN Prod. Gradients log-Gabor Color
TID2013 0.2966 0.2954 0.3701 0.4465 0.0416

CSIQ 0.5262 0.4804 0.6512 0.6418 0.0928
LIVE 0.8458 0.8401 0.6393 0.8340 0.3228
MD1 0.8321 0.8606 0.3702 0.8595 0.1110
MD2 0.6120 0.7298 0.4072 0.8714 0.1114

From the results shown in Table IX, we can draw the
following conclusions. First, it may be seen that by using
a single type of features, the BIQA performance is much
worse than using the integrated features. Secondly, among the
five types of features, the ones based on log-Gabor responses
perform the best. It suggests that NSS features derived from
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Fig. 6: The performance (SRCC) of IL-NIQE w.r.t. variations
of (a) P (the resizing parameter), (b) p (the patch size), and
(c) m (the PCA dimension) on TID2013, CSIQ and LIVE.

TABLE X: Time Cost of Each BIQA Model

BIQA Model Time Cost (seconds)
BIQI 1.3861

BRISQUE 0.3332
BLIINDS2 55.6897
DIIVINE 13.1514
CORNIA 2.8978

NIQE 0.2485
QAC 0.0739

IL-NIQE 4.0924
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multi-scale and multi-orientation log-Gabor responses effec-
tively characterize image quality. Thirdly, when used alone,
color-based features perform relatively poorly in regards to
predicting quality distortions on these databases. However, by
integrating the color features, the performance of the IL-NIQE
model is indeed improved to some extent. Without color-based
features, the weighted-average SRCC of the proposed model
over the five datasets is 0.6369, while with color-based features
its weighted-average SRCC is 0.6448.

H. Sensitivity to Parameter Variations

The parameters of the proposed IL-NIQE were tuned by
a subset of TID2008 database, which contains the first 8
reference images and the associated 544 distorted images. As
demonstrated in previous sub-sections, with the fixed param-
eters IL-NIQE performs very well on all the test datasets. In
this sub-section, we further show that IL-NIQE’s performance
is not sensitive to the variations of parameters. Specifically, we
conducted three experiments to test IL-NIQE by varying three
key parameters, the resizing parameter P , the patch size p, and
the PCA dimension m. The range of P is from 340 to 660
and the step size is 40. The range of p is from 44 to 108 and
the step size is 8. The range of m is from 290 to 450 and the
step size is 10. The results on TID2013, CSIQ and LIVE are
presented in Fig. 6. SRCC is used as the performance metric.

From the results shown in Fig. 6, it can be seen that IL-
NIQE’s performance is robust to the parameter variations in
a moderately large range. IL-NIQE has high generalization
capability and does not depend on any specific test data. Even
when new test data come, there is no necessary to adjust the
parameter settings of IL-NIQE.

I. Computational Cost

The computational cost of each competing BIQA model was
also evaluated. Experiments were performed on a standard HP
Z620 workstation with a 3.2GHZ Intel Xeon E5-1650 CPU
and an 8G RAM. The software platform was Matlab R2014a.
The time cost consumed by each BIQA model for evaluating
the quality of a 512×512 color image (taken from CSIQ)
is listed in Table X. IL-NIQE has a moderate computational
complexity.

V. CONCLUSION

We have proposed an effective new BIQA method that
extends and improves upon the novel “completely blind”
IQA concept introduced in [10]. The new model, IL-NIQE,
extracts five types of NSS features from a collection of pristine
naturalistic images, and uses them to learn a multivariate
Gaussian (MVG) model of pristine images, which then serves
as a reference model against which to predict the quality of the
image patches. For a given test image, its patches are thus qual-
ity evaluated, then patch quality scores are averaged, yielding
an overall quality score. Extensive experiments show that IL-
NIQE yields much better quality prediction performance than
all the compared competing methods. A significant message

conveyed by this work is that “completely blind” opinion-
unaware BIQA models can indeed compete with opinion-
aware models. We expect that even more powerful opinion-
unaware BIQA models will be developed in the near future.
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