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Abstract

Changepoint models are widely used to model the heterogeneity of sequential data.

We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization

(EM) algorithm for estimating the static parameters of such models. The SMC on-

line EM algorithm has a cost per time which is linear in the number of particles and

could be particularly important when the data is representable as a long sequence of

observations, since it drastically reduces the computational requirements for implemen-

tation. We present an asymptotic analysis for the stability of the SMC estimates used

in the online EM algorithm and demonstrate the performance of this scheme using

both simulated and real data originating from DNA analysis.

1 Introduction

Consider a sequence of observations {y1, y2, . . .} collected sequentially in time. A changepoint

model is a particular model for heterogeneity of sequential data that postulates the existence

of a strictly increasing time sequence t1, t2, . . . with t1 = 1, that partitions the data into

disjoint segments

{yt1, . . . , yt2−1}, {yt2, . . . , yt3−1}, . . .
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and that the data is correlated within a segment but are otherwise independent across

segments. The time instances t1, t2, . . . are known as the changepoints and constitute a

random unobserved sequence. This segmental structure is both an intuitive and versatile

model for heterogeneity and it is the reason why changepoint models have enjoyed a wide

appeal in a variety of disciplines such as Biological Science (Braun and Muller, 1998; Johnson

et al., 2003; Fearnhead and Vasileiou, 2009; Caron et al., 2011), Physical Science (Ó Ruanaidh

and Fitzgerald, 1996; Lund and Reeves, 2002) Signal Processing (Punskaya et al., 2002;

Cemgil et al., 2006), and Finance (Dias and Embrechts, 2004).

In a Bayesian approach to inferring changepoints, one adopts a prior distribution on

their locations and a likelihood function for the observed process given these changepoints.

However, both of these laws typically depend on a finite dimensional real parameter vector

θ ∈ Θ where Θ denotes the set of permissible parameter vectors. In all realistic applications,

the static parameter θ is unknown and needs to be estimated from the data as well. A fully

Bayesian approach would assign a prior distribution to θ. However the resulting posterior

distribution is intractable. Several Markov chain Monte Carlo (MCMC) schemes have been

proposed in this context (Stephens, 1994; Chib, 1998; Lavielle and Lebarbier, 2001; Fearn-

head, 2006). Unfortunately these algorithms are far too computationally intensive when

dealing with very large datasets. Alternative to an MCMC based full Bayesian analysis is

sequential Monte Carlo (SMC); however, SMC methods to perform online Bayesian static

parameter estimation suffer from the well-known particle path degeneracy problem and can

provide unreliable estimates; see Andrieu et al. (2005), Olsson et al. (2008) for a discussion

of this issue. This is why we focus here on estimating the parameter θ using a maximum

likelihood approach; i.e. the Maximum Likelihood Estimate (MLE) of interest is the param-

eter vector from Θ that maximizes the probability density of the observed data sequence

pθ(y1, . . . , yn). This is a challenging problem as computing the likelihood pθ(y1, . . . , yn) re-

quires a computational cost increasing super-linearly with n (Chopin, 2007; Fearnhead and

Liu, 2007).

Our main contribution is a novel online EM algorithm to compute the MLE of the static

parameter θ for changepoint models. We remark that standard batch EM algorithms for a

restricted class of changepoint models have been proposed before, e.g. see Gales and Young

(1993), Barbu and Limnios (2008), Fearnhead and Vasileiou (2009). The main reason why

an online algorithm is desirable is that huge computational and memory savings are possible.
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For a long data sequence, a standard EM algorithm requires a complete browse through the

entire data set at each iteration to update the MLE of θ; and many such iterations are

needed until the estimate of θ converges. This not only requires storing the entire data

sequence but also the probability laws that are needed in the intermediate computations

done in each EM iteration, which can be impractical. For this reason, there has been a

strong interest in online methods which make parameter estimation possible by browsing

through the data only once and hence circumventing the need to store it in its entirety (see

Kantas et al. (2009) for a review). The only other work on computing the MLE of θ for

a more restrictive class of changepoint models in an online manner that we are aware of is

Caron et al. (2011), where the authors used a recursive gradient algorithm. If the model

permits an EM implementation then it is fair to say that the EM is generally preferred by

practitioners as no algorithm tuning is required whereas it can be difficult to properly scale

the components of the computed gradient vector.

For finite state-space Hidden Markov Models (HMM) (Mongillo and Deneve, 2008; Cappé,

2011) and linear Gaussian state-space models (Elliott et al., 2002), it is possible to implement

exactly the online EM algorithm. A detailed study of this algorithm in the finite state-space

case can be found in Cappé (2011). For changepoint models, it is necessary to approximate

numerically certain expectations sequentially over time with respect to (w.r.t.) the condi-

tional law of the changepoints and other latent random variables of the model given the

available observations up to that point in time. We present SMC estimates of these expec-

tations and establish the stability (via the variance) of these estimates w.r.t. time n and the

number of particles N both theoretically and with numerical examples. Stability of the SMC

estimates of the expectations is important for assessing the performance and reliability of the

EM algorithm and is not to be taken for granted because these expectations are computed

w.r.t. a probability law whose dimension increases linearly with time n. We note that the

computational cost of the proposed SMC online EM algorithm is O(N) per-time whereas

a O(N2) per-time algorithm is required to obtain similar stability results for general state-

space HMMs (Del Moral et al., 2009). Cappé (2011), remarked that “although the online EM

algorithm resembles a classical stochastic approximation algorithm, it is sufficiently different

to resist conventional ‘analysis of convergence’. We believe that limited results similar to

those discussed in Cappé (2011, Section 4) identifying the potential accumulation points of

the online EM procedure could be established but this is beyond the scope of this paper. In
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the numerical studies reported in this paper, and indeed in all the ones we have conducted,

the SMC online EM algorithm converges, and to a very close vicinity of the correct values

when these are known, e.g. in synthetic examples. Moreover, we observed that online EM

converged significantly quicker than the batch EM implementation.

The organization of the paper is as follows. In Section 2, we describe a general change-

point model. In Section 3, we present the associated online EM algorithm and its SMC

implementation. Theoretical results on the stability of the SMC estimates used in the online

EM algorithm are given in Section 4. In Section 5, we demonstrate the performance of the

SMC online EM algorithm on both simulated and real data. We finish with a discussion in

Section 6 and finally, some detailed model specific derivations as well as mathematical proofs

are given in Appendix.

2 The changepoint model

In this paper a changepoint model is defined to be comprised of two discrete-time stochas-

tic processes which are {(Xk, Zk)}k≥1 and {Yk}k≥1. {(Xk, Zk)}k≥1 is an unobserved time-

homogeneous Markov chain taking values in X × Z where X = {1, 2, . . .} × {1, . . . , R} and

Z ⊆ Rp. (While the definition of X in this manner is necessary for the resulting model to be

a changepoint model, the definition of Z can change depending on the application domain.)

We denote realizations of the first component of this chain by xk = (dk, mk). The variable

mk takes values in the index set {1, . . . , R} and indicates the (generative) model the chain

is in at that time while dk indicates the duration the chain has spent in model mk. The

transition law of {(Xk, Zk)}k≥1 is

X1 ∼ µ, Xk |(xk−1 = (d, m), zk−1) =

{
(d + 1, m) w.p. 1 − λθ,m(d)

(1, m′) w.p. λθ,m(d) × Pθ(m, m′)
,

Zk |(xk = (d′, m′), xk−1, zk−1) ∼
{

fθ,m′(z|zk−1)dz if d′ 6= 1

πθ,m′(z)dz if d′ = 1
, (1)

where λθ,m(d) ∈ [0, 1] for all θ ∈ Θ and (d, m) ∈ X ; Pθ is an R×R row stochastic matrix; for

each θ and m, fθ,m(z|zk−1) is the density of a Markov transition kernel on Z w.r.t. a suitable

dominating measure which is denoted by dz; and for each θ and m, πθ,m is a probability

density on Z. The transition kernel of the Markov chain {(Xk, Zk)}k≥1 is assumed to be

parametrised by the finite dimensional parameter θ ∈ Θ. Without loss of generality, it is
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assumed that the probability distribution of the initial state of the chain {Xk}k≥1, denoted

µ, has all its mass on {(1, 1), . . . , (1, R)}, e.g. the uniform distribution on {(1, 1), . . . , (1, R)}.
For a sequence {ak}k≥1 and integers i, j, let ai:j denote the set {ai, ai+1, ..., aj}, which is

empty if j < i, and ai:∞ = {ai, ai+1, ...}. The process {Yk}k≥1 is a Y-valued observed process

which satisfies the following conditional independence property:

Yk

∣∣({xk, zk}k≥1 , y1:k−1, yk+1:∞

)
∼ gθ,mk

(y|zk)dy (2)

where for each θ and m, gθ,m is a probability density on Y with respect to the dominating

measure dy. In this work Y ⊆ Rq although the definition of Y may be altered depending on

the application. Equations (1) and (2), now define the law of (X1:n, Z1:n, Y1:n).

Note that {Xk}k≥1 itself is a Markov chain and we denote its transition matrix by

pθ (xk| xk−1). Secondly, it is useful to visualize a realization of {Xk}k≥1 as a labelled contigu-

ous partition of {1, 2, . . .}, {[t1, t2), [t2, t3), . . .} and ti+1 > ti, where each set [ti, ti+1) of the

partition, which we call a segment, is accompanied by mti , the model number during that

segment. The variables ti are the instances {Xk}k≥1 visits the set {1} × {1, . . . , R} and are

called as the changepoints. As {Zk}k≥1 forgets its past at times of changepoints, within the

segment [ti, ti+1), {(Zk, Yk)}ti≤k<ti+1
is a HMM with initial, state transition, and observation

densities πθ,mti
, fθ,mti

, and gθ,mti
respectively. In this sense, our model is general enough

to encompass both hidden semi-Markov models ((Murphy, 2002; Barbu and Limnios, 2008)

and segmented hidden semi-Markov models (Gales and Young, 1993; Dong and He, 2007).

Below, we give an example of a changepoint model, which we will use in our experiments

throughout the paper.

Example 1. Consider the following changepoint model presented in Fearnhead and Vasileiou

(2009), where Zk = (Zk,1, Zk,2) ∈ R × R+, and Y = R. The model satisfies

X1 ∼ U{1}×{1,...,R}, Xk |(xk−1 = (d, m)) =

{
(d + 1, m) w.p. (1 − λm)

(1, m′) w.p. λm × P (m, m′)
,

Zk |(xk = (d′, m′), zk−1) ∼
{

δzk−1
if d′ 6= 1

NΓ−1(ξm, κm, α, β) if d′ = 1
,

Yk |zk ∼ N (zk,1, zk,2),

where NΓ−1(·) denotes the normal-inverse gamma distribution and UA is the uniform dis-

tribution over the set A. In relation to (1) and (2), we have λθ,m(d) = λm, fθ,m(z|zk−1)dz =
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δzk−1
(dz), πθ,m = NΓ−1(ξm, κm, α, β), and gθ(y|zk) = N (y; zk,1, zk,2). Therefore, the pa-

rameters of interest are θ = (ξ1:R, κ1:R, λ1:R, α, β, P ). In this model, the observations in each

segment are i.i.d. Gaussian random variables whose mean and variance change from segment

to segment and are drawn from the normal-inverse gamma distribution.

The following important conditional independence property, which follows from (1) and

(2), will be frequently used in the derivations to follow: for any k′ ≥ k,

pθ(yk|x1:k′, y1:k−1) = pθ(yk|xk, y1:k−1) = pθ(yk|xk, yk−dk+1:k−1).

(Recall that dk is the first component of xk.) This equation may be interpreted to mean

that yk only depends statistically on the past observations that are received since the most

recent changepoint and not on the observations before that. For the models considered in

this work we assume that pθ(yk|xk, y1:k−1) can be evaluated for any xk and y1:k (whenever

the conditional law is well defined). This assumption is satisfied by some important models

(e.g. Fearnhead and Vasileiou (2009); Whiteley et al. (2009); Caron et al. (2011)), and allows

us to focus inference on X1:n and θ given Y1:n as Z1:n may be integrated out.

For a given realization of observations {yk}k≥1, we define the potential function Gθ,k :

X → [0,∞) as

Gθ,k(xk) =

∫
πθ,mk

(zj)
∏k

i=j+1 fθ,mk
(zi|zi−1)

∏k
i=j gθ,mk

(yi|zi)dzj:k∫
πθ,mk

(zj)
∏k−1

i=j+1 fθ,mk
(zi|zi−1)

∏k−1
i=j gθ,mk

(yi|zi)dzj:k−1

, j = max(k−dk+1, 1).

(Gθ,k is introduced for brevity.) Note that Gθ,k(xk) is precisely pθ(yk|xk, y1:k−1) at values

of xk where the latter is well defined. We can now express the probability density of the

observed process, or likelihood, succinctly as

pθ (y1:n) = Eθ

[
n∏

k=1

Gθ,k(Xk)

]
.

3 EM algorithms for changepoint models

Our main aim is to estimate the static parameter θ of the changepoint model in an online

manner using the EM algorithm. We first introduce the batch EM algorithm and then

explain how it can be modified to obtain the online EM version.
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3.1 Batch EM

Given Y1:n = y1:n, the EM algorithm for maximizing pθ(y1:n) is given by the following iterative

procedure: if θi is the estimate of the maximizer at the ith iteration, then at iteration i + 1

we first calculate the following intermediate optimization criterion,

Q(θi, θ) = Eθi
[ log pθ(y1:n, Z1:n, X1:n)| y1:n]

= Eθi
[ log pθ(X1:n) + log pθ(y1:n, Z1:n|X1:n)| y1:n]

= Eθi
[ log pθ(X1:n) + Eθi

{ log pθ(y1:n, Z1:n|X1:n)| y1:n, X1:n}| y1:n] . (3)

This step is known as the expectation (E) step. The inner expectation in (3) is w.r.t. the law

of Z1:n conditioned on y1:n and X1:n under θi, that is pθi
(z1:n| y1:n, x1:n), whereas the outer

expectation is w.r.t. the law of X1:n conditioned on y1:n under θi, that is pθi
(x1:n| y1:n) . The

updated estimate is then computed in the maximization (or M) step

θi+1 = arg max
θ

Q(θi, θ).

This procedure is repeated until θi converges (or ceases to change significantly).

Let us define the integrand of the outer expectation in (3) as the function Hk : X k ×
Yk × Θ2 → R, k = 1, . . . , n,

Hk(x1:k, y1:k, θi, θ) := log pθ(x1:k) + Eθi
[ log pθ(y1:k, Z1:k|x1:k)| y1:k, x1:k]

We can exploit the following three properties of Hk and Q(θi, θ). Firstly, Hk has an additive

structure (see Appendix A.1 for a derivation):

Hk(x1:k, y1:k, θi, θ) = Hk−1(x1:k−1, y1:k−1, θi, θ) + hk(xk−1, xk, yk−dk+1:k, θi, θ) (4)

where the incremental term hk is a function of (xk−1, xk, yk−dk+1, . . . , yk, θi, θ). Secondly,

when the transition laws of the changepoint model given in (1)-(2) belong to the exponential

family then the incremental terms can be expressed as

hk(xk−1, xk, yk−dk+1:k, θi, θ) = vT
θ sk(xk−1, xk, yk−dk+1:k, θi) (5)

where vθ is a r × 1 vector depending only on θ, sk is a r × 1 vector valued function of

(xk−1, xk, yk−dk+1, . . . , yk, θi). (From now on, we omit the dependency of Hk, hk, and sk on

y1:k for the sake of conciseness.) Thirdly, Q(θi, θ) = vT
θ Eθi

[Sn(X1:n, θi)| y1:n] where

Sn(x1:n, θi) =

n∑

j=1

sj(xj−1, xj, θi), (6)

7



with s1(x0, x1, θ) = s1(x1, θ) by convention, and its maximizer is explicitly characterized by

a function Λ : Rr → Θ

arg max
θ∈Θ

Q(θi, θ) = Λ (Eθi
[Sn(X1:n, θi)| y1:n]) . (7)

Hence from a practical point of view, it is necessary to compute the expectation of additive

functionals (6) w.r.t. pθi
(x1:n| y1:n). As for a standard HMM, this can be achieved using a

forward-backward type algorithm; see Gales and Young (1993), Barbu and Limnios (2008),

Fearnhead and Vasileiou (2009). However in a general scenario the computational complexity

is quadratic in n and approximations are necessary when n is very large. In Fearnhead

and Vasileiou (2009) a Monte Carlo EM (MCEM) algorithm was proposed for a specific

changepoint model (see Section 5) where the expectations in the E-step are computed using

a backward Monte Carlo sampling procedure.

3.2 Online EM

The development of an online version of the EM rests on the following key fact (Del Moral

et al., 2009; Cappé, 2011). The quantity Eθ [Sn(X1:n, θ)| y1:n] when Sn has the additive

structure in (6) can be evaluated sequentially with the following recursion which we will

refer to as the forward smoothing recursion:

Tn(xn, θ) :=
∑

x1:n−1∈Xn−1

Sn(x1:n, θ)pθ(x1:n−1|y1:n−1, xn)

=
∑

xn−1∈X

[Tn−1(xn−1, θ) + sn(xn−1, xn, θ)] pθ(xn−1|y1:n−1, xn)

with T1(x1, θ) = s1(x1, θ). The second line follows from (6) and the decomposition

pθ(x1:n−1|y1:n−1, xn) = pθ(x1:n−2|y1:n−2, xn−1)pθ(xn−1|y1:n−1, xn) (8)

due to the fact that given xn−1, x1:n−2 do not depend on xn, xn+1, . . . , yn−1, yn, . . ., which

follows from (1) and (2). The function Tn(·, θ) : X → Rr can be computed in an online

manner and hence so can

Eθ [Sn(X1:n, θ)| y1:n] =
∑

xn∈X

Tn(xn, θ)pθ(xn|y1:n).
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It is possible to use this recursion to implement the batch EM algorithm. Compared to the

standard forward-backward implementation, this approach does not require a backward pass

to compute the expectations of interest and hence requires far less memory to implement.

The online EM algorithm is a variation over the batch EM where the parameter is re-

estimated each time a new observation is collected. In this approach running averages of

Eθ [Sn(X1:n, θ)| y1:n] are computed (Elliott et al., 2002; Mongillo and Deneve, 2008; Cappé,

2009, 2011), (Kantas et al., 2009, Section 3.2.). Let γ = {γn}n≥1, called the step-size

sequence, be a positive decreasing sequence satisfying
∑

n≥1 γn = ∞ and
∑

n≥1 γ2
n < ∞. A

common choice is γn = n−a for 0.5 < a ≤ 1. Let θ1 be the initial guess of θ∗ before having

made any observations and let θ1:n be the sequence of parameter estimates of the online EM

algorithm computed sequentially based on y1:n−1. When yn is received, online EM computes

Tγ,n(xn) =
∑

xn−1∈X

[(1 − γn) Tγ,n−1(xn−1) + γnsn(xn−1, xn, θn)] pθ1:n(xn−1|y1:n−1, xn), (9)

Sn =
∑

xn∈X

Tγ,n(xn)pθ1:n(xn|y1:n) (10)

and then sets θn+1 = Λ (Sn). The subscript θ1:n on pθ1:n(xn−1|y1:n−1, xn) and pθ1:n(xn|y1:n)

indicates that these laws are being computed sequentially using the parameter θk at time

k, k ≤ n. (See Algorithm 1 for details.) In practice, the maximization step is not executed

until a burn-in time nb for added stability of the estimators as discussed in Cappé (2009).

The online EM algorithm can be implemented exactly for a linear Gaussian state-space

model (Elliott et al., 2002) and for finite state-space HMM’s. (Mongillo and Deneve, 2008;

Cappé, 2011). An exact implementation is not possible for changepoint models in general,

therefore we now investigate SMC implementations of the online EM algorithm.

3.3 SMC implementations of the online EM algorithm

Let Qθ,n(x1:n) = pθ (x1:n|y1:n−1) denote the law of X1:n conditioned on the sequence of ob-

served variables y1:n−1, and let ηθ,n(xn) = pθ(xn|y1:n−1) denote the time n marginal of Qθ,n.

ηθ,n is also known as the predicted filter but we refer to it simply as the filter. In order to

9



execute (9) and (10) at time n, we need to calculate the following probability distributions:

pθ(xn−1|xn, y1:n−1) =
ηθ,n−1(xn−1)Gθ,n−1(xn−1)pθ(xn|xn−1)∑

x′

n−1
ηθ,n−1(x

′
n−1)Gθ,n−1(x

′
n−1)pθ(xn|x′

n−1)
(11)

pθ(xn|y1:n) =
ηθ,n(xn)Gθ,n(xn)∑
x′

n

ηθ,n(x′
n)Gθ,n(x′

n)
(12)

Note that to calculate these probability distributions we only need ηθ,n−1 and ηθ,n at time n.

Besides, ηθ,n may be computed recursively using Bayes’ formula:

ηθ,n(xn) =

∑
xn−1

ηθ,n−1 (xn−1)Gθ,n−1 (xn−1) pθ (xn| xn−1)∑
xn−1

ηθ,n−1 (xn−1)Gθ,n−1 (xn−1)
, n > 1, (13)

However, the computational cost of the filtering recursion in (13) at time n is O(nR); this

follows since pθ(x
′|x) is non-zero for at most R + 1 values of x′. For the analysis of large

amounts of data, exact filtering is computationally infeasible and SMC methods have been

introduced as a viable alternative (Chopin, 2007; Fearnhead and Liu, 2007).

One way to obtain the SMC approximation to ηθ,n is via the path space particle approx-

imation of Qθ,n. This is the empirical measure corresponding to a set of N ≥ 1 random

samples termed particles (Del Moral, 2004):

Q
p,N
θ,n (x1:n) =

1

N

N∑

i=1

δ
X

(i)
1:n

(x1:n) . (14)

where δa(·) is the probability mass function concentrated at a. These particles are then

propagated in time using importance sampling and resampling steps; see Doucet et al. (2001)

and Cappé et al. (2005) for a review of the literature. Specifically, Q
p,N
θ,n is the empirical

measure constructed from N independent samples from

Q
p,N
θ,n−1 (x1:n−1)Gθ,n−1 (xn−1) pθ (xn| xn−1)∑

x1:n−1
Q

p,N
θ,n−1 (x1:n−1) Gθ,n−1 (xn−1)

. (15)

The particle approximation of ηθ,n can now be obtained from Q
p,N
θ,n by marginalization

ηN
θ,n(xn) =

1

N

N∑

i=1

δ
X

(i)
n

(xn) . (16)

Other than the one in (16), there are other ways to sequentially update ηN
θ,n−1 so that

ηθ,n is approximated at N distinct particles. Given ηN
θ,n−1, at time n the distribution

∑
xn−1

ηN
θ,n−1 (xn−1) Gθ,n−1 (xn−1) pθ (xn|xn−1)∑
xn−1

ηN
θ,n−1 (xn−1)Gθ,n−1 (xn−1)
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with support at N + R points is calculated exactly and then ηN
θ,n is obtained by sampling

this distribution independently N times (see Algorithm 1). Caron et al. (2011) propose

truncating to the N support points with the highest weights. Fearnhead and Liu (2007)

propose an unbiased resampling scheme that retains the maximum number of unique parti

cles in the reduced representation of size N . In the same work, and in Fearnhead and

Vasileiou (2009), resampling schemes that allow changing number of particles in time are

proposed.

The online EM algorithm in Section 3.2 can be approximated with O(N) cost per time

using the SMC approximation of the densities in (11) and (12). The resulting algorithm,

presented as Algorithm 1, will be referred to as the SMC-FS online EM algorithm.

Algorithm 1. SMC-FS online EM algorithm for changepoint models

• E-step: If n = 1, initialize θ1; sample X̃
(i)
1 ∼ µ, set T̃

(i)
1 = s1(X̃

(i)
1 , θ1), i = 1, . . . , N .

If n ≥ 2

– For i = 1, . . . , N , set X̃
(i)
n = (d

(i)
n−1 + 1, m

(i)
n−1) , where X

(i)
n−1 = (d

(i)
n−1, m

(i)
n−1)

– For m = 1, . . . , R, set X̃
(N+m)
n = (1, m).

– For i = 1, . . . , N + R, compute W̃
(i)
n =

∑N
j=1 Gθn−1,n(X

(j)
n−1)pθn

(X̃
(i)
n |X(j)

n−1) and

T̃ (i)
n =

1

W̃
(i)
n

N∑

j=1

Gθn−1,k(X
(j)
n−1)pθn

(X̃(i)
n |X(j)

n−1)
[
(1 − γn)T

(j)
n−1 + γnsn(X

(j)
n−1, X̃

(i)
n , θn)

]

Resample {X̃(i)
n , T̃

(i)
n }i=1,...,N+R according to the weights {W̃ (i)

n }i=1,...,N+R to get resam-

pled particles {X(i)
n , T

(i)
n }i=1,...,N each with weight 1/N .

• M-step: If n < nb, set θn+1 = θn else, calculate using the particles before resampling

Sn =

∑N+R
i=1 T̃

(i)
n W̃

(i)
n Gθn,n(X̃

(i)
n )

∑N+R
i=1 W̃

(i)
n Gθn,n(X̃

(i)
n )

,

update the parameter θn+1 = Λ (Sn).

3.4 Comparison with the path space online EM

As shown in Section 3.1, the EM algorithm requires certain expectations w.r.t. the measure

Qθ,n, and the online EM algorithm in Section 3.2 relies on the running averages of these

11



expectations. Consider the following backward representation of Qθ,n

Qθ,n(x1:n) = ηθ,n(xn)

2∏

k=n

pθ(xk−1|xk, y1:k−1).

Then a corresponding particle approximation, different from the path-space one, is given by

QN
θ,n(x1:n) = ηN

θ,n(xn)

2∏

k=n

pN
θ (xk−1|xk, y1:k−1). (17)

where pN
θ (xk−1|xk, y1:k−1) is (11) with ηθ,k−1 replaced with ηN

θ,k−1. One can then show that

the online EM algorithm using the SMC approximation to the forward smoothing recursion

relies on the particle approximation QN
θ,n described above. More precisely, in Algorithm 1, if

γi = 1/i, n < nb (see the M-step), θ1 = · · · = θn+1 = θ, and sn+1(xn, xn+1, θ) = 0, then

Sn+1 = QN
θ,n+1((n + 1)−1Sn).

This observation will be useful for analyzing the stability properties of the sufficient statistics

calculated SMC-FS online EM algorithm in Section 4.

As an alternative to SMC-FS online EM, we could have proposed an SMC online EM

algorithm relying on the particle approximation Q
p,N
θ,n defined in (14)-(15). In that case

(using the short-hand notation in Algorithm 1) the approximation to (9) and (10) becomes

T̃ (i)
n = (1 − γn)T

(i)
n−1 + γnsn(X

(i)
n−1, X̃

(i)
n , θn)

for each i = 1, . . . , N , and then calculating the estimates of sufficient statistics as

Sn =

∑N
i=1 T̃

(i)
n Gθn,n(X̃

(i)
n )

∑N
i=1 Gθn,n(X̃

(i)
n )

.

Recall that each X̃
(i)
n is sampled from pθn

(xn|X(i)
n−1). {X̃(i)

n , T̃
(i)
n }i=1,...,N are then resampled

to obtain {X(i)
n , T

(i)
n }i=1,...,N according to the weights {Gθn,n(X̃

(i)
n )}i=1,...,N . Based on the

path space approximation, we will hereafter call this algorithm the SMC-PS online EM

algorithm. In the context of general state-space HMM, this was proposed in Cappé (2009)

and only requires O(N) computations per time step. However, it is a well-known fact that

Q
p,N
θ,n becomes progressively impoverished as n increases because of the successive resampling

steps (Del Moral and Doucet, 2003; Olsson et al., 2008). That is, the number of distinct

particles representing the marginal Q
p,N
θ,n (x1:k) for any fixed k < n diminishes as n increases

12



until it eventually collapses to a single particle – this is known as the particle path degeneracy

problem. Whereas, in the backward particle approximation QN
θ,n, we do not have this problem

since it relies on the SMC approximations to the filters ηθ,n only. Therefore, we expect that

the resulting SMC estimates in the SMC-PS online EM algorithm have higher variances

than those in the SMC-FS online EM algorithm (Del Moral et al., 2009). For a numerical

illustration of this fact, see Section 5.

4 Theoretical results

Recall that the M-step of the exact online EM algorithm applies a mapping Λ which maps

expectations of sufficient statistics Qθ,n+1(n
−1Sn) = Eθ [n−1Sn(X1:n)|y1:n] to a parameter

estimate in Θ; see (9) and (10) with γn = n−1. It follows from the discussion in Section

3.4 that the reliability of the SMC online EM algorithm described in Section 3.2 depends

on how stable the estimates of expectations of the type QN
θ,n(Sn) are. One convenient way

of assessing the stability is to check how the asymptotic (in particle number) variance of√
N
(
QN

θ,n − Qθ,n

)
(Sn) changes with time n. The asymptotic analysis will give us an idea

about what will happen when we use a large number of particles. We would like the or-

der of the variance to grow less than quadratically in time n; since then the variance of√
N
(
QN

θ,n − Qθ,n

)
(n−1Sn), which is the variance of the estimates in the M-step, is not only

time uniformly bounded but also vanishes. This should result in the variability of the EM’s

parameter update step to particle realization also diminishing over time. Before proceeding

further we shall make clear that our analysis is for the approximation QN
θ,n defined in (17)

for a fixed θ. That is, our results are only indicative of the stability of the sufficient statistics

calculated in the SMC-FS online EM algorithm, which actually uses a changing sequence of

θ’s. In summary, our main result in this section establishes that (under certain assumptions)

the asymptotic (in particle number) variance of
√

N
(
QN

θ,n − Qθ,n

)
(Sn) is upper bounded by

a term O(n) or O(n log2 n). The tighter O(n) bound is for finite duration models while the

looser O(n log2 n) bound is for infinite duration models.

The results in this section are phrased for any fixed θ and any sequence of observations

y = {yn}n≥1. Also, to keep the notation “light” θ is omitted from the subscripts. Some

basic definitions are provided first. For a real valued functions ϕ : X → R, let ‖ϕ‖A =

supx∈A |ϕ(x)| for A ⊆ X . Let B(X ) denote the space of bounded real valued functions

13



on X . For a probability measure ν on X , let ν(ϕ) =
∑

x∈X ν(x) ϕ(x), and for A ∈ X ,

ν(A) = ν(IA) where IA is the indicator function for the set A such that IA(x) = 1 if x ∈ A,

0 otherwise. Denote the support of ν by supp(ν) = {x ∈ X : ν(x) > 0}. If M(x, x′) is a

transition probability (from x to x′) on X , let (Mϕ)(x) = M(ϕ)(x) =
∑

x′ M(x, x′)ϕ(x′).

For ϕ ∈ B(X ) and A ⊆ X , let oscA(ϕ) = supx,x′∈A |ϕ(x) − ϕ(x′)| be the oscillation of the

function over A and osc(ϕ) = oscX (ϕ). The complement of a set A is A.

We will require the following result concerning the asymptotic variance of particle smooth-

ing (Del Moral et al., 2010).

Theorem 1. Given y = {yn}n≥1, assume there exists finite constants cn such that c−1
n ≤

Gn ≤ cn for all n. For any n ≥ 1, Fn ∈ B(X n),
√

N
(
QN

n − Qn

)
(Fn) converges in law, as

N → ∞, to a centered Gaussian random variable with variance

n∑

i=1

ηi

(
[Gi,n Di,n(Fn − Qn(Fn))]2

)
. (18)

where, for 1 ≤ i ≤ n, the potential function Gi,n and the bounded integral operator Di,n are

Gi,n(xi) :=
p(yi:n−1|xi, y1:i−1)

p(yi:n−1|y1:i−1)
, Di,n(Fn)(xi) := E [Fn(X1:n)| y1:n−1, xi] .

The assumption that the potentials Gn are uniformly bounded below by c−1
n is not overly

restrictive as it is satisfied when gm(y|z) > 0 for all m, y and z. The latter is a typical

assumption in the context of the analysis of particle filters to avoid the possibility of all the

particles having weight zero (Del Moral, 2004).

In order to discuss the rate of growth of the asymptotic variance (18) as a function

of time n, we need to quantify the sensitivity of the forward and backward smoothers to

their initializations. For a given sequence of observations y1:n, the forward smoother is

defined as the Markov chain on X with transition kernel p(xk+1|xk, y1:n), k = 1, . . . , n − 1.

Similarly, the backward smoother is the reverse time Markov chain with transition kernel

p(xk|xk+1, y1:n), k = n − 1, n − 2, . . . , 1. Each term of the sum in (18) is an integral over

X n and will typically grow linearly with n unless both the forward and backward smoother

forget their initializations quick enough (e.g. with geometric rate) and the class of functions

Fn is restricted. Indeed the E-step of the EM algorithm computes the expectation for not an

arbitrary Fn but one that has a specific additive structure; see Section 3.1, also Proposition

1. A definition of geometric rate is as follows. Given {yi}i≥1, if for some integer L > 0 there

14



exists a finite constant c(L) ≥ 1 such that for all m − k ≥ L, n ≥ m,

|E [s(Xm)|xk, y1:n] − E [s(Xm)|x′
k, y1:n]| ≤ osc(s)(1 − c(L)−2)⌊m−k

L ⌋ (19)

irrespective of (xk, x
′
k) provided both conditional expectations are well defined, then the

forward smoother is said to forget its initialization with geometric rate. (A similar definition

applies for the backward smoother; see (32)). Henceforth, when we say forward forgetting

we mean that the forward smoother forgets its initial condition in the sense of (19) but

without any specific reference to a rate. By backward forgetting, similarly, we will mean the

insensitivity of the backward smoother to its initialization.

A typical route to establish forward and backward forgetting is to exploit the fact that

the Markov chain {Xk}k≥1 satisfies a majorization and minorization condition: that is there

exists a probability measure m(x), positive integer l and positive constant c such that

c −1m(xk) ≤ p(xk|xk−l) ≤ c m(xk) for all (xk−l, xk) ∈ X 2. When this condition is satis-

fied it may be shown that the backward and forward smoothers forget their initializations at

geometric rate, which is quick enough such each term of the sum (18) is uniformly bounded

over time. For changepoint models however, the majorization-minorization condition is not

satisfied in general. Consider the following example: let R = 1 (in which case we drop the

variable mk from xk, i.e. xk = dk) and

Xk =

{
xk−1 + 1 w.p. 1 − λ

1 w.p. λ
(20)

Furthermore, given Xk = d then it must be that Xk−i = d − i for i < d. Thus the

distance between the probability distributions Pr(Xk−i|Xk = d) and Pr(Xk−i|Xk = d′) will

not decrease at geometric rate and the same cannot be expected for the backward smoother

(which is essentially these laws but with additional conditioning on y1:k−1.) In this paper, we

analyze the asymptotic variance for changepoint models using a slightly refined approach.

We analyze two types of changepoint models separately, namely finite duration change-

point models and infinite duration changepoint models. We distinguish between the two

models as follows. In a finite duration changepoint model, for each m ∈ {1, . . . , R} there

exists some finite d̄m such that λm(d) = 1 for all d ≥ d̄m, and smallest such d̄m is the max-

imum duration length for model m. If, for at least one m ∈ {1, . . . , R}, λm(d) < 1 for all

d > 0, then the model is called an infinite duration model.
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Given {yn}n≥1, for positive integers k ≥ 1, (lag) l and set A ⊆ X , let

ck,l(A) = sup
xk+l∈A,

xk,x′

k
∈supp(ηk)

p(xk+l, yk:k+l−1|xk, y1:k−1)

p(xk+l, yk:k+l−1|x′
k, y1:k−1)

(21)

where ck,l is taken to be infinity if the denominator can be made zero while the numerator

is not. By convention 0/0 = 1. The variables xk and x′
k range over supp(ηk) to ensure

the conditional expectations in the numerator and denominator are well defined. Also, we

abbreviate ck,l(X ) to ck,l. The variance result is now stated for additive functions of the form

Sk(x1:k) =
∑k

i=1 si(xi) and may be extended to the case where Sk(x1:k) =
∑k

i=1 si(xi−1, xi).

The proof of the result is based on some supporting results and is given in Appendix A.3.

Proposition 1. Assume Sn(x1:n) =
∑n

k=1 sk(xk) where osc(sk) ≤ 1.

• If {Xk} is a finite duration changepoint model which is irreducible and aperiodic; and

there exists a finite constant c such that c−1 ≤ Gn ≤ c for all n, then the asymptotic

variance of
√

N
(
QN

n − Qn

)
(Sn) given in (18) is upper bounded by a term O(n).

• Assume {Xk} is an infinite duration changepoint model whose forward smoother for-

gets its initialization at geometric rate in the sense of (19). Furthermore, let A =

{1, . . . , L}×{1, . . . , R}. If there exist a finite positive constant c such that c−1 ≤ Gn ≤ c

for all n and finite positive constants C, γ ∈ (0, 1) and c′ such that for all n and L

sup
i≥1

ηi(A) ≤ CγL, and sup
i≥1

ci,L(A) ≤ c′, (22)

then the asymptotic variance of
√

N
(
QN

n − Qn

)
(Sn) is upper bounded by O(n log2 n).

The first condition in (22) is a uniform tightness condition on the probabilities ηi, whereas

the second condition means that if a changepoint occurs between times k and k + L, the

observations up to the last changepoint prior to time k +L do not favor one xk over another

too much. Proposition 1 is now shown to be applicable to the infinite duration model in (20)

with the following example whose verification is shown in Appendix A.3.1.

Example 2. For the infinite duration model in (20), recall that Zk (see Section 2) is a

Markov process that “resets” itself when Xk returns to state 1, i.e.

Zk |(x1:k, z1:k−1) ∼
{

π(zk)dzk if xk = 1

f(zk|zk−1)dzk otherwise
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We will assume that the process {Zk}k≥1 assumes values from a compact space and that there

exists some positive constant c such that for all (zk−1, zk)

c−1/2 ≤ π(zk) ≤ c1/2, c−1/2 ≤ f(zk|zk−1) ≤ c1/2. (23)

Furthermore, assume g(yk|zk) > 0 for all zk, yk. For example, a changepoint model satisfying

these assumptions could be the changepoint model in Example 1 in Section 2 with R = 1 and

instead of a static {Zk}k≥1 process, a slowly moving one which is “mixing”. Note that a

slowly moving {Zk}k≥1 process permits a more parsimonious representation of the data.

5 Numerical examples

5.1 Simulated experiments

For the experiments in this section, we will use the infinite duration changepoint model in

Example 1 in Section 2, where θ = (ξ1:R, κ1:R, λ1:R, α, β, P ). The constituent distributions of

this model belong to the exponential family and so (5) holds; see Appendix A.2 for details.

5.1.1 Online EM applied to long data sequence

We applied Algorithm 1 to a data sequence of length 500000 generated by the model in

Example 1 with R = 2 and parameter values α = 10, β = 0.1, ξ1 = 1.445, ξ2 = −0.214, κ1 =

1.588, κ2 = 0.379, λ1 = 0.12, λ2 = 0.09, Pij = 0.5, i, j = 1, 2. The M-step was not executed

for the first 2000 points (i.e. nb = 2000). The step-size sequence was γn = n−0.8. Figure

1 shows the trace parameter estimates over time. We observe that the algorithm converges

towards the true values. We also did multiple runs to check that the algorithm would not

only converge to a local maximum.

5.1.2 Comparison between online and batch EM for a short data sequence

Figure 1 also suggests that online EM requires a long data sequence for convergence. There-

fore, for short data sequences the algorithm may not converge and its potential use is ques-

tionable. One can of course use the batch EM algorithm in such cases but another solution

might be to apply online EM to the concatenated sequence {y1:K , y1:K , . . .}. By doing so, the

online EM solution is not ‘online’ anymore. However, it can still be significantly faster than
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Figure 1: SMC-FS online EM estimates vs time for a long simulated data sequence. The

true parameter values are indicated with a horizontal line.

the offline version as we demonstrate below. Figures 2 and 3 show results for such a scenario

for 2000 data points. We used Algorithm 1 to obtain the results in Figure 2 by replicating

y1:K 100 times and the SMC-FS batch EM algorithm (the batch version of SMC-FS online

EM) to obtain the results in Figure 3. The true parameter values are α = 10, β = 0.1,

ξ1 = 1.78, ξ2 = 3.56, κ1 = 0.30, κ2 = 0.03, λ1 = λ2 = 0.1, Pi,j = 0.5, i, j = 1, 2.

There are two main outcomes to be stressed from the results in Figures 2 and 3. First,

the online EM algorithm in this example is much faster since it converges after around 50

passes, whereas the batch EM algorithm needs over 1000 iterations for convergence. Notice

that the computational cost of one pass over the data in the online case and one iteration in

the batch case are almost the same and therefore the comparison makes sense. Second, the

parameter estimates of both algorithms converge to almost the same points. This empirically

validates the potential benefit of the online EM algorithm even in the offline setting.
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Figure 2: SMC-FS online EM estimates vs number of passes for the concatenated data set

{y1:2000, y1:2000, . . .} where each pass is one complete browse of y1:2000. The true parameter

values: α = 10, β = 0.1, ξ1 = 1.78, ξ2 = 3.56, κ1 = 0.30, κ2 = 0.03, λ1 = λ2 = 0.1, Pi,j = 0.5.
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Figure 3: SMC-FS batch EM estimates vs number of iterations for for the same y1:2000 used

to produce the results in Figure 2.
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5.1.3 Comparison with the path space method

As stated in Section 3.3, other than the SMC-FS online EM algorithm, it is possible to

devise an online EM algorithm using Q
p,N
θ,n (SMC-PS online EM), but it suffers from higher

variance. In the following, we compare the performances of these two online EM algorithms.

In the first experiment, we compare the variability in the estimates of the sufficient

statistics of the changepoint model defined above when the SMC-FS online EM algorithm

and the SMC-PS online EM algorithm (see Section 3.4) are used with θn frozen to θ. We show

the results for only one of the statistics, S1
6,n, required for the EM algorithm (see Appendix

A.2) in Figure 4. The figures are obtained after running 100 Monte Carlo simulations for

the same sequence of observation data. For illustration purposes, while the box plots show

the estimates up to time 10000, we show the relative variance along 100000 time steps. We

can deduce from the box-plots and relative variance that there is much less variability in the

estimates obtained by using forward smoothing and the SMC-FS method always outperforms

the SMC-PS method in time and thus should be favored. Note that, using a finite number

of particles, these SMC estimates are biased and will result in a loss of accuracy in the EM

algorithms. To assess this bias, studies in the context of Feynman-Kac formulae are helpful.

For example, the result in Del Moral et al. (2009) suggests that the bias of SMC-FS estimate

of Sn/n for finite duration models is bounded by a term O(1/N).
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Figure 4: Comparison of the forward smoothing and the path space methods in terms of

the variability in the estimates of S1
6,n. The box plots and the relative variance plot are

generated from 100 Monte Carlo simulations using the same observation data.
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Figure 5: Comparison of SMC-FS online EM and SMC-PS online EM in terms of the vari-

ability in their estimates of λ1 = 0.1. The two plots at the top generated by superimposing

different estimates, the box plots, and the relative variance plot are generated from estimates

out of 100 different Monte Carlo runs using the same observation data.

The second experiment compares the variability in the parameter estimates of the SMC-

FS online EM and the SMC-PS online EM algorithms. Figure 5 shows the estimation results

for the parameter λ1 when the two algorithms are used. The results are obtained from 100

Monte Carlo simulations using the same sequence of observation data of length 10000. It is

interesting to observe that the trends of estimates over time are similar for both algorithms;

however, it is obvious from the box plots as well as the relative variance over time that the

SMC-FS online EM estimates have less variance than the SMC-PS online EM estimates.

5.2 GC content in the DNA of Human Chromosome no. 2

We applied our online EM method to estimate the parameters of a changepoint model used

for modeling the Guanine+Cytosine (GC) content along human chromosome. It appears that

many features of the genome are correlated with GC content, such as gene density, repeat

density, substitution rates, and recombination rates; see Fearnhead and Vasileiou (2009)
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and the references therein for further explanation. It is assumed that the chromosome is

separated into successive segments by changepoints and the GC content during each segment

is constant. However, as the signal is obscured by small scale noise, a statistical approach

may be used to uncover the sequence of changepoints. There is a commonly used binary

segmentation approach implemented within the program IsoFinder (Oliver et al., 2004).

Fearnhead and Vasileiou (2009) proposed the changepoint model described in Example 1.

Regarding the model variables, Zk = (Zk,1, Zk,2) were interpreted as the mean and variance

of the GC content during the segment at window k, and Yk was taken to be the observed

GC content of the k’th window. The authors estimated the model parameters by using a

MCEM approach and their results outperformed the ones obtained using IsoFinder.

In our experiments we used human chromosome 2, which can be downloaded via the link

http://hgdownload.cse.ucsc.edu/goldenPath/hg17. The raw data was preprocessed as

follows. The raw data consists of a single contiguous stretch of DNA data containing only

four different letters: A, C, G, and T. We summarized the DNA data by partitioning the 24

Megabase (Mb) region, which is nearly the whole data set, into 80000 windows, each 3.0 kb

long, and for each window recording the proportion of letters within that window that are G

or C. Some parts of the DNA sequence could not be measured leading to missing parts. The

noisy GC content with missing parts, which we use as the observation sequence, is shown in

Figure 6. We assumed two generative models (R = 2) to represent segments of high and low
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x 10
4
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windows (k)
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Figure 6: Noisy GC content over 3 kb windows in human DNA chromosome 2.

GC contents. The missing data problem is straightforward to handle, e.g. see Fearnhead

and Vasileiou (2009). Figure 7 shows the online EM parameter estimates versus number of

passes over the data obtained with Algorithm 1. One can see that most of the parameter

estimates converge after 10 passes, whereas for convergence of the rest 30 passes are enough.
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Figure 7: Online EM estimates vs number of passes over the data sequence in Figure 6.

6 Discussion

We have presented a novel SMC online EM algorithm for changepoint models and we have

studied the stability of the associated SMC estimates. The proposed EM algorithm does

not require the filters to be stored and has memory requirements independent of the size

of the dataset. We have shown that it is practical for very long data sequences, and it

can outperform the batch EM even when the data length is not so long that batch EM is

impractical (in terms of memory requirement to store the filters and the entire data set).

From a Monte Carlo point of view, our SMC implementation of the forward smoothing

recursion at the core of the online EM algorithm is essentially an online implementation

of the forward-filtering backward-smoothing algorithm of Doucet et al. (2000) where the

filtering densities are approximated using SMC and then backward smoothing is executed

exactly. This method is more efficient than using the path space method as demonstrated

in Section 5.1.3. Since we need only the SMC approximation of the filters, we could even

use more effective SMC routines that are not applicable to a path space method; see for

example the SMC algorithm in Fearnhead and Vasileiou (2009). Besides, unlike the general
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state-space model case (Del Moral et al., 2009), the computational cost of our algorithm is

of the same order as the cost of using a path space method in changepoint models.

Even though the numerical examples were presented for one specific changepoint model,

our online EM algorithm is also applicable to the changepoint models studied in Whiteley

et al. (2009) and Caron et al. (2011). More generally, the proposed online EM algorithm is

applicable when the constituent laws of the changepoint model given in (1)-(2) belong to the

exponential family and the latent variable {Zk}k≥1 can be integrated out analytically.
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Ó Ruanaidh, J. and Fitzgerald, W. J. (1996). Numerical Bayesion Methods Applied to Signal

Processing. Springer, New York.

Oliver, J. L., Carpena, P., Hackenberg, M., and Bernaola-Galvan, P. (2004). Isofinder:

Computational prediction of isochores in genome sequences. Nucleic Acids Research,

32:W287W29.
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A Appendix

A.1 Derivation of Hk in (4)

Given {xk}k≥1, consider the partition of {1, 2, . . .} {[t1, t2) , [t2, t3) , . . .} where ti is the i’th

time when dk = 1. Each set [tn, tn+1) is called a segment. To emphasize the segmented

structure of the changepoint model, we define ak =
∑k

i=1 I{1}(dk) to be the number of

segments up to time k, ln = tn+1 − tn to be the length of the n’th segment, and m̄n = mtn to

be the model number in the n’th segment. Also, we define Z̄n = Ztn:tn+1−1 and Ȳn = Ytn:tn+1−1

to group the variables Zk and Yk that belong to the same segment with shorthand notation.

Recall that

Hk(x1:k, y1:k, θi, θ) = log pθ(x1:k) + Eθi
[ log pθ(y1:k, Z1:k|x1:k)| y1:k, x1:k] . (24)

Proposition 2. For any changepoint model defined as in Section 2, we have

Hk(x1:k, θ
′, θ) = Hk−1(x1:k−1, θ

′, θ) + hk(xk−1, xk, θ
′, θ)

Proof. Since {Xk}k≥1 is a Markov chain, so log pθ(x1:k) = log pθ(x1:k−1)+log pθ(xk|xk−1), and

we are done for the first term in (24). For the second term in (24), due to the conditional

independence of (Z̄n, Ȳn) given the model number at the segment n, which is m̄n, we have

pθ′(z1:k|y1:k, x1:k) =

[
ak−1∏

n=1

pθ′(z̄n|ȳn, m̄n)

]
pθ′(zk−dk+1:k|yk−dk+1:k, mk) (25)

log pθ(y1:k, z1:k|x1:k) =

[
ak−1∑

n=1

log pθ(ȳn, z̄n|m̄n)

]
+ log pθ(yk−dk+1:k, zk−dk+1:k|mk) (26)

Combining (25) and (26), we have

Hk(x1:k, θ
′, θ) = log pθ(x1:k) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

+Eθ′ [ log pθ(yk−dk+1:k, Zk−dk+1:k|mk)| yk−dk+1:k, mk]
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Now consider Hk−1. Given dk−1, there are two possibilities for dk, either dk = 1, dk = dk−1+1.

• If dk = 1, it means a new segment starts at time k. Therefore, ak = ak−1 + 1 and the

ak−1’th segment ends at time k − 1. This gives Hk−1(x1:k−1, θ
′, θ) being equal to

log pθ(x1:k−1) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

• If dk = dk−1 + 1, then we are still at the segment at which we were at time k − 1.

Therefore, we have ak = ak−1, mk = mk−1, and Hk−1(x1:k−1, θ
′, θ) is equal to

log pθ(x1:k−1) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

+ Eθ′ [ log pθ(yk−dk:k−1, Zk−dk:k−1|mk)| yk−dk+1:k−1, mk]

Therefore, we have Hk(x1:k, θ
′, θ) = Hk−1(x1:k−1, θ

′, θ) + hk(xk−1, xk, θ
′, θ) where

hk(xk−1, xk, θ
′, θ) = log pθ(xk|xk−1)

+





Eθ′ [ log pθ(yk, Zk|mk)| yk, mk] , if dk = 1

Eθ′ [ log pθ(yk−dk+1:k, Zk−dk+1:k|mk)| yk−dk+1:k, mk]

−Eθ′ [ log pθ(yk−dk+1:k−1, Zk−dk+1:k−1|mk)| yk−dk+1:k−1, mk] , if dk = dk−1 + 1

which does not depend on the values of x1 to xk−2.

A.2 Derivation of the EM algorithm for the model in Section 5

We write (Z1, Z2) ∼ NΓ−1(ξ, κ, α, β) to mean Z2 ∼ Γ−1(α, β) and Z1|z2 ∼ N (ξ, z2

κ
). If

Yk| (z1, z2) ∼ N (z1, z2) for k = 1, . . . , n, the marginal likelihood and the posterior are:

p(y1:n) =
π−n/2 (2β)α Γ (α + n/2)

(
2β +

∑n
k=1 y2

k + ξ2κ −
P

n

k=1 yk+ξ2κ

n+κ

)n/2+α

(Z1, Z2) | (y1:n) ∼ NΓ−1

(
κξ + nȳ

κ + n
, κ + n, α +

n

2
, β +

1

2

n∑

k=1

(yk − ȳ)2 +
nκ

n + κ

(ȳ2 − ξ)2

2

)

where ȳ = 1
n

∑n
k=1 yk. Also, the required expectations are analytically available:

E [1/Z2] = α/β, E [Z1/Z2] = ξα/β, E
[
Z2

1/Z2

]
= 1/κ + ξ2α/β, E [log Z2] = log β − Ψ(α)
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For the EM algorithm, we estimate the following functionals for m, m1, m2 = 1, . . . , R:

Sm
1,k(x1:k, θi) =

ak∑

n:m̄n=m

1, Sm
2,k(x1:k, θi) =

ak−1∑

n:m̄n=m

(ln − 1) + I{m}(mk) (dk − 1) ,

Sm1,m2

3,k (x1:k, θi) =

ak−1∑

n:m̄n=m1,m̄n+1=m2

1

Sm
4,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi
[ log Ztn,2| ȳn, m] + I{m}(mk)Eθi

[ log Zk,2| yk−dk+1:k, m] ,

Sm
5,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi
[1/Ztn,2| ȳn, m] + I{m}(mk)Eθi

[1/Ztn,2| yk−dk+1:k, m] ,

Sm
6,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi
[Ztn,1/Ztn,2| ȳn, m] + I{m}(mk)Eθi

[Ztn,1/Ztn,2| yk−dk+1:k, m] ,

Sm
7,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi

[
Z2

tn,1/Ztn,2

∣∣ ȳn, m
]
+ I{m}(mk)Eθi

[
Z2

tn,1/Ztn,2

∣∣ yk−dk+1:k, m
]
.

The corresponding additive functions are

sm
1,k(xk−1, xk, θi) = I{m}(mk)I{1}(dk) sm

2,k(xk−1, xk, θi) = I{m}(mk)I{dk−1+1}(dk),

sm1,m2

3,k (xk−1, xk, θi) = I{1}(dk)I{m1}(mk−1)I{m2}(mk),

sm
4,k(xk−1, xk, θi) = I{m}(mk)

{
I{1}(dk)Eθi

[ log Zk,2| yk, m]

+ I{dk−1+1}(dk) (Eθi
[ log Zk| yk−dk+1:k, m] − Eθi

[ log Zk,2| yk−dk+1:k−1, m])
}

,

sm
5,k(xk−1, xk, θi) = I{m}(mk)

{
I{1}(dk)Eθi

[1/Zk,2| yk, m]

+I{dk−1+1}(dk) (Eθi
[1/Zk,2| yk−dk+1:k, m] − Eθi

[1/Zk,2| yk−dk+1:k−1, m])
}

,

sm
6,k(xk−1, xk, θi) = I{m}(mk)

{
I{1}(dk)Eθi

[Zk,1/Zk,2| yk, m]

+I{dk−1+1}(dk) (Eθi
[Zk,1/Zk,2| yk−dk+1:k, m] − Eθi

[Zk,1/Zk,2| yk−dk+1:k−1, m])
}

,

sm
7,k(xk−1, xk, θi) = I{m}(mk)

{
I{1}(dk)Eθi

[
Z2

k,1/Zk,2

∣∣ yk, m
]

+I{dk−1+1}(dk)
(
Eθi

[
Z2

k,1/Zk,2

∣∣ yk−dk+1:k, m
]
− Eθi

[
Z2

k,1/Zk,2

∣∣ yk−dk+1:k−1, m
])}

.
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The maximization step is as follows: Letting Ŝm
j,n(θ) = Eθ

[
Sm

j,n(X1:n, θ)
∣∣ y1:n

]
,

α(i+1) = Ψ−1

(
log β(i)

∑R
m=1 Ŝm

1,n(θi) +
∑R

m=1 Ŝm
4,n(θi)∑R

m=1 Ŝm
1,n(θi)

)
, β(i+1) = α(i+1)

∑R
m=1 Ŝm

1,n(θi)∑R
m=1 Ŝm

5,n(θi)

ξ(i+1)
m = Ŝm

6,n(θi)/Ŝ
m
5,n(θi), κ(i+1)

m = Ŝm
1,n(θi)/

(
Ŝm

7,n(θi) − 2ξ(i+1)
m Ŝm

6,n(θi) + ξ(i+1)2
m Ŝm

5,n(θi)
)

λ(i+1)
m = Ŝm

1,n(θi)/
(
Ŝm

2,n(θi) + Ŝm
1,n(θi)

)
, P (i+1)

m1,m2
= Ŝm1,m2

3,n (θi)/

R∑

m=1

Ŝm1,m
3,n (θi)

where Ψ(x) = d log Γ(x)/dx is the derivative of the log-gamma function.

A.3 Proof of Proposition 1

We will first establish a weaker form of backward forgetting for the infinite duration model

with the aid for the following lemma, whose proof is straightforward and is omitted.

Lemma 1. Let M(x, x′) be a Markov transition kernel (from x to x′) on X , c a constant

and m a probability measure on X . If c−1 m(x′) ≤ M(x, x′) ≤ c m(x′) for all x ∈ A, where

A ⊆ X , then for any B ⊆ X and ϕ ∈ B(X ) such that osc(ϕ) ≤ 1,

oscA(M(ϕ)) ≤ (1 − c−1)oscB(ϕ) + 2c m
(
B
)
,

Corollary 1. Assume {yi}i≥1 is given with p(y1:n) > 0 for all n. Let ϕn(xn) = E [s(X1)|xn, y1:n−1].

For any L > 0, n − L > 0, osc(s) ≤ 1, A ⊆ supp(ηn), B ⊆ supp(ηn−L)

oscA(ϕn) ≤
(
1 − cn−L,L(A)−1

)
oscB(ϕn−L) + 2cn−L,L(A)ηn−L(B). (27)

Furthermore, let A = {1, . . . , L} × {1, . . . , R}. If there exist finite positive constants C,

γ ∈ (0, 1) and c(L) such that for all L

sup
i≥1

ηi(A) ≤ CγL and sup
i≥1

ci,L(A) ≤ c(L) (28)

then for all L large enough, for all n,

oscA∩supp(ηn)(ϕn) ≤ (1 − c(L)−1)⌊n−1
L
⌋ + 2c(L)2CγL. (29)

Proof. Substituting l = L and k = n − L in (21), it can be shown that

cn−L,L(A)−1p (xn−L|y1:n−L−1) ≤ p (xn−L|xn, y1:n−1) ≤ cn−L,L(A)p (xn−L|y1:n−L−1)
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for all xn ∈ A. The bound (27) now follows from Lemma 1 with c = cn−L,L(A), m(xn−L) =

p (xn−L|y1:n−L−1), M(xn, xn−L) = p(xn−L|y1:n−1, xn), and ϕ = ϕn−L. The second bound (29)

follows from (27) by iterating the backward kernels with B = A∩ supp(ηn−L), and using the

tail behavior of the minorization measure in (28).

The first condition in (28) is a uniform tightness condition on the probabilities ηi. This

bound for the tail probabilities can be loosened but only at the expense of a weaker bound

in Proposition 1. It is clear that (29) is weaker than backward forgetting at geometric rate.

Corollary 1 presents a weaker form of backward forgetting for the infinite duration model.

The following lemma establishes that the finite duration models posses the geometric forward

forgetting and geometric backward forgetting properties; both of which are necessary in order

to establish linear growth of the variance.

Lemma 2. For a finite duration changepoint model, let d̄m = min{d′ : λm(d) = 1, d ≥ d′} be

the maximum duration length in model m and let Xf =
⋃R

m=1{(1, m), . . . , (d̄m, m)}. Assume

that the transition matrix {p(xk|xk−1) : xk, xk−1 ∈ Xf} is irreducible and aperiodic; and that

for the given {yn}n≥1 there exist finite positive constants cn such that c−1
n ≤ Gn ≤ cn for all

n. (i) Then there exists a positive integer L such that ck,l defined in (21) is finite for all

l ≥ L, k ≥ 1. (ii) It now follows that for all l ≥ L, n ≥ k + l, and xk+l ∈ Xf ,

p(xk+l|xk, y1:n) ≥ c−2
k,l p(xk+l|x′

k, y1:n) (30)

and the inequality holds irrespective of (xk, x
′
k) provided both conditional probabilities are well

defined. (iii) Furthermore, the Markov chain on X with transition kernel p(xk+1|xk, y1:n),

k = 1, . . . , n − 1, forgets its initialization in the following sense: for all n ≥ m ≥ k ≥ 1,

|E [s(Xm)|xk, y1:n] − E [s(Xm)|x′
k, y1:n]| ≤ osc(s)

⌊m−k

L
⌋∏

i=1

(1 − c−2
k+(i−1)L,L) (31)

irrespective of (xk, x
′
k) provided both conditional expectations are well defined. If cn ≤ c < ∞

for all n, then (iv) ck,l ≤ c(l) < ∞ for l ≥ L, k ≥ 1 and the rate in (31) is geometric, and

(v) letting ϕn(xn) = E [s(X1)|xn, y1:n−1], for all l ≥ L, for all n, all A ⊆ supp(ηn)

oscA(ϕn) ≤ osc(s)(1 − c(l)−1)⌊n/l⌋. (32)

Proof. (Outline only) Property (i) is a consequence of some well known facts for finite state

Markov chains. We use the fact that, under the stated assumptions, the Markov chain
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restricted to Xf has a stationary distribution, say ν(x), and we have ν(Xf) = 1 and ν > 0 on

Xf . This ensures the ratio p(xk+l|xk)/p(xk+l|x′
k) is close to 1 uniformly in its arguments and

k, provided l is large enough. The result now follows from the the fact that Gn is bounded

from below and above. Property (ii) follows from (i) while the forgetting property in (31) is

a simple consequence of (30), e.g. see Del Moral (2004). Property (iv) is proved similarly to

(i) using instead the uniform bound on Gn. To verify (v) use (iv) and (27), i.e. iterate the

backward kernels starting with B = supp(ηn−l)

Finally, we will need the following lemma to prove Proposition 1

Lemma 3. Given {yn}n≥1, assume there exists a finite constant c such that c−1 ≤ Gn ≤ c

for all n and that (19) holds then, for all n, 1 < k ≤ n,

sup
(xk,x′

k
)∈supp(ηk)

p(yk:n|xk, y1:k−1)

p(yk:n|x′
k, y1:k−1)

< ∞.

Proof. Using | log(b) − log(a)| ≤ |b−a|
min(a,b)

,

log
p(yk:n|xk, y1:k−1)

p(yk:n|x′
k, y1:k−1)

=

n∑

i=k

log p(yi|xk, y1:i−1) − log p(yi|x′
k, y1:i−1)

≤
n∑

i=k

|p(yi|xk, y1:i−1) − p(yi|x′
k, y1:i−1)|

min(p(yi|xk, y1:i−1), p(yi|x′
k, y1:i−1))

.

Since p(yi|xk, y1:i−1) = E [Gi(Xi)| xk, y1:i−1], each ratio can be bounded using (19) and con-

stant c, which then results in a geometric sum and gives the desired uniform bound.

We can now present the proof of Proposition 1.

Proof. (Proposition 1): The asymptotic variance is

n∑

i=0

ηi

(
[Gi,n Di,n(Sn − Qn(Sn))]2

)
. (33)

Consider the infinite duration model. Consider the ith term: For any A ⊆ X ,

ηi

(
[Gi,n Di,n(Sn − Qn(Sn))]2

)
≤ ‖Gi,n‖2

supp(ηi)
ηi

(
[Di,n(Sn − Qn(Sn))]

2)

≤ ‖Gi,n‖3
supp(ηi)

∫
ηi(dxi)ηi(dx′

i)
(
[Di,n(Sn)(xi) − Di,n(Sn)(x′

i)]
2
)

≤ ‖Gi,n‖3
supp(ηi)

([
oscA∩supp(ηi)Di,n(Sn)

]2
+ 2n2ηi(A)

)
(34)
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Now let A = {1, . . . , L} × {1, . . . , R}. It follows from (19) that for some integer L′,

sup
xi,x′

i
∈supp(ηi)

∣∣∣∣∣E
[

n∑

k=i

sk(Xk)

∣∣∣∣∣ xi, y1:n

]
− E

[
n∑

k=i

sk(Xk)

∣∣∣∣∣ x
′
i, y1:n

]∣∣∣∣∣ ≤ L′c(L′)2,

and from (29) that

sup
xi,x′

i
∈A∩supp(ηi)

∣∣∣∣∣E
[

i−1∑

k=1

sk(Xk)

∣∣∣∣∣ xi, y1:n−1

]
− E

[
i−1∑

k=1

sk(Xk)

∣∣∣∣∣x
′
i, y1:n−1

]∣∣∣∣∣ ≤ (i−1)2c(L)2CγLI[i≥L]+Lc(L).

Thus using Lemma 3 to uniformly bound ‖Gi,n‖supp(ηi)
and the fact that the bounds in (28)

are satisfied for all L large enough with c(L) < c′ < ∞, (33) can be upper bounded by

C ′
n∑

i=1

(
(i − 1)2γ2LI[i≥L] + L2 + (L′)2 + n2ηi(A)

)

≤ C ′n3γ2L + C ′nL2 + C ′n(L′)2 + n3CγL

where C ′ is independent of L and n. Setting L = k log n for some fixed constant k we see

that (33) is upper bounded by a term O(n log2 n).

The proof for the finite duration model follows the same lines where Lemma 2 is used

instead of Corollary 1, hence it is omitted.

A.3.1 Verification of Example 2 satisfying the conditions of Proposition 1

The first condition of Theorem 1 is satisfied since g(yk|zk) > 0 for all zk, yk. It follows from

(23) that

c−1 ≤
∫ ∏n

i=1 f(z′′i |z′′i−1)g(yi|z′′i ) dz′′1:n∫ ∏n
i=1 f(z′i|z′i−1)g(yi|z′i) dz′1:n

≤ c

for all n ≥ 1, y1:n, z′0 ,z′′0 . This, together with (20) implies

c−1 ≤ p(yk:n|xk, y1:k−1)

p(yk:n|x′
k, y1:k−1)

≤ c (35)

for all (xk, x
′
k) ∈ supp(ηk), k ≤ n. (35) now implies the term ‖Gi,n‖supp(ηi)

in (34) is also

uniformly bounded by the constant c. (Note that the condition c−1 ≤ Gn ≤ c for all n in

Proposition 1 is used to verify the term ‖Gi,n‖supp(ηi)
in (34) is uniformly bounded in n and

is now no longer needed for this example as we have direct verification via (35).)
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Since

p(xk|xk−1, y1:n) ∝ p(yk:n|xk, xk−1, y1:k−1)p(xk|xk−1, y1:k−1)

= p(yk:n|xk, y1:k−1)p(xk|xk−1),

we have that

p(xk|xk−1, y1:n) ≥ c−1p(xk|xk−1) ≥ c−1λ δ1(xk) (36)

for all k ≤ n, and obviously for k > n too. To establish forward forgetting, it follows from

the minorization condition in (36) that

E [sk(Xk)|x1, y1:n] − E [sk(Xk)|x′
1, y1:n] ≤ osc(sk)

(
1 − c−1λ

)k−1
.

Let A = {1, . . . , L}. For xk+L ∈ A, xk ∈ supp(ηk) and x′
k ∈ supp(ηk),

p(xk+L, yk:k+L−1|xk, y1:k−1)

p(xk+L, yk:k+L−1|x′
k, y1:k−1)

=
p(yk:k+L−1|xk+L, xk, y1:k−1)

p(yk:k+L−1|xk+L, x′
k, y1:k−1)

p(xk+L|xk)

p(xk+L|x′
k)

.

By (35), the first ratio is bounded by c. The second ratio is 1. Thus ck,L(A) ≤ c. Using

(36), supi≥L+1 E [IA(Xi)| y1:i−1] ≤ γL where γ = 1 − c−1λ. Hence the bounds in (22) apply

with constants independent of L and n.

A.4 Supplementary materials

Code and data for the experiments: A MATLAB package containing the codes and the

real data set for the experiments in Section 5 is available online.
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