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endless support and encouragement all these years.



Abstract

Time series models are used to characterise uncertainty in many real-world dy-

namical phenomena. A time series model typically contains a static variable,

called parameter, which parametrizes the joint law of the random variables

involved in the definition of the model. When a time series model is to be

fitted to some sequentially observed data, it is essential to decide on the value

of the parameter that describes the data best, a procedure generally called

parameter estimation.

This thesis comprises novel contributions to the methodology on parameter

estimation in time series models. Our primary interest is online estimation,

although batch estimation is also considered. The developed methods are

based on batch and online versions of expectation-maximisation (EM) and

gradient ascent, two widely popular algorithms for maximum likelihood esti-

mation (MLE). In the last two decades, the range of statistical models where

parameter estimation can be performed has been significantly extended with

the development of Monte Carlo methods. We provide contribution to the field

in a similar manner, namely by combining EM and gradient ascent algorithms

with sequential Monte Carlo (SMC) techniques. The time series models we

investigate are widely used in statistical and engineering applications.

The original work of this thesis is organised in Chapters 4 to 7. Chapter 4

contains an online EM algorithm using SMC for MLE in changepoint models,

which are widely used to model heterogeneity in sequential data. In Chap-

ter 5, we present batch and online EM algorithms using SMC for MLE in

linear Gaussian multiple target tracking models. Chapter 6 contains a novel

methodology for implementing MLE in a hidden Markov model having in-

tractable probability densities for its observations. Finally, in Chapter 7 we

formulate the nonnegative matrix factorisation problem as MLE in a spe-

cific hidden Markov model and propose online EM algorithms using SMC to

perform MLE.
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Chapter 1

Introduction

1.1 Context

1.1.1 Time series models

In probability theory and statistics, stochastic processes are used to capture uncertainty

in many real-world dynamical phenomena. A stochastic process can be thought to evolve

in time either continuously or discretely; in this thesis we will only consider discrete

time stochastic processes. In the literature, a large number of different discrete time

stochastic processes can be represented under the family of generative dynamical models

called time series models. A parametric time series model consists of random variables

that describe the modelled process with adequate generality, and these random variables

admit probability laws that are parametrised by a vector-valued static variable. This

variable is generally denoted by θ and called the static parameter, or simply the parameter,

of the model.

A time series model associated with a stochastic process is generative. That is, when

simulated, the model produces a realisation of a sequence of observable random variables

{Yt}t≥1 of the stochastic process over time. Typically {Yt}t≥1 are only a subset of the

random variables that comprise the time series model; the rest of the random variables

are called latent, or hidden, variables. In many cases, observable variables are considered

to be somewhat noisy measurements of an underlying structure which is of primary

interest. The power of a time series model is its ability to provide a rigorous mathematical

formulation of this underlying structure as well as its relation to {Yt}t≥1 via its latent

variables. This helps the scientist infer the latent variables from an observed time series

in a principled way by employing well-established methods from statistics.

1.1.2 Sequential inference and Monte Carlo

In many time series models, the latent variables themselves are lumped together to form

another random process {Xt}t≥1. This process represents the hidden state of interest

evolving dynamically, typically in a Markovian fashion. An example of this is a hidden

Markov model (HMM), sometimes called a state-space model. In a HMM, {Xt}t≥1 is a

1
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Markov process and each Yt is a conditionally independent observation generated by Xt,

the evolving state at time t. (For a review of HMMs in a closely related context, see

Cappé et al. [2005]).

In the literature, the problem of sequential Bayesian estimation of Xt based on the

sequentially observed variables Y1, . . . , Yt is known as the optimum Bayesian filtering

problem. When the time series model has linear and Gaussian dynamics, the exact solu-

tion of this problem is the Kalman filtering. However, in non-linear non-Gaussian models,

numerical approximations must be used. Sequential Monte Carlo (SMC) methods, also

known as particle filters, are the most popular numerical methods for approximate so-

lutions of the optimum Bayesian filtering problem [Doucet et al., 2000b; Durbin and

Koopman, 2000; Gordon et al., 1993; Kitagawa, 1996; Liu and Chen, 1998]. These meth-

ods are a special class of Monte Carlo methods, which rely on the basic idea of simulating

from probability distributions when analytical evaluation of quantities that involve in

these probability distributions cannot be performed [Metropolis and Ulam, 1949]. Al-

though originally developed for HMMs, SMC methods can often easily be extended to

more general time series models. A review of SMC methods is presented in Section 2.5,

and their application to HMMs is reviewed in Section 3.3.

1.1.3 Online parameter estimation

For the case when the true value of the static parameter of the time series model, which

we will denote by θ∗ throughout the thesis, is known, numerous SMC methods have been

proposed and successfully applied to the Bayesian optimal filtering problem over the last

two decades. (See Cappé et al. [2007]; Doucet and Johansen [2009]; Fearnhead [2008] for

recent reviews of the methodology.) However, in realistic applications θ∗ is hardly ever

known although its estimation is essential for accurate inference of the latent variables of

the model. Therefore, developing efficient and accurate parameter estimation methods

for time series model is of significant importance.

Classical methods used for parameter estimation process the observed data in a batch

fashion, i.e. they require several iterative complete browses through the entire data set.

In this thesis, we are primarily concerned with developing online parameter estimation

algorithms. With the advancement of sensor and storage technologies, and with the

significantly reduced costs of data acquisition, we are able to collect and record vast

amounts of raw data. Arguably, the grand challenge facing computation in the 21st

century is the effective handling of such large data sets. Unfortunately, classical batch

processing methods fail with very large data sets due to memory restrictions and long

computational time. For this reason, so called online methods have recently gained a

popularity in the area. The main principle of these methods is that, a current estimate

obtained using the data available so far could be updated when a new portion of data is
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received. Based on this principle, online methods are promising in terms of reducing both

memory and computation requirements; hence they are potentially a powerful alternative

to batch methods.

1.1.4 Bayesian estimation vs maximum likelihood estimation

There are two different approaches for static parameter estimation, which is either Bayesian

or maximum likelihood. Bayesian parameter estimation requires the assignment of a prior

distribution for the unknown parameter θ. The objective is then to calculate the posterior

distribution of θ given the observed data. When a point estimate of θ∗ is required, some

feature of this posterior distribution can be provided. The common Bayesian estimators

are the posterior mean, posterior median, and the posterior mode, or the maximum a

posteriori probability (MAP) estimate. There are several Monte Carlo based methods

for Bayesian parameter estimation when exact calculation of the posterior distribution is

not available. Alternatively, the maximum likelihood approach regards the likelihood of

the observed data, which is a function of θ, to contain all relevant information for esti-

mating θ∗. The point estimate of θ∗ is the maximising argument of the likelihood. When

maximum likelihood estimation (MLE) cannot be done analytically, iterative search-

based algorithms such as expectation-maximisation (EM) and gradient ascent guarantee

maximising the likelihood locally given certain regularity conditions on densities of the

random variables involved. Also, Monte Carlo versions of these algorithms have been de-

veloped and applied to many time series models successfully. See Kantas et al. [2009] for a

comprehensive review of SMC methods for Bayesian and maximum likelihood parameter

estimation, or Section 3.4 for a more brief discussion.

Whether one should in principle use the Bayesian or maximum likelihood approach

for estimating θ∗ is a fundamental debate which we will not go into. There are indeed

cases when these two approaches do produce dramatically different suggestions on what θ∗

might be, especially when the observed data is of small size and a highly informative prior

for Bayesian estimation is used. However, as data size tends to infinity, the likelihood

of the data sweeps away the effect of the prior in the posterior distribution and the

difference between the estimates of the two approaches vanishes (say when the MAP

estimate is used for Bayesian estimation), provided that the prior is well-behaved (i.e. it

does not assign zero density to any ‘feasible’ parameter value). Therefore, in an online

estimation setting, where the data size is presumably very large, the two approaches are

expected to give almost identical results if they could be implemented exactly. Thus, for

the practitioner, the choice of online parameter estimation method depends on which has

the most favourable properties in terms of computational costs and memory requirements

rather than philosophical concerns that would matter when the outcomes of the Bayesian

and maximum likelihood approaches differed significantly. Moreover, when a parameter
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estimation method involves any sort of Monte Carlo approximation, this brings with it

the additional requirement that the statistical properties of the method, such as bias and

variance of its estimator, be added to consideration.

Given these concerns, one can argue that so far online MLE methods proposed in the

literature are preferable over their Bayesian counterparts. Online Bayesian estimation

methods, in one way or the other, are based on including the static parameter into the

hidden state of the time series model and cast the online parameter estimation problem

as a filtering one. Unfortunately, when the data size is large, these methods suffer from

particle degeneracy which is inherent in SMC filtering, see e.g. Andrieu et al. [2005];

Olsson et al. [2008] for a discussion. There are certain techniques proposed to overcome

the degeneracy problem, such as those based on Markov chain Monte Carlo (MCMC)

moves for the parameter (e.g. Gilks and Berzuini [2001]; Polson et al. [2008]) or introduc-

ing artificial dynamics on the parameter (e.g. Campillo and Rossi [2009]; Higuchi [2001];

Kitagawa [1998]). But all these techniques either still suffer from particle degeneracy

problem or come with the price of bias and tuning difficulties, or both; see Section 3.4

for more discussion or Kantas et al. [2009] for even more details. On the other hand,

online MLE methods based on Monte Carlo are more promising due to their favourable

stability properties and reasonable computational and memory requirements. Recently,

SMC based online EM and online gradient ascent algorithms for hidden Markov models

have been proposed and analysed in several works such as Cappé [2009]; Del Moral et al.

[2009, 2011]; Poyiadjis et al. [2011]. It has been shown in these works that the variance of

the estimators in these algorithms either remain constant over time or decay, depending

on their SMC schemes. For these reasons, in this thesis we focus on online MLE methods

for parameter estimation in this thesis.

1.2 Scope of the thesis

SMC based MLE methods are present in the literature, and they are successfully applied

to many important time series models, especially to a large proportion of HMMs. How-

ever, there are still many important types of time series models for which the developed

methods so far are not directly applicable. This thesis aims to develop MLE methods,

especially online MLE methods, in some non-standard time series models using Monte

Carlo. Below we list and summarise the topics we investigate in this thesis.

• Changepoint models: One example for a time series model is a changepoint

model, which is commonly used to model heterogeneity of sequential data in a

range of areas such as engineering, physical and biological sciences, and finance.

Having a segmented structure introduced by changepoints, the model differs from
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a HMM, which makes it both interesting and challenging to study its statistical

aspects and to estimate its parameters.

• Multiple target tracking models: Another challenging problem in the areas

of applied statistics and engineering is multiple target tracking (MTT). In MTT,

the main objective is to simultaneously track several moving objects in a surveil-

lance region under far from ideal conditions that introduce random mis-detection

of targets and false measurements. The additional issues of time varying unknown

number of targets and unknown association of targets to observation points make

the problem even more challenging. In this thesis we restrict ourselves to the linear

Gaussian MTT model. Statistical treatment for the dynamics of the MTT model

is widely popular and Monte Carlo methods are available for estimation of latent

states in the tracking problem. However, the problem of calibrating the MTT model

by estimating its static parameters has largely been ignored.

• HMMs with intractable observation densities: An important computational

problem studied in this thesis is that of implementing batch and online MLE in a

HMM where the conditional law of observations is intractable, that is, its proba-

bility density is either analytically unavailable or prohibitive to calculate. Due to

this intractability, the online MLE methods developed for HMM are not directly

applicable since computation of quantities required by those methods becomes im-

possible. Approximate Bayesian computation (ABC) has become an increasingly

popular strategy for confronting intractability in many statistical models. The

adaptation of ABC to HMMs resulting in an SMC-ABC scheme has recently been

demonstrated. Moreover, theoretical analysis on the properties of MLE based on

this SMC-ABC scheme has been performed. However, methods for implementing

MLE using SMC-ABC have not been discovered yet, and we believe that solving

this implementation problem would be a valuable contribution to the literature.

• Nonnegative matrix factorisation: Another interesting problem where online

statistical estimation methods are of use is the nonnegative matrix factorisation

(NMF) problem, where a given non-negative matrix Y is to be approximated as

a multiplication of two nonnegative matrices as BX. In many applications, B is

considered as a matrix of ‘basis’ vectors and X is a ‘gain’ matrix determining which

of the columns in B dominate the columns of Y . Our approach to the NMF problem

is to consider it as a parameter estimation problem for a HMM whose latent and

observed processes are the columns of X and Y , respectively. This approach is

useful to handle the case where the columns of Y are generated sequentially in

time, such as in audio signal processing. Usually very large number of columns in

Y leads to the necessity of online algorithms to learn the model and make inference.
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This thesis aims to contribute to the methodology on MLE, especially online MLE, in

time series models within the contexts of the topics summarised above. We present novel

EM and gradient ascent methods implemented with SMC. Statistical and computational

aspects of the developed methods will be studied, mostly using numerical experiments.

1.3 Outline

The material presented in the rest of the thesis is organised in six main chapters, followed

by a final chapter including a conclusion, as follows.

Chapter 2: Monte Carlo Methods for Statistical Inference

This chapter provides a survey of the Monte Carlo literature. We will review

some basic Monte Carlo methods, such as rejection sampling, importance sampling,

MCMC, SMC, ABC, etc.

Chapter 3: Hidden Markov Models and Parameter Estimation

We introduce hidden Markov models and review Monte Carlo methods for filtering

and parameter estimation in hidden Markov models.

Chapter 4: An Online Expectation-Maximisation Algorithm for Changepoint

Models:

We present a novel online EM algorithm using SMC for changepoint models. We

also provide theoretical and numerical stability analysis for the developed algorithm.

Chapter 5: Estimating the static parameters of the linear Gaussian Multiple

Target Tracking Model:

We present novel batch and online EM algorithms using SMC for linear Gaussian

MTT models. The algorithms are based on the availability of exact EM algorithms

in a single linear Gaussian state-space model, but involve SMC for tracking the

unknown data association inherent in the model.

Chapter 6: Approximate Bayesian Computation for Maximum Likelihood

Estimation in Hidden Markov Models

We present methods for implementing MLE in HMMs with intractable observation

densities. An SMC based ABC is our main tool for dealing with the intractability

inherent in these HMMs and batch and online gradient ascent algorithms using

SMC are shown to be suitable for this scheme.
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Chapter 7: An Online Expectation-Maximisation Algorithm for Nonnegative

Matrix Factorisation Models

We formulate the nonnegative matrix factorisation (NMF) problem as a MLE prob-

lem for HMMs and propose online EM algorithms using SMC to estimate the NMF

and the other unknown static parameters.

1.4 Notation

It will be useful to summarise the notation used throughout this thesis. The notation

presented here will be used with consistency in the literature review part of the thesis

(Chapters 2 and 3); however the particular requirements of Chapters 4, 5, 6, and 7

containing original work are such that there is inevitably some conflict with the desire

to be consistent with standard usage within the literature. The reader will be notified

whenever we deviate from the notation or any additional notation is introduced.

We use N and R to denote the set of natural numbers and real numbers. For a

sequence {ak}k≥1 and integers i, j, we let ai:j denote the set {ai, . . . , aj}, which is empty

if j < i, and ai:∞ = {ai, ai+1, . . .}.

Probability measures, integrals, and random variables: Given a general mea-

surable space (X , E), we refer to the set of all σ-finite measures on that space asM(X ).

The set of all probability measures on (X , E) is denoted P(X ) ⊂M(X ). We use Bb(X )

to denote the Banach space of bounded real valued measurable functions on X .

The integration of a real-valued measurable function ϕ on X with respect to the

measure µ ∈M(X ) is denoted as

µ(ϕ) =

∫

X

ϕ(x)µ(dx), ∀µ ∈M(X ).

Also, for A ∈ X , µ(A) = µ(IA), where IA : X → {0, 1} is the indicator function so

that IA(x) is 1 if x ∈ A and 0 otherwise. Finally, δx is the Dirac measure satisfying

δx(A) = IA(x) for all A ∈ X .

Let (Ω,F ,P) be a probability space and (X , E) be a measurable space. A E/F mea-

surable function X : Ω → X is called a (X , E)-valued random variable. The probability

measure π on (X , E) corresponding to the law of X is given by P ◦X−1 so that

π(A) = P
[
X−1(A)

]
, ∀A ∈ E .

We will denote the expectation of ϕ with respect to π as

Eπ[ϕ(X)] = π(ϕ), ∀π ∈ P(X ).
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Both expressions on the left and the right sides of the equality will be used. If π is

parametrised by a vector θ, we will denote it by πθ and we will write Eθ[ϕ(X)] to mean

Eπθ [ϕ(X)]. Finally, capital letters X, Y, Z, etc. will be used to denote random variables;

whereas for their realisations corresponding small letters x, y, z, etc. will be used.

Let π be the law of X. We write π ≪ λ to mean that π is absolutely continuous with

respect to the dominating measure λ, and we call the Radon-Nikodým derivative ν = dπ
dλ

the density of π (or the probability density of X) with respect to λ. Throughout the

chapters of this thesis containing original work, λ will be either the Lebesgue measure or

the counting measure and λ(dx) will be replaced by dx for simplicity. To make explicit

the law of X, we interchangeably use X ∼ π and X ∼ ν.

Markov kernels: Given two measurable spaces (X1, E1) and (X2, E2), we define a

Markov kernel or transition kernel K : X1 → P(X2) satisfying the following two con-

ditions

• ∀x ∈ X1, K(x, ·) is a probability measure in P(X2),

• ∀A ∈ E2, K(·, A) is a nonnegative measurable function with respect to E1 on X1.

A Markov kernel induces two operators, the first one on M(X2) and the second one on

the bounded E2-measurable functions on X2:

µK(dy) =

∫

X1

µ(dx)K(x, dy), ∀µ ∈M(X1),

K(ϕ)(x) =

∫

X2

ϕ(y)K(x, dy), ∀ϕ ∈ Bb(X2).

Using the first operation a probability measure π ∈ P(X1) is mapped by K to another

probability measure µK ∈ P(X2). Also, when we wish to consider the joint distribution

induced over (X1 × X2, E1 × E2) by a measure π and a Markov kernel K : X1 →M(X2),

we use the notation π ⊗K, i.e.

π ⊗K(dx, dy) = π(dx)K(x, dy).

Moreover, given a sequence of measurable spaces {Xn, En}n≥1 and a sequence of Markov

kernels {Kn : Xn−1 → P(Xn)}n≥2,

Kp:q(xp−1, dxp:q) = Kp+1 ⊗ . . .⊗Kq(xp, dxp+1:q) =

q∏

i=p+1

Ki(xi−1, dxi). q ≥ p ≥ 1;
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and we define the operator on the bounded Ep+1 ⊗ . . .⊗ Eq-measurable functions on X2

Kp:q(ϕ)(xp) =

∫

Xp+1

· · ·
∫

Xq

ϕ(xp+1:q)

q∏

i=p+1

Ki(xi−1, dxi), ∀ϕ ∈ Bb(Xp+1 × . . .× Xq).

Some common probability distributions: We will use N (µ, σ2) to describe the nor-

mal distribution with mean µ and variance σ2; UA for the uniform distribution over the

set A; PO(λ) for the Poisson distribution with rate λ; G(α, β) for the gamma distribution

with shape α and scale β; IG(α, β) for the inverse-gamma distribution with shape α and

(inverse) scale β; BE(p) for the Bernoulli distribution with success rate p; NΓ−1(ζ, κ, α, β)

for the normal-inverse gamma distribution such that (X, Y ) ∼ NΓ−1(ξ, κ, α, β) means

Y ∼ IG(α, β) and X ∼ N (ξ, Y
κ
); A(α, β, µ, σ) for the α-stable distribution with shape

α, skewness β, location µ and scale σ; M(α, ρ) for the multinomial distribution with

α number of independent trials and the probability vector ρ. We also use these nota-

tions to express the corresponding probability densities. For example, N (x;µ, σ2) is the

probability density of the normal distribution N (µ, σ2) evaluated at x.
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Chapter 2

Monte Carlo Methods for Statistical

Inference

Summary: This chapter provides a survey of the Monte Carlo literature. We will review

some basic Monte Carlo methods for statistical inference that are related to the main con-

tent of this thesis. These methods are rejection sampling, importance sampling, Markov

chain Monte Carlo, sequential Monte Carlo, and approximate Bayesian computation.

2.1 Introduction

Assume that we are given a probability space (Ω,F ,P) and some random variable X :

Ω → X which is E/F measurable. We allow the probability measure π on (X , E) to

describe the law of X so that π = P◦X−1. We are interested in integrating a measurable

function ϕ : X → Rdϕ with respect to the probability measure π, i.e.

π(ϕ) = Eπ [ϕ(X)] =

∫

X

ϕ(x)π(dx). (2.1)

When analytical evaluation of (2.1) is not possible, we have to use approximations.

There are deterministic numerical integration techniques available; however these meth-

ods encounter the problem called the curse of dimensionality since the amount of com-

putation grows exponentially with the dimension of X [Press, 2007]. Therefore, they are

far from being practical and reliable unless they work in low dimensional problems. A

powerful alternative to deterministic methods for integration problems is Monte Carlo

integration, where random samples from some distribution are used to approximate the

integral in (2.1). The term Monte Carlo was coined in the 1940s, see Metropolis and Ulam

[1949] for a first use of the term, and Eckhardt [1987]; Metropolis [1987] for a historical

review.

In this chapter we will review the Monte Carlo methodology. We first present the main

methods in the literature that aim to evaluate the integral in (2.1). We then proceed to

sequential Monte Carlo methods to approximate a sequence of integrals like in (2.1). We

conclude the chapter with a review of approximate Bayesian computation, which is a name

11
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attached to a wide class of popular Monte Carlo methods aiming to tackle integrations

π(ϕ) where π is a posterior distribution resulting from an intractable likelihood. Note

that we restrict ourselves to the review of only those methods which are closely related

to the work in this thesis. A book length review of general Monte Carlo methods can be

found in Robert and Casella [2004], and for a detailed review of sequential Monte Carlo

methods one can consult the books Doucet et al. [2001] and Del Moral [2004].

2.2 Perfect Monte Carlo

The term perfect Monte Carlo refers to those methods in which the distribution of interest

π is approximated by N > 0 of independent, identically distributed (i.i.d.) samples from

the distribution π and integration of ϕ with respect to π is approximated by using this

approximation. The approximation to π using N i.i.d. samples X(1), . . . , X(N) is given by

πNMC(dx) :=
1

N

N∑

i=1

δX(i)(dx).

Then, the perfect Monte Carlo approximation to π(ϕ) is obtained by substituting π with

πNMC in (2.1) as

πNMC(ϕ) =
1

N

N∑

i=1

ϕ(X(i)).

It is this approach which was originally referred to as the Monte Carlo method in Metropo-

lis and Ulam [1949], although the term has come to encompass a broader class of methods

through the following years.

It is easy to show that πNMC(ϕ) is an unbiased estimator of π(ϕ) for any N > 0. Also,

if π(ϕ) is finite, the strong law of large numbers (e.g. Shiryaev [1995], p. 391) ensures

almost sure (a.s.) convergence of πNMC(ϕ) to π(ϕ) as the number of i.i.d. samples tends

to infinity,

πNMC(ϕ)
a.s.→ π(ϕ).

The variance of πN (ϕ) is given by

var
[
πNMC(ϕ)

]
=

1

N2

N∑

i=1

varπ
[
ϕ(X(i))

]
=

1

N
varπ [ϕ(X)] .

which indicates the improvement in the accuracy with increasing N , provided that

varπ [ϕ(X)] is finite. Note that this is true regardless of the dimension of X ; which

makes Monte Carlo preferable over the deterministic numerical methods particularly for

high dimensional integrations [Newman and Barkema, 1999]. Also, if varπ [ϕ(X)] is fi-

nite, the distribution of the estimator is well behaved in the limit, which is ensured by
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the central limit theorem (e.g. Shiryaev [1995], p. 335)

√
N
[
πNMC(ϕ)− π(ϕ)

] d→ N (0, varπ [ϕ(X)]) .

The requirement of perfect Monte Carlo is the ability to obtain i.i.d. samples from π.

There are several methods for obtaining i.i.d. samples from distributions. We shall cover

the two most common ones in the following.

2.2.1 Inversion sampling

If π is a distribution on R, then its cumulative distribution function can be defined as

Fπ : R→ [0, 1], Fπ(x) = π((−∞, x]).

If it is possible to invert Fπ, then it is possible to sample from π by transforming a uniform

sample U distributed over (0, 1) as

X = F−1
π (U) := inf{x ∈ X : Fπ(x) ≥ U}.

This approach was considered by Ulam prior to 1947 [Eckhardt, 1987] and some extensions

to the method are provided by Robert and Casella [2004].

2.2.2 Rejection sampling

Another common method of obtaining i.i.d. samples from π is rejection sampling, which is

available when there exists an instrumental distribution µ such that π ≪ µ with bounded

Radon-Nikodým derivative dπ
dµ

. Rejection sampling was first mentioned in a 1947 letter by

Von Neumann [Eckhardt, 1987], it was also presented a few years later in von Neumann

[1951]. The method for obtaining one sample from π can be implemented with any

M ≥ supx
dπ
dµ

(x) by (i) generating X from µ, (ii) accepting it with probability 1
M

dπ
dµ

(X),

and otherwise repeating steps (i) and (ii) until acceptance. Letting A = {U ≤ 1
M

dπ
dµ

(X)}
be the event of acceptance in a single trial, its probability is given by

P (A) = Eµ

[
1

M

dπ

dµ
(X)

]
=

1

M
µ

(
dπ

dµ

)
=

1

M
, (2.2)

which is also the long term proportion of the number accepted samples over the number of

trials. Therefore, taking µ as close to π as possible to avoid large Radon-Nikodým deriva-

tives and taking M = supx
dπ
dµ

(x) are sensible choices to make the acceptance probability

P (A) as high as possible.
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Algorithm 2.1. Rejection sampling: Choose M ≥ supx
dπ
dµ

(x). To generate a single

sample,

1. Generate X ∼ µ and U ∼ Unif(0, 1).

2. If U ≤ 1
M

dπ
dµ

(X), accept X; else go to 1.

The rejection sampling algorithm is given in Algorithm 2.1. The validity of this

algorithm can be verified by considering the distribution of the accepted samples. Using

Bayes’ theorem,

P (X ∈ dx |A) =
µ(dx)P (A|x)

P (A)
= µ(dx)

1

M

dπ

dµ
(x)/

1

M
= π(dx). (2.3)

One advantage of rejection sampling is that we can implement it even when we know π

and µ only up to some proportionality constants Zπ and Zµ, that is, when π = bπ
Zπ
, µ = bµ

Zµ

and we only know π̂ and µ̂. It is easy to check that one can perform the steps (i) and

(ii) of rejection sampling method for any M ≥ supx
dbπ
dbµ

(x) using dbπ
dbµ

instead of dπ
dµ

, and

justification of this modification would follow from similar steps to those in (2.3). Also,

in that case, the acceptance probability would be 1
M

Zπ
Zµ

. Finally, when π and µ have

densities (denoted as π and µ also) with respect to a common dominating measure, then

the Radon-Nikodým derivative dπ
dµ

(x) becomes equal to π(x)
µ(x)

.

The drawback of rejection sampling is that in practice a rejection based procedure is

usually not viable when X is high-dimensional, since P (A) gets smaller and more com-

putation is required to evaluate acceptance probabilities as the dimension increases. In

the literature there exist approaches to improve the computational efficiency of rejection

sampling. For example, assuming the densities exist, when it is difficult to compute π(x),

tests like u ≤ 1
M

π(x)
µ(x)

can be slow to evaluate. In this case, one may use a squeezing

function s : X → [0,∞) such that s(x)
µ(x)

is cheap to evaluate and s(x)
π(x)

is tightly bounded

from above by 1. For such an s, not only u ≤ 1
M

s(x)
µ(x)

would guarantee u ≤ 1
M

π(x)
µ(x)

, hence

acceptance, but also if u ≤ 1
M

π(x)
µ(x)

then u ≤ 1
M

s(x)
µ(x)

would hold with a high probability.

Therefore, in case of acceptance evaluation of π(x)
µ(x)

would largely be avoided by checking

u ≤ 1
M

s(x)
µ(x)

first. In Marsaglia [1977], the author proposed to squeeze π from above and

below by µ and s respectively, where µ is easy to sample from and s is easy to evaluate.

There are also adaptive methods to squeeze π from both below and above; they involve

an adaptive scheme to gradually modify µ and s from the samples that have already been

obtained [Gilks, 1992; Gilks et al., 1995; Gilks and Wild, 1992].
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2.3 Importance sampling

We saw that rejection sampling can be wasteful as it uses only about 1/M of generated

random samples to construct an approximation to π. In contrast, importance sampling

uses every sample but weights each one according to the degree of similarity between

the target and instrumental distributions. The idea of importance sampling follows from

the importance sampling fundamental identity [Robert and Casella, 2004]: if there is a

probability measure µ such that π ≪ µ with the Radon-Nikodým derivative w = dπ
dµ

, then

we have

π(ϕ) = µ (ϕw) .

This identity can be used with a µ which is easy to sample from. Sampling X(1), . . . , X(N)

from µ, the integral π(ϕ) = µ (ϕw) can be approximated by using perfect Monte Carlo

as

πNIS(ϕ) :=
1

N

N∑

i=1

ϕ(X(i))w(X(i)). (2.4)

Algorithm 2.2. Importance sampling:

• For i = 1, . . . , N ; generate X(i) ∼ µ, calculate w(X(i)) = dπ
dµ

(X(i)).

• Set πNIS(ϕ) = 1
N

∑N
i=1w(X(i))ϕ(X(i)).

The importance sampling is summarised in Algorithm 2.2. The Radon-Nikodým

derivatives w(X(i)) are known as the importance sampling weights. Noting its equivalence

to perfect Monte Carlo for µ (ϕw), the estimator in (2.4) is unbiased and justified by

the strong law of large numbers and the central limit theorem, provided that π(ϕ) and

varµ [w(X)ϕ(X)] are finite. Moreover, as we have freedom to choose µ we can control

the variance of importance sampling [Robert and Casella, 2004]

var
[
πNIS(ϕ)

]
=

1

N
varµ [w(X)ϕ(X)]

=
1

N

(
µ(w2ϕ2)− [µ(wϕ)]2

)

=
1

N

(
µ(w2ϕ2)− [π(ϕ)]2

)
.

Therefore, minimising var
[
πNIS(ϕ)

]
is equivalent to minimising µ(w2ϕ2), which can be

lower bounded as

µ(w2ϕ2) ≥ [µ(w|ϕ|)]2 = [π(|ϕ|)]2

using the Jensen’s inequality. Considering µ(w2ϕ2) = π(wϕ2), this bound is attainable if
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we choose µ such that it satisfies

w(x) =
dπ

dµ
(x) =

π(|ϕ|)
|ϕ(x)| , x ∈ X , ϕ(x) 6= 0.

This results in the optimum choice of µ to be

µ(dx) = π(dx)
|ϕ(x)|
π(|ϕ|)

for points x ∈ X such that ϕ(x) 6= 0, and the resulting minimum variance is given by

min
µ
var

[
πNIS(ϕ)

]
=

1

N

(
[π(|ϕ|)]2 − [π(ϕ)]2

)
.

Note that this minimum value is 0 if ϕ is nonnegative π-almost everywhere. Therefore,

importance sampling in principle can achieve a lower variance than perfect Monte Carlo.

Of course, if we can not already compute π(ϕ), it is unlikely that we can compute π(|ϕ|).
Also, it will be rare that we can easily simulate from the optimal µ even if we can construct

it. Instead, we are guided to seek a µ close to the optimal one, but from which it is easy

to sample.

2.3.1 Self-normalised importance sampling

Like rejection sampling, the importance sampling method is available also when π =
bπ
Zπ
, µ = bµ

Zµ
and we only have π̂ and µ̂. This time, letting w = dbπ

dbµ
we write the importance

sampling fundamental identity in terms of π̂ and µ̂ as

π(ϕ) =
µ (ϕw)

Zπ/Zµ
=
µ (ϕw)

µ (w)
.

The importance sampling method can be modified to approximate both the nominator

(the unnormalised estimate) and the denominator (the normalisation constant) by using

perfect Monte Carlo. Sampling X(1), . . . , X(N) from µ, we have the approximation

πNIS(ϕ) =
1
N

∑N
i=1 ϕ(X(i))w(X(i))

1
N

∑N
i=1w(X(i))

=
N∑

i=1

W (i)ϕ(X(i)).

where W (i) = w(X(i))
PN
j=1 w(X(j))

are called the normalised importance weights as they sum up to

1. Being the ratio of two unbiased estimators, estimator of the self-normalised importance

sampling is biased for finite N . However, its consistency and stability are provided by a

strong law of large numbers and a central limit theorem in Geweke [1989]. In the same

work, the variance of the self normalised importance sampling estimator is analysed and
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an approximation is provided, from which it reveals that it can provide lower variance

estimates than the unnormalised importance sampling method. Therefore, this method

can be preferable to its unnormalised version even if it is not the case that π and µ are

known only up to proportionality constants.

Algorithm 2.3. Self-normalised importance sampling:

• For i = 1, . . . , N ; generate X(i) ∼ µ, calculate w(X(i)) = dbπ
dbµ

(X(i)).

• For i = 1, . . . , N ; set W (i) = w(X(i))
PN
j=1 w(X(j))

.

• Set πNIS(ϕ) =
∑N

i=1W
(i)ϕ(X(i)).

Self-normalised importance sampling is also called Bayesian importance sampling in

Geweke [1989], since in most Bayesian inference problems the normalising constant of

posterior distribution is unknown.

One approximation to the variance of the self-normalised importance sampling esti-

mator is proposed in Kong et al. [1994] to be

var
[
πNIS(ϕ)

]
≈ 1

N
varπ [ϕ(X)] {1 + varµ [w(X)]}

= var
[
πNMC(ϕ)

]
{1 + varµ [w(X)]}.

This approximation might be confusing at the first instance since it suggests that the

variance of self-normalised importance sampling is always greater than that of perfect

Monte Carlo, which we have just seen is not the case. However, it is useful as it provides

an easy way of monitoring the efficiency of the method. Consider the ratio of variances

of the self-normalised importance sampling method with N particles and perfect Monte

Carlo with N ′ particles, which is given according to this approximation by

var
[
πNIS(ϕ)

]

var
[
πN

′

MC(ϕ)
] ≈ N ′

N
{1 + varµ [w(X)]}.

The number N ′ for which this ratio is 1 would suggest how many samples for perfect

Monte Carlo would be equivalent to N samples for self-normalised importance sampling.

For this reason this number is defined as the effective sample size [Kong et al., 1994; Liu,

1996] and it is given by

Neff =
N

1 + varµ [w(X)]
.

Obviously, the term varµ [w(X)] itself is usually estimated using the samplesX(1), . . . , X(N)

with weights w(X(i)), . . . , w(X(N)) obtained from the method.
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2.4 Markov chain Monte Carlo

We have already discussed the difficulties of generating a large number of i.i.d. samples

from π. One alternative was importance sampling which involved weighting every gener-

ated sample in order not to waste it, but it has its own drawbacks mostly due to issues

related to controlling variance. Another alternative is to use Markov chain Monte Carlo

(MCMC) methods [Gilks et al., 1996; Hastings, 1970; Metropolis et al., 1953; Robert and

Casella, 2004]. These methods are based on design of a suitable ergodic Markov chain

whose stationary distribution is π. The idea is that if one simulates such a Markov chain,

after a long enough time the samples of the Markov chain will admit π. Although the

samples generated from the Markov chain are not i.i.d., their use is justified by conver-

gence results for dependent random variables in the literature. First examples of MCMC

can be found in Metropolis et al. [1953]; Hastings [1970], and book length reviews are

available in Gilks et al. [1996]; Robert and Casella [2004].

2.4.1 Discrete time Markov chains

In order to adequately summarise the MCMC methodology, we first need reference to

the theory of discrete time Markov chains defined on general state spaces. Discrete time

Markov chains also constitute an important part of this thesis. The review made here is

limited by the relation of Markov chains to the topics of this thesis; for more details one

can see Meyn and Tweedie [2009] or Shiryaev [1995]; a more related introduction to our

area of interest in this this thesis is present in Robert and Casella [2004, Chapter 6] and

Cappé et al. [2005, Chapter 14], Tierney [1994] and Gilks et al. [1996, Chapter 4].

Definition 2.1 (Markov chain). Consider a sequence of measurable spaces {Xn, En}n≥1,

an initial distribution η and a sequence of Markov kernels {Mn}n≥2 with each Mn :

Xn−1 → P(Xn), where P(Xn) denotes the set of probability measures on Xn. Then, there

exists a unique stochastic process {Xn}n≥1 on the canonical space (
∏∞

n=1Xn,⊗∞
n=1En) and

admits the following probability law Pη on F which is defined from the initial distribution

η and the Markov kernels {Mn}n≥2 by finite dimensional distributions as

Pη(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) =

∫

A1

∫

A2

. . .

∫

An

η(dx1)M2(x1, dx2) . . .Mn(xn−1, dxn)

for all n and Ei-measurable Ai, i = 1, . . . , n.

This is the canonical definition of a Markov chain, which leads to the defining property

of a Markov chain which is that the current state of the chain at time n depends only on

the previous state at time n− 1. More explicitly, for any n and En-measurable set A, we
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have

Pη(Xn ∈ A|X1:n−1 = x1:n−1) = Pη(Xn ∈ A|Xn−1 = xn−1)

= Mn(xn−1, A).

This property is also referred to as the weak Markov property, which can be stated in a

more general sense:

Proposition 2.1 (weak Markov property). Given X1 = x1, . . . , Xm = xm, the process

{Xm+n}n≥0 is a Markov chain independent from X1, . . . , Xm whose probability law is con-

structed from the initial distribution δxm and the sequence of Markov kernels {Mm+n}n≥1

in the same way as in Definition 2.1.

From now on, we will consider time-homogenous Markov chains where (Xn, En) =

(X , E) for all n ≥ 1 andMn = M for all n ≥ 2, and we will denote them asMarkov(η,M).

Such Markov chains are sufficient for the purposes of considering MCMC methods and

also the other methods investigated throughout this thesis.

For MCMC, we require the Markov chain to have a unique stationary distribution π

and to converge to π. Before that we need to review some fundamental properties a of

discrete time Markov chain to understand when stationarity and convergence are ensured.

Irreducibility: Informally, a Markov chain is irreducible if (almost) all its states com-

municate, that is, it is with a positive probability that the chain travels from any point

in X to any set in E . For discrete X it is possible to state this as

∀x, x′ ∈ X , ∃n ≥ 1 s.t. Pδx(Xn = x′) > 0.

For general state-spaces, we need to generalise the concept of irreducibility.

Definition 2.2 (φ-irreducibility). The transition kernelM , or the Markov chain {Xn}n≥1

with transition kernel M , is said to be φ-irreducible if there exists a measure φ on (X , E)
such that for any A ∈ E with φ(A) > 0, we have

∀x ∈ X , ∃n ≥ 1 s.t. Pδx(Xn ∈ A) > 0.

Such a measure φ is called an irreducibility measure for M .

Recurrence and Transience: In the discrete state-space case, we say that a Markov

chain is recurrent if every of its states is expected to be visited by the chain infinitely

often, otherwise it is transient. In the general state-space case, instead of states we

consider accessible sets. A set A ∈ E is accessible if Pδx(Xn ∈ A for some n) > 0 for all
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x ∈ X . It is also useful to consider stronger recurrence properties, expressed in terms of

return probabilities rather than expected number of visits.

Definition 2.3 (recurrence). Let A be a set in E . We say A is recurrent if for all

x ∈ A
Ex

[
∞∑

n=1

IA(Xn)

]
=∞.

Moreover, we say A is Harris recurrent if for all x ∈ A

Pδx

(
∞∑

n=1

IA(Xn) =∞
)

= 1.

Finally, we say a φ-irreducible Markov chain is recurrent (Harris recurrent) if every

accessible A ∈ E is recurrent (Harris recurrent).

Invariant measures: We call a σ-finite measure µ M-invariant if µ = µM . If a M-

invariant µ is a probability measure then µ is referred to as stationary. A Markov chain

associated with a φ-irreducible M is called positive if there is a probability measure µ

which is M-invariant. In order to state the conditions for existence of a unique invariant

probability measure for a Markov chain, we need the definition of a small set.

Definition 2.4 (small set). Let M and ν be a transition kernel and a probability mea-

sure, respectively, on (X , E), integer m ≥ 2 and constant ǫ ∈ (0, 1]. A set C ∈ E is called

a (m, ǫ, ν)-small set for M , or simply a small set, if for all x ∈ C and A ∈ E ,

Pδx(Xm ∈ A) ≥ ǫν(A).

Trivially, every point in X is a small set, so in discrete X every state is a small set.

Now, we have the following theorem for the existence and uniqueness of an invariant

probability measure.

Theorem 2.1. Given a Markov kernel M and a Markov chain associated to M , the

following hold

• M is φ-irreducible and recurrent if and only if it admits a unique (up to a multi-

plicative constant) invariant measure.

• If M admits an accessible small set C such that

sup
x∈C

EPδx
[inf{n ≥ 2 : Xn ∈ C}] <∞, (2.5)

then the Markov chain is positive.



2.4. MARKOV CHAIN MONTE CARLO 21

Note that while φ-irreducibility and recurrence ensure a unique (up to a multiplicative

constant) invariant measure, existence of an accessible small set is required as well to have

an invariant probability measure. In fact, the condition (2.5) is equivalent to the property

of positive recurrence for Markov chains with discrete state-space which is necessary for

the existence of a unique stationary distribution.

Reversibility and detailed balance: One useful way to verify the existence of an

invariant probability measure for a Markov chain is to check for its reversibility, which is

a sufficient (but not necessary) condition for existence of a stationary distribution.

Definition 2.5 (reversibility). Let M be a transitional kernel having a stationary dis-

tribution and assume the associated Markov chain is started from π. We say that M is

reversible if the reversed process {Xm = Xn−m+1}1≤m≤n is also Markov(π,M) for all

n ≥ 1.

A necessary and sufficient condition for reversibility of M is the detailed balance

condition.

Proposition 2.2 (detailed balance). We say a Markov kernel M is reversible with

respect to a probability measure π if and only if the following condition, known as the

detailed balance condition, holds: for all bounded measurable functions f on X ×X
∫

X×X

f(x, y)µ(dx)M(x, dy) =

∫

X×X

f(x, y)µ(dy)M(y, dx).

Also, then π is a stationary distribution for M .

Being a sufficient condition for stationarity, the detailed balance condition is quite

useful for designing transition kernels for MCMC algorithms.

Ergodicity: We have shown the conditions for a unique stationary distribution of a

Markov chain. The first ergodic theorem shows that these conditions are sufficient for

establishing a strong law of large numbers.

Theorem 2.2. If {Xn}n≥1 is a positive, Harris recurrent Markov chain with invariant

distribution π, then for all π-integrable functions ϕ,

1

n

n∑

i=1

ϕ(Xi)
a.s→ π(ϕ).

Note that this ergodic theorem is about the convergence of the sample mean and it

does not tell whether the chain will converge to its stationary distribution. For that to

happen the Markov chain is required to be aperiodic, a property which restricts the chain
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from getting trapped in cycles. In discrete state-space a cycle is defined as the greatest

common divisor of the lengths of all routes of positive probability between two states,

and if there exists no cycles of length greater than one, the chain is said to be aperiodic.

In general state-spaces, a more detailed care is required to define a cycle. It is a theorem

that there exists a (m, ǫ, ν)-small C set for a φ-irreducible Markov chain, which enables

the following definition.

Definition 2.6 (cycle and period). A φ-irreducible Markov chain associated to the

Markov kernel M has a cycle of length d if for some accessible (m, ǫ, ν)-small set C d is

the greatest common divisor of

{n− 1 : n ≥ 2 : C is (n, ǫn, νn)-small for some ǫn > 0, νn ∈ P(X )}

The period of the Markov chain is the largest possible cycle d for M . When the period is

1, the chain is called aperiodic.

We are now ready to state our second ergodic theorem which requires the ergodicity

of the Markov chain.

Theorem 2.3. If {Xn}n≥1 is a positive, and aperiodic Markov chain with stationary

distribution π, then for π-almost every x ∈ X , and all sets A ∈ E ,

sup
A∈E
|Pδx(Xn ∈ A)− π(A)| a.s.→ 0. (2.6)

Moreover, if the chain is Harris recurrent with stationary distribution π, the above holds

for every x ∈ X

We call a chain ergodic if it satisfies (2.6) for π-almost all x ∈ X ; if (2.6) is satisfied

for all x ∈ X then the chain is called uniformly ergodic. Hence we can define ergodicity

in terms of the properties of the Markov chain.

Definition 2.7 (ergodic Markov chain). A φ-irreducible Markov chain is called ergodic

if it is positive and aperiodic; it is called uniformly ergodic if it is also Harris recurrent.

2.4.2 Metropolis-Hastings

As previously stated, an MCMC method is based on a discrete-time Markov chain which

has its stationary distribution as π. The most widely used MCMC algorithm up to

date is the Metropolis-Hastings algorithm [Hastings, 1970; Metropolis et al., 1953]. In

this algorithm, given the previous sample Xn−1 a new value Y for Xn is proposed using

an instrumental transitional kernel K : X → P(E). We assume for simplicity that

the product measure π(dx)K(x, dy) has a probability density q(x, y) with respect to
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a dominating symmetric measure ζ(dx, dy) (a situation where this is not the case will

be visited in Section 2.4.3). The proposed sample Y is accepted with the acceptance

probability α(Xn−1, Y ), where the function α : X × X → [0, 1] is defined as

α(x, y) = min

{
1,
q(y, x)

q(x, y)

}
, x, y ∈ X .

Algorithm 2.4. Metropolis-Hastings: Begin with some X1 ∈ X . For n = 2, 3, . . .

• Sample Y ∼ K(Xn−1, ·).

• Set Xn = Y with probability α(Xn−1, Y ); otherwise set Xn = Xn−1.

According to Algorithm 2.4, the transition kernel M of the Markov chain from which

the samples are obtained is such that for any bounded measurable function f defined on

X
M(x, f) =

∫

X

K(x, dy)α(x, y)f(y) +

[
1−

∫

X

K(x, dy)α(x, y)

]
f(x).

where we can simplify the expression by substituting pr(x) = 1−
∫
X
K(x, dy)α(x, y), the

rejection probability of a proposed sample from K(x, ·). We can check for the detailed

balance condition to see why this Markov chain has π as its stationary distribution. For

a bounded measurable f on X ×X , we have

∫

X×X

π(dx)M(x, dy)f(x, y) =

∫

X×X

q(x, y)α(x, y)f(x, y)ζ(dx, dy)+

∫

X

π(dx)pr(x)f(x, x)

=

∫

X×X

min{q(x, y), q(y, x)}f(x, y)ζ(dx, dy) + π(prg).

where the function g : X → R satisfies g(x) = f(x, x). Since the measure ζ(dx, dy) and

the expression min{q(x, y), q(y, x)} are symmetric in (x, y), we can swap x and y in f(x, y)

in the last line, hence in the first line. This results the detailed balance condition being

satisfied for M with π. Note that existence of π for M ensures the recurrence of M , and

fortunately it is rare that a recurrent M is not Harris recurrent. There are also various

sufficient conditions for the M in the Metropolis-Hastings algorithm to be φ-irreducible

and aperiodic. For example, if K is π-irreducible and α(x, y) > 0 for all x, y ∈ X then

M is π-irreducible; if P (Xn = Xn−1) > 0 or K is aperiodic then M is aperiodic [Roberts

and Smith, 1994]. More detailed results on the convergence of Metropolis-Hastings are

also available, see e.g. Tierney [1994], Roberts and Tweedie [1996], and Mengersen and

Tweedie [1996].

Historically, the original MCMC algorithm was introduced by Metropolis et al. [1953]

for the purpose of optimisation on a discrete state-space. This algorithm, called the

Metropolis algorithm, used symmetrical proposal kernels K. The Metropolis algorithm

was later generalised by Hastings [1970] such that it permitted continuous state-spaces
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and asymmetrical proposal kernels, preserving the Metropolis algorithm as a special case,

and its use for statistical simulation was shown. A more historical survey is provided by

Hitchcock [2003].

2.4.3 Gibbs sampling

The Gibbs sampler [Gelfand and Smith, 1990; Geman and Geman, 1984] is one of the

most popular MCMC methods, which can be used when X has more than one dimension.

If X has d > 1 components (of possibly different dimensions) such thatX = (X1, . . . , Xd),

and one can sample from each of the full conditional distributions πk (·|X1:k−1, Xk+1:d),

then the Gibbs sampler produces a Markov chain by updating one component at a time

using πk’s. One cycle of the Gibbs sampler successively samples from the conditional

distributions π1, . . . , πd by conditioning on the most recent samples.

Algorithm 2.5. The Gibbs sampler: Begin with some X1 ∈ X . For n = 2, 3, . . .,

generate for k = 1, . . . , d

Xn,k ∼ πi(·|Xn−1,1:k−1, Xn−1,k+1:d).

For an x ∈ X , let x−k = (x1:k−1, xk+1:d) for k = 1, . . . , d denotes the components of

x excluding xk, and let us permit ourselves to write x = (xk, x−k). The corresponding

MCMC kernel of the Gibbs sampler can be written as M = M1M2 . . .Md, where each

transition Kernel Mk : X → P(X ) for k = 1, . . . , d can be written as

Mk(x, dy) = πk(dyk|x−k)δx−k(dy−k)

The justification of the transitional kernel comes from the reversibility of each Mk with

respect to π, which can be verified from the detailed balance condition as follows. For

any bounded measurable function f on X × X ,

∫
π(dx)Mk(x, dy)f(x, y) =

∫
π(dx)πk(dyk|x−k)δx−k(dy−k)f(xk, x−k, yk, y−k)

=

∫
π(dx−k)πk(dxk|x−k)πk(dyk|x−k)f(xk, x−k, yk, x−k)

=

∫
π(dy)πk(dxk|y−k)f(xk, y−k, yk, y−k)

=

∫
π(dy)πk(dxk|y−k)δx−k(dy−k)f(xk, x−k, yk, y−k)

=

∫
π(dy)Mk(y, dx)f(x, y), (2.7)

hence the detailed balance condition for Mk is satisfied with π. This leads to πMk = π,

hence πM = π, so π is indeed stationary for the Gibbs sampler. An insightful interpre-
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tation of (2.7) is that each step of a cycle of the Gibbs sampler is a Metropolis-Hastings

move whose MCMC kernel M is equal to its proposal kernel K i.e. the α(x, y) = 1

uniformly. This also shows that the assumption that π(dx)K(x, dy) has a density with

respect to a symmetric measure ζ(x, y) is not a necessary condition for the Metropolis-

Hastings algorithm. However, reversibility of each Mk with respect to π does not suffice

to establish proper convergence of the Gibbs sampler, as none of the individual steps pro-

duces a φ-irreducible chain. Only the combination of the d moves in the complete cycle

has a chance of producing a φ-irreducible chain. We refer to Roberts and Smith [1994] for

some simple conditions for convergence of the classical Gibbs sampler. Note, also, that

M is not reversible either, although this is not a necessary condition for convergence. A

way of guaranteeing both φ-irreducibility and reversibility is to use a mixture of kernels

Mβ =
d∑

k=1

βkMk, βk > 0, k = 1, . . . , d,
d∑

k=1

βk = 1.

provided that at least one Mk is irreducible and aperiodic. This choice of kernel leads

to the random scan Gibbs sampler algorithm. We refer to Tierney [1994], Roberts and

Tweedie [1996], and Robert and Casella [2004] for more detailed convergence results

pertaining to these variants of the Gibbs sampler.

Having attractive computational properties, the Gibbs sampler is widely used. The

requirement for easy-to-sample conditional distributions is the main restriction for the

Gibbs sampler. Fortunately, though, replacing the exact simulation by a Metropolis-

Hastings step in a general MCMC algorithm does not violate its validity as long as the

Metropolis-Hastings step is associated with the correct stationary distribution. The most

natural alternative to the Gibbs move in step k where sampling from the full conditional

distribution πk(·|x−k) is not directly feasible is to use one-step Metropolis-Hastings move

that updates xk by using a Metropolis-Hastings kernel M : X → P(X ) such that πk(·|x−k)
is M-invariant [Tierney, 1994].

2.5 Sequential Monte Carlo

Despite their versatility and success, it might be impractical to apply MCMC algorithms

to sequential inference problems. This section discusses sequential Monte Carlo (SMC)

methods, that can provide with approximation tools for a sequence of varying distribu-

tions. Good tutorials on the subject are available, see for example Doucet et al. [2000b]

and Doucet et al. [2001] for a book length review. Also, Robert and Casella [2004]

and Cappé et al. [2005] contain detailed summaries. Finally, the book Del Moral [2004]

contains a more theoretical work on the subject in a more general framework, namely

Feynman-Kac formulae.
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2.5.1 Sequential importance sampling

Let {Xn}n≥1 be a sequence of random variables where each Xn takes values at some

measurable space (Xn, En). Define the sequence of distributions {πn}n≥1 defined on the

measurable space (Xn =
∏n

i=1Xi, En = ⊗ni=1Ei). Also, let {ϕn}n≥1 be a sequence of

functions where ϕn : Xn → R is a πn-measurable real-valued function on Xn. We are

interested in sequential inference, i.e. approximating the following integrals sequentially

in n

πn(ϕn) = Eπn [ϕn(X1:n)] , n = 1, 2, . . .

The first method which is usually considered a SMC method is sequential importance

sampling (SIS), which is a sequential version of the importance sampling. First use of SIS

can be recognised in works back in 1960s and 1970s such as Mayne [1966], Handschin and

Mayne [1969], and Handschin [1970]; see Doucet et al. [2000b] for a general formulation

of the method for Bayesian filtering. Consider the naive importance sampling approach

to the sequential problem where we have a sequence of importance measures {qn}n≥1

with each qn is a measure defined on (Xn, En) such that πn ≪ qn with Radon-Nikodým

derivative wn = dπn
dqn

. It is obvious that we can approximate πn(ϕn) by generating samples

from qn independently of samples generated from q1, . . . , qn−1 and exploiting the relation

πn(ϕn) = qn (wnϕn) .

This approach would require the design of a separate qn and sampling the whole path

X1:n at each n, which is obviously inefficient. An efficient alternative to this approach is

SIS which can be used when it is possible to choose qn to have the form

qn(dx1:n) = q1(dx1)

n∏

i=1

Qi(dx1:i−1, xi), (2.8)

where Qn : X1:n−1 → P(En) are some transitional kernels which are possible to sample

from. This selection of qn leads to the following useful relation recursion on the importance

weights

wn(x1:n) = wn−1(x1:n−1)
dπn

d(πn−1 ⊗Qn)
(x1:n). (2.9)

In many applications of (2.9), the Radon-Nikodým derivative dπn
d(πn−1⊗Qn)

(x1:n) is function

of xn−1 and xn only. Hence, one can exploit this recursion by sampling only Xn using

Qn at time n and updating the weights with a small effort. More explicitly, assume a

set of N > 0 samples, termed as particles, X
(i)
1:n−1 with weights w

(i)
n−1 for i = 1, . . . , N are

available at time n− 1. As long as self-normalised importance sampling is concerned, it
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is practical to define the weighted empirical distribution

πNn−1(dx1:n−1) =

N∑

i=1

W
(i)
n−1δX(i)

1:n−1
(dx1:n−1), (2.10)

as an approximation to πn−1, where W
(i)
n , i = 1, . . . , N are the self-normalised importance

weights

W
(i)
n−1 =

wn−1(X
(i)
1:n−1)∑N

i=1wn−1(X
(i)
1:n−1)

. (2.11)

The update from πNn−1 to πNn can be performed by first sampling X
(i)
n ∼ Q(X

(i)
1:n−1, ·) and

computing the weights wn at points X
(i)
1:n = (X

(i)
1:n−1, X

(i)
n ) using the update rule in (2.9),

and finally obtain the normalised weights W
(i)
n using (2.11). A SIS estimate of πn(ϕn) is,

then, given by

πNn (ϕn) =

N∑

i=1

W (i)
n ϕn(X

(i)
1:n).

Being a special case of importance sampling approximation, this approximation has al-

most sure convergence to πNn (ϕn) for any n (under regular conditions) as the number of

particles tends to infinity; it is also possible to have a central limit theorem for πNn (ϕn)

[Geweke, 1989]. The SIS method is summarised in Algorithm 2.6.

Algorithm 2.6. Sequential importance sampling (SIS)

For n = 1, 2, . . .;

• for i = 1, . . . , N ,

– if n = 1; sample X
(i)
1 ∼ q1, calculate w1(X

(i)
1 ) = dπ1

dq1
(X

(i)
1 ).

– if n ≥ 2; sample X
(i)
n ∼ Qn(X

(i)
1:n−1, ·), set X

(i)
1:n = (X

(i)
1:n−1, X

(i)
n ), and calculate

wn(X
(i)
1:n) = wn−1(X

(i)
1:n−1)

dπn
d(πn−1 ⊗Qn)

(X
(i)
1:n).

• for i = 1, . . . , N , calculate

W (i)
n =

wn(X
(i)
1:n)∑N

i=1wn(X
(i)
1:n)

.

As in the non-sequential case, it is important to choose {qn}n≥1 such that the variances

of {πNn (ϕn)}n≥1 are minimised. Recall that in the SIS algorithm we restrict ourselves to

{qn}n≥1 satisfying (2.8), therefore selection of the optimal proposal distributions sug-

gested in Section 2.3 may not be possible. Instead, a more general motivation for those
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{qn}n≥0 satisfying (2.8) might be to minimise the variance of incremental importance

weights

wn|n−1(x1:n) =
dπn

d(πn−1 ⊗Qn)
(x1:n).

conditional upon x1:n−1. Note that the objective of minimising the conditional variance

of wn|n−1 is more general in the sense that it is not specific to ϕn. It was shown in Doucet

[1997] that the kernel Qopt
n by which the variance is minimised is given by

Qopt
n (x1:n−1, dxn) = πn(dxn|x1:n−1). (2.12)

Before Doucet [1997], the optimum kernel was used in several works for particular appli-

cations, see e.g. Kong et al. [1994], Liu and Chen [1995], and Chen and Liu [1996]. The

optimum kernel leads to the optimum incremental weight

wopt

n|n−1(x1:n−1) =
dπn
dπn−1

(x1:n−1). (2.13)

which does not depend on the value of xn. This is an interesting observation and it will

be revisited in Section 2.5.3.

2.5.2 Sequential importance sampling resampling

The SIS method is an efficient way of implementing importance sampling sequentially.

However; unless the proposal distribution is very close to the true distribution, the im-

portance weight step will lead over a number of iterations to a small number of particles

with very large weights compared to the rest of the particles. This will eventually result

in one of the normalised weights to being 1 and the others being 0, effectively leading to

a particle approximation with a single particle, see Kong et al. [1994] and Doucet et al.

[2000b]. This problem is called the weight degeneracy problem.

In order to address the weight degeneracy problem, a resampling step is introduced

at iterations of the SIS method, leading to the sequential importance sampling resampling

(SISR) algorithm. Generally, we can describe resampling as a method by which a weighted

empirical distribution is replaced with an equally weighted distribution, where the samples

of the equally weighted distribution are drawn from the weighted empirical distribution.

Here, resampling is applied to πNn−1 before proceeding to approximate πn. Assume, again,

that πn−1 is approximated with N particles X
(1)
1:n−1, . . . , X

(N)
1:n−1 with normalised weights

W
(i)
n−1 as in equation (2.10). We draw N independent samples from πNn−1, namely X̃

(i)
1:n−1,

i = 1, . . . , N such that

P (X̃
(i)
1:n−1 = X

(j)
1:n−1) = W

(j)
n−1, i, j = 1, . . . , N.
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Obviously, this corresponds to drawing N independent samples from a multinomial dis-

tribution, therefore this particular resampling scheme is called multinomial resampling.

After resampling, for each i = 1, . . . , N we sample X
(i)
n from Qn(X̃

(i)
1:n−1, ·), weight the

particles X
(i)
1:n = (X̃

(i)
1:n−1, X

(i)
n ) using

W (i)
n ∝

dπn
d(πn−1 ⊗Qn)

(X
(i)
1:n),

N∑

i=1

W (i)
n = 1.

The SISR method, also known as the particle filter, is summarised in Algorithm 2.7.

Algorithm 2.7. Sequential importance sampling resampling (SISR)

For n = 1; for i = 1, . . . , N sample X
(i)
1 ∼ q1, set W

(i)
1 ∝ dπ1

dq1
(X

(i)
1 ).

For n = 2, 3, . . .

• Resample {X(i)
1:n−1}1≤i≤N according to the weights {W (i)

n−1}1≤i≤N to get resampled

particles {X̃(i)
1:n−1}1≤i≤N with weight 1/N .

• For i = 1, . . . , N ; sample X
(i)
n ∼ Qn(X̃

(i)
1:n−1, ·), set X

(i)
1:n = (X̃

(i)
1:n−1, X

(i)
n ), and set

W (i)
n ∝

dπn
d(πn−1 ⊗Qn)

(X
(i)
1:n).

The importance of resampling in the context of SMC was first demonstrated by Gor-

don et al. [1993] based on the ideas of Rubin [1987]. Although the resampling step

alleviates the weight degeneracy problem, it has two drawbacks. Firstly, since after suc-

cessive resampling steps some of the distinct particles for X1:n are dropped in favour of

more copies of highly-weighted particles. This leads to the impoverishment of particles

such that for k << n, very few particles represent the marginal distribution of Xk un-

der πn [Andrieu et al., 2005; Del Moral and Doucet, 2003; Olsson et al., 2008]. Hence,

whatever being the number of particles, πn(dx1:k) will eventually be approximated by a

single unique particle for all (sufficiently large) n. As a result, any attempt to perform

integrations over the path space will suffer from this form of degeneracy, which is called

path degeneracy. The second drawback is the extra variance introduced by the resampling

step. There are a few ways of reducing the effects of resampling.

• One way is adaptive resampling i.e. resampling only at iterations where the effective

sample size drops below a certain proportion of N . For a practical implementation,

the effective sample size at time n itself should be estimated from particles as well.

One particle estimate of Neff,n is given in Liu [2001, pp. 35-36]

Ñeff,n =
1

∑N
i=1W

(i)2
n

.
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• Another way to reduce the effects of resampling is to use alternative resampling

methods to multinomial resampling. Let In(i) is the number of times the i’th

particle is drawn from πNn in a resampling scheme. A number of resampling methods

have been proposed in the literature that satisfy E [In(i)] = NW
(i)
n but have different

var [In(i)]. The idea behind E [In(i)] = NW
(i)
n is that the mean of the particle

approximation to πn(ϕn) remains the same after resampling. Standard resampling

schemes include multinomial resampling [Gordon et al., 1993], residual resampling

[Liu and Chen, 1998; Whitley, 1994], stratified resampling [Kitagawa, 1996], and

systematic resampling [Carpenter et al., 1999; Whitley, 1994]. There are also some

non-standard resampling algorithms such that the particle size varies (randomly)

after resampling (e.g. Crisan et al. [1999]; Fearnhead and Liu [2007]), or the weights

are not constrained to be equal after resampling (e.g. Fearnhead and Clifford [2003];

Fearnhead and Liu [2007]).

• A third way of avoiding path degeneracy is provided by the resample-move al-

gorithm [Gilks and Berzuini, 2001], where each resampled particle X̃
(i)
1:n is moved

according to a MCMC kernel Kn : Xn → P(En) whose invariant distribution is πn.

In fact we could have included this MCMC move step in Algorithm 2.7 to make

the algorithm more generic. However, the resample-move algorithm is a useful de-

generacy reduction technique usually in a much more general setting. Although

possible in principle, it is computationally infeasible to apply a kernel to the path

space on which current particles exist as the state space grows at evert iteration

of SISR. The resample-move algorithm will be revisited in Section 2.5.4, where it

is considered as a special case of a wide class of sequential sampling methods that

operate on sequences of arbitrary spaces.

• The final method we will mention here that is used to reduce path degeneracy is

block sampling [Doucet et al., 2006], where at time n one samples components

Xn−L+1:n for L > 1, and previously sampled values for Xn−L+1:n−1 are simply

discarded. In return of the computational cost introduced by L, this procedure

reduces the variance of weights and hence reduces the number of resampling steps (if

an adaptive resampling strategy is used) dramatically. Therefore, path degeneracy

is reduced.

2.5.3 Auxiliary particle filter

Recall that when the optimum proposal Qopt
n is used to sample xn the corresponding

optimum incremental weight wopt

n|n−1 does not depend on the value of xn. Therefore,

the optimum incremental weight indicates which particles are likely to represent πn bet-

ter even before proposing the new state xn. This encourages for a sequential sampling
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strategy where the optimum incremental weights are involved in deciding on with which

particles the algorithm proceeds to the next time step, and this is the strategy on which

the auxiliary particle filter [Pitt and Shephard, 1999] is based. To understand how we

can implement this strategy, it is useful to see how target distributions at iterations are

modified with the resampling step in the SISR algorithm. One can show that given πNn−1

in (2.10) to be the SISR approximation to πn−1, SISR targets the following distribution

at time n (provided that resampling step is performed)

π̄n(dx1:n) ∝
[

N∑

i=1

W
(i)
n−1w

opt

n|n−1(X
(i)
1:n−1)δX(i)

1:n−1
(dx1:n−1)

]
Qopt
n (dxn|x1:n−1). (2.14)

In the standard SISR algorithm, the following proposal distribution is used to implement

importance sampling at time n

q̄n(dx1:n) =

[
N∑

i=1

W
(i)
n−1δX(i)

1:n−1
(dx1:n−1)

]

︸ ︷︷ ︸
resampling X1:n−1

Qn(x1:n−1, dxn)︸ ︷︷ ︸
proposing Xn

which does not fully exploit the structure in (2.14). As a result we have a well known

drawback of SISR: if πn varies significantly compared to πn−1, the variance of the weights

can be quite high. This results in an inefficient algorithm, and a large number of particles

may be required for recovery.

Provided that one can calculate wopt
n (x1:n−1), a more sensible choice for q̄n(dx1:n) could

be

q̄optn (dx1:n) =

[
N∑

i=1

W
(i)

n−1δX(i)
1:n−1

(dx1:n−1)

]
Qn(dxn|x1:n−1). (2.15)

where W
(i)

n−1 ∝ W
(i)
n−1w

opt
n (X

(i)
1:n−1) such that

∑N
i=1W

(i)

n−1 = 1. Then, the importance

weight for particle X
(i)
1:n =

(
X

(j)
1:n−1, X

(i)
n

)
would be

W (i)
n ∝

dπ̄n

dq̄optn

(X
(i)
1:n) =

dQopt
n (X

(j)
1:n−1, ·)

dQn(X
(j)
1:n−1, ·)

(X(i)
n ).

This type of particle filter is called an auxiliary particle filter in the literature. The

term ‘auxiliary’ is due to treating X1:n−1 at time n as auxiliary; because in many cases

where a particle filter is used, integration of functions on Xn with respect to the marginal

distribution πn(dxn) is the main interest and resampling of X1:n−1 in this particular way

helps the Monte Carlo approximation of such integrations improve.

One remarkable point here is that if one can use Qn = Qopt
n , then all the particles

have equal weights. This shows how this sampling scheme can reduce weight degeneracy
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effectively. (Notice also that Qn = Qopt
n results in the regular SISR with optimum pro-

posal, where the sampling and resampling steps are interchanged.) However, it may not

be possible (or straightforward) to sample from Qopt
n or calculate wopt

n (x1:n−1). This does

not restrict the use of the idea behind the auxiliary particle filter, though. In fact, the

auxiliary particle filter is more general: We can perform importance sampling for π̄n by

constructing a q̄n which can be generically written as

q̄auxn (dx1:n) =

N∑

i=1

α
(i)
n−1δX(i)

1:n−1
(dx1:n−1)Qn(dxn|x1:n−1).

We have complete control over αn−1 andQn; however the idea is to be able to sample those

particles X
(i)
1:n−1 which represents πn(x1:n−1) better, and sample Xn approximately from

the optimal proposal distribution in order to have weights with low variance. Therefore,

the rule of thumb is to make α
(i)
n−1 and Qn as close as possible to W

(i)

n−1 and Qopt
n . Indeed,

the authors in Andrieu et al. [2001] propose an improved auxiliary particle filter scheme,

where (2.15) or a suitable approximation to (2.15) is suggested to be used.

2.5.4 Sequential Monte Carlo samplers

Sequential Monte Carlo samplers [Del Moral et al., 2006] cover a very large class of SMC

methods. Assume that we have a sequence of somehow related distributions π1, . . . , πp

where each πn is defined on an arbitrary measurable space (Xn, En). There are many po-

tential choices for π1, . . . , πp leading to various integration and optimisation algorithms;

examples can be found in Chopin [2002] for static parameter estimation, Gelman and

Meng [1998] and Neal [2001] for targeting a distribution through a sequence of intermedi-

ate distributions, Del Moral et al. [2006] for global optimisation, Johansen et al. [2005] and

Del Moral et al. [2006] for rare event simulation and density estimation, and Del Moral

et al. [2012] for approximate Bayesian computation. The problem of approximating these

distributions sequentially using Monte Carlo is beyond the extend of the classical SIS or

SISR methods, since these require the distributions to be defined on increasing spaces.

The first approach that comes to mind is to treat each πn individually and perform

importance sampling for each of them independently. Obviously, this approach has the

difficulties of importance sampling: unless the distribution of interest is a standard low-

dimensional one, importance sampling is almost never used when there are alternatives.

The main reason for that is the difficulty of designing an good proposal. One reasonable

way is to do importance sampling for πn individually, but this time by designing the

importance distributions sequentially using an initial distribution η1 and a sequence of

transition kernels {Kn : Xn−1 → P(En)}n≥1. The idea here is that if the distributions πn

varies slowly in n, then it is possible to obtain samples to approximate πn effectively by
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using Kn to slowly move the samples obtained to approximate πn−1. Let us assume that

we begin with sampling X
(1)
1 , . . . , X

(N)
1 from η1 to approximate π1. At times n ≥ 2, we

sample X
(i)
n from Kn(X

(i)
n−1, ·). The importance weight of X

(i)
n is given by

w(i)
n =

dπn
dηn

(X(i)
n ), ηn(dxn) = ηn−1Kn(dxn).

The choice of Kn’s are optional except the requirement that πn ≪ ηn−1Kn; however it is

crucial for the the performance of this method. In the literature, several different types of

moves are used, such as independent proposals [West, 1993], local random moves [Givens

and Raftery, 1996], MCMC and Gibbs moves [Del Moral et al., 2006], etc.

This sequential implementation of importance sampling approach is attractive and

optimal in some sense (we will see soon in what sense), however it has a quite restrictive

limitation: in most cases it is impossible to calculate the importance distribution ηn.

SMC samplers come into role at this point, circumventing the need for calculation of

ηn. The main idea of the method is to construct the synthetic distributions π̃n on the

extended spaces (X1 × . . .× Xn, E1 ⊗ . . .⊗ En) as

π̃n(dx1:n) = πn(dxn)

n−1∏

i=1

Li(xi+1, dxi) (2.16)

where each Ln : Xn+1 → P(Xn) is a backward Markov kernel. Since π̃n admits πn

marginally by construction, importance sampling on π̃n using the following proposal

distribution

η̃n(dx1:n) = η1(dx1)

n∏

i=2

Ki(xi−1, dxi).

can provide an approximation for πn as well. Although, freedom to choose Kn’s and Ln’s

contribute to the method’s generality, the performance of the method crucially depends

on the their choice. In fact, the central limit theorem presented in Del Moral et al. [2006]

demonstrates that the variance of the estimator is strongly dependent upon the choice of

these kernels. The importance weight for this method is given by

wn(x1:n) =
dπ̃n
dη̃n

(x1:n).

It was shown in Del Moral et al. [2006] that given Kn, the optimum backward kernel

Lopt
n−1 which minimises the variance of the importance weights satisfies the relation

ηn ⊗ Lopt
n−1 = ηn−1 ⊗Kn.



34 CHAPTER 2. MONTE CARLO METHODS FOR STATISTICAL INFERENCE

It can be shown that the importance weights for the optimum backward kernel is

wopt
n (x1:n) =

dπn
dηn

(xn).

This result reveals that the optimum backward kernel takes us back to the case where

one performs importance sampling on the marginal space instead of the extended one.

However, most of the time ηn cannot be calculated, hence other sub-optimal backward

kernels must be used. It was shown in Del Moral et al. [2006] that when Lopt
n−1 is not used,

the variance of wn(x1:n) can not be stabilised. For that reason, resampling of the samples

that are used for approximating πn−1 is necessary before moving to the approximation of

πn. Actually, this can be done thanks to the possibility of constructing π̃n such that the

importance weights can be expressed as a product of incremental weights. Assume that

πn ≪ Kn and Ln ≪ πn for all n. Then it can be shown that for a bounded measurable

function ϕn on X1 × . . .×Xn we have π̃n(ϕn) = η̃n(ϕnwn) where the importance weights

wn are given by

wn(x1:n) =
dπ1

dη1
(x1)

n∏

i=2

dLi−1(xi, ·)
dπi−1

(xi−1)
dπi

dKi(xi−1, ·)
(xi). (2.17)

Equation (2.17) admits a recursion in n as

wn(x1:n) = wn|n−1(xn−1, xn)wn(x1:n−1)

where the incremental weight wn|n−1(xn−1, xn) is given by

wn|n−1(xn−1, xn) =
dπn

dKn(xn−1, ·)
(xn)

dLn−1(xn, ·)
dπn−1

(xn−1). (2.18)

Note that the recursive form of the weights enables us to implement an SMC method

for the synthetic distributions π̃n. Actually, when (2.17) exists, the SMC sampler for

π1, . . . , πp is the SISR algorithm targeting π̃1, . . . , π̃p using the initial and transitional

proposal distributions η1 and Kn, n = 2, . . . , p respectively, and its incremental weights

are given in (2.18).

Note that, in practice even if Ln is not absolutely continuous with respect to πn,

we can still obtain importance weights factorized into incremental weights by taking the

restrictions of Ln’s to the supports of πn’s. Note, also, that as in importance sampling,

SIS, and SISR, even if we know π̃n’s and η̃n’s only up to some normalising constants we

can still perform the SMC samplers algorithm to approximate the integrals πn and to

estimate the unknown normalising constants as well.

SMC samplers generalise many related works previously in the literature. For exam-
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ple, the annealed importance sampling method, which corresponds to the SMC sampler

without resampling where Ln−1 satisfies

πn−1Kn ⊗ Ln−1 = πn−1 ⊗Kn (2.19)

and Kn is such that πn−1 is Kn-invariant, is proposed by Neal [2001] for sequences of

slightly varying distributions. To deal with the variance problem for general cases, the

equivalent choice of kernels are used in (among others) Chopin [2002] and Gilks and

Berzuini [2001] with resample-move strategies, which actually corresponds to the SMC

sampler algorithm with resampling. Population Monte Carlo, presented by Cappé et al.

[2004] and Celeux et al. [2006] with an extension, is another special case of SMC samplers

where the authors consider the homogeneous case where πn = π and Ln(x, dx
′) = π(dx′)

andKn(x, dx
′) = Kn(dx

′). Finally Liang [2002] presents a related algorithm where πn = π

and Kn(x, x
′) = Ln(x, dx

′) = K(x, dx′).

2.6 Approximate Bayesian computation

Assume that we have a random variable of interest X, taking values in X . Its probability

distribution π(dx) has a density on X with respect to a dominating measure dx, which is

abusively denoted as π(x)1. The value of X, denoted by x, is observed indirectly through

an observation process generating values Y ∈ Y according to conditional observation

probability distribution who also has a density on Y with respect to dy, which is denoted

as g(y|x). The density g(y|x) is also called the likelihood. The posterior distribution of

X given Y = y has the following density which is given by Bayes’ theorem

π(x|y) =
π(x)g(y|x)∫

X
π(x′)g(y|x′)dx′ .

Approximate Bayesian computation (ABC) deals with the problem of Monte Carlo ap-

proximation to π(x|y) when the likelihood g(y|x) is intractable. By intractability it is

meant either that the density does not have a close form expression or that it is pro-

hibitive to calculate it. ABC methods try to approximate π(x|y) without circumventing

the calculation of g(y|x) and for this reason they are also known as likelihood-free meth-

ods. The main idea behind ABC is simulating from the observation process and accepting

simulated samples provided that they are close to the observed value y in some sense.

ABC methods have appeared in the past ten years as one of the most satisfactory ap-

proach to intractable likelihood problems. This section is a brief and limited review of

the main contributions to the ABC methodology, for a more detailed recent review, one

1It is simpler to describe the methodology in this section when we use densities instead of measures.
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can see Marin et al. [2011].

The idea core to ABC is first mentioned in Rubin [1984]; but the first ABC method

was proposed by Tavaré et al. [1997] as a special case of rejection sampling for discrete Y .

It proposes to sample (x, y) from π(x)g(u|x) and consider only those samples for which

u = y. It is not difficult to show that if the accepted samples are (X(1), y), . . . , (X(N), y),

then X(1), . . . , X(N) are samples from the posterior π(x|y). Note that this a rejection

sampling method for the distribution π(x, u|y) on X × Y , which is given by

π(x, u|y) ∝ π(x)g(u|x)Iy(u) (2.20)

and when this density is integrated over u, we end up with π(x|y). This method is exact

in the sense that the obtained samples for X are drawn from π(x|y). However, obviously

Iy(u) would not work for continuous Y , since the probability of hitting {y} will be zero.

The first genuine ABC method, proposed by Pritchard et al. [1999] as a rejection sampling

method also, relaxes Iy(u) and replaces (2.20) with

πǫ(x, u|y) ∝ π(x)g(u|x)IAǫy(u) (2.21)

where Aǫy is called the ABC set and defined based on some summary statistic s : Y → Rds

and a distance metric ρ : Rds ×Rds → R as

Aǫy = {u ∈ Y : ρ[s(u), s(y)] < ǫ}. (2.22)

If s is sufficient with respect to x, one can show that as ǫ tends to zero, the marginal

of density πǫ(x, u|y) with respect to x converges to the posterior π(x|y). In most cases

sufficient statistics are not available, hence the choice of summary statistics is of great

importance. The ABC literature is rich in papers discussing on the selection of these

sufficient statistics, see Fearnhead and Prangle [2012] for an example. The ABC method

in Pritchard et al. [1999] is also a rejection sampling method, targeting πǫ(x, u|y): generate

(X,U) from π(x)g(u|x) and consider only those samples for which U ∈ Aǫy. This method

is summarised in Algorithm 2.8.

Algorithm 2.8. Rejection sampling for ABC: To generate a single sample from

πǫ(x, u|y),

1. Generate (X,U) ∼ π(x)g(u|x).

2. If U ∈ Aǫy, accept (X,U); else go to 1.

Using simulations from the prior distribution π(x) can be inefficient since this does not

take neither the data nor the previously accepted samples into account when proposing

a new x and thus fails to propose values located in high posterior probability regions.
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To overcome this impracticality of rejection sampling, an MCMC based ABC method

was developed by Marjoram et al. [2003]. The method is simply an MCMC algorithm

targeting πǫ(x, u|y) which uses an instrumental kernel with density q(x′|x)g(u′|x′) to

move samples (x, u) and takes either (x′, u′) or (x, u) as the next sample according to the

corresponding acceptance probability

α(x, u; x′, u′) = min

{
1,
q(x|x′)π(x′)IAǫy(u

′)

q(x′|x)π(x)

}
, x, x′ ∈ X , u, u′ ∈ U .

The MCMC-ABC method is given in Algorithm 2.9.

Algorithm 2.9. MCMC for ABC: Begin with some (X1, U1) ∈ X × U . For n =

2, 3, . . .

• Generate (X ′, U ′) ∼ q(x′|x)g(u′|x′).

• Set (Xn, Un) = (X ′, U ′) with probability α(Xn−1, Un−1;Xn, Un); otherwise set (Xn, Un) =

(Xn−1, Un−1).

It is useful to interpret the ABC posterior all in terms densities: We can consider

IAǫy(u) as to which the density of the conditional distribution of Y given U = u, say

κǫ(y|u), is proportional to. Then we can rewrite (2.21) as

πǫ(x, u|y) =
π(x)g(u|x)κǫ(y|u)∫

X×Y
π(x′)g(u′|x′)κǫ(y|u′)dx′du′

.

A useful generalisation of πǫ(x, u|y) can be made by taking κǫ(y|u) some normalised kernel

with bandwidth ǫ centred at u. In many applications, it is practical sometimes to take

κǫ proportional not to an indicator function but to a smooth kernel, such as a Gaussian

kernel, to make calculations tractable or to avoid computational waste due to rejections.

We will see a use of choosing a smooth kernel in Chapter 6.

Another use of kernels in defining the ABC posterior is to be able to express the

difference between the ABC posterior and the real posterior in terms of model error.

Note that the ABC suffers from model discrepancy since it corresponds to performing

Bayesian inference for the case where the observation Y has the conditional probability

density not being g(y|x) but the following:

gǫ(y|x) =

∫

Y

g(u|x)κǫ(y|u)du.

Therefore, we say that the ABC posterior is not ‘calibrated’. A way of rephrasing this is

that if the model included an error term, characterised by κǫ, then the ABC would target

the true posterior hence the ABC posterior would be ‘calibrated’ [Wilkinson, 2008]. This
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leads to the method of noisy ABC [Dean et al., 2011; Fearnhead and Prangle, 2012],

which adds noise to the (summary statistic of) data itself to have yǫ ∼ κǫ(·|y), and then

perform ABC for the modified data by targeting πǫ(x, u|yǫ), which is calibrated.

Other than approximating the posterior distribution of a single random variable,

the ABC approach also extends to sequential inference. Jasra et al. [2012] propose an

ABC implementation scheme for approximating the densities like πn(x1:n|y1:n) in hidden

Markov models (HMM), where {Xt}t≥1 is a Markov process and the distribution of the

observables {Yt}t≥1 conditioned on the hidden process is intractable. Their approach is

related to the convolution particle filter of Campillo and Rossi [2009]. Dean et al. [2011]

discuss the ABC implementation for HMMs further and show that the model for which

noisy ABC is exact is also a HMM; therefore they conclude that noisy ABC can be im-

plemented for HMMs. We will see the sequential implementation of ABC as well as its

use for static parameter estimation in more detail in Chapter 6.

While decreasing the value of ǫ obviously makes πǫ(x, u|y) close to the true posterior,

the variance of its Monte Carlo becomes a more crucial issue. Therefore, it is important

to keep the variance of the approximation at a reasonable level while making ǫ suffi-

ciently small. For this reason, SMC samplers are used for approximating a sequence of

distributions {πk(x, u|y) = πǫk(x, u|y)}1≤k≤p, where ǫ1 > . . . > ǫp = ǫ and the difference

between successive πk’s are small enough to make successive πk(x, u|y) varying sufficiently

slowly. SMC samplers are used in the ABC context in Sisson et al. [2007] and the method

there was improved in Beaumont et al. [2009]; Toni et al. [2009] and Sisson et al. [2009].

Del Moral et al. [2012] showed the relation of these works to SMC samplers explicitly.

Other novelties of Del Moral et al. [2012] is that the authors rely on M repeated simu-

lations of the pseudo-data u and benefit the variance reduction property of Monte Carlo

averaging and they propose a scheme for adaptive selection of the sequence of tolerance

levels {ǫk}1≤k≤n. The forward kernel at step k is chosen to leave πk−1 invariant and

backward kernel is chosen to satisfy (2.19).

Other than inference of hidden variables, there is a lot of work for model selection

using ABC methods. We will not review these methods as they are not of particular

interest for this thesis; the interested reader may see Marin et al. [2011] for a review and

the references therein for details.



Chapter 3

Hidden Markov Models and

Parameter Estimation

Summary: This chapter contains the second half of the literature survey. The main

purpose of this chapter is to introduce hidden Markov models (HMM), which are also

known as general state-space models, and review their use in the literature as a powerful

framework for filtering and parameter estimation.

3.1 Introduction

HMMs arguably constitute the widest class of time series models that are used for mod-

elling stochastic dynamic systems. In Section 3.2, we will introduce HMMs using a

formulation that is appropriate for filtering and parameter estimation problems. We will

restrict ourselves to discrete time homogenous HMMs whose dynamics for their hidden

states and observables admit conditional probability densities which are parametrised

by vector valued static parameters. However, this is our only restriction; we keep our

framework general enough to cover those models with non-linear non-Gaussian dynamics.

One of the main problems dealt within the framework of HMMs is optimal Bayesian

filtering, which has many applications in signal processing and related areas such as

speech processing [Rabiner, 1989], finance [Pitt and Shephard, 1999], robotics [Gordon

et al., 1993], communications [Andrieu et al., 2001], etc. Due to the non-linearity and non-

Gaussianity of most of models of interest in real life applications, approximate solutions

are inevitable and SMC is the main computational tool used for this; see e.g. Doucet et al.

[2001] for a wide selection of examples demonstrating use of SMC. SMC methods have

already been presented in its general form in Section 2.5, we will present their application

to HMMs for optimal Bayesian filtering in Section 3.3.

In practice, it is rare that the practitioner has complete knowledge on the static pa-

rameters of the time series model which she uses to perform optimal Bayesian filtering.

This raises the necessity of ‘calibrating the model’, hence estimating its static parame-

ters. Note also that estimating the static parameters of a HMM itself may be the main

objective. Section 3.4 of this chapter contains a review of the methodology for static

39
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parameter estimation in HMMs, in particular we will present some of the popular max-

imum likelihood estimation (MLE) algorithms. We will also show how to obtain SMC

approximations of those MLE algorithms for HMMs.

Although we present optimal Bayesian filtering and statical parameter estimation

methods and their SMC approximations within the framework of HMMs, we would like

to stress that this thesis does contain time-series models which are not a HMM (at least in

the way we deal with it). We will mention such models in Section 3.2.1. The reason why

we restrict ourselves to HMMs is that the computational tools developed for them are

generally applicable to more general time series models with some suitable modifications.

3.2 Hidden Markov models

We begin with the definition of a HMM. Let {Xn}n≥1 be a homogenous Markov chain

defined on (X , EX ). Suppose that this process is observed as another process {Yn}n≥1

defined on (Y , EY) such that the conditional distribution on Yn given all the other random

variables depends only on Xn. Then the bivariate process {Xn, Yn}n≥1 is called a HMM.

We give below a more formal definition which is taken from Cappé et al. [2005]; we

additionally assume that the HMM is parametrised by a vector valued static parameter.

Definition 3.1 (HMM). Let (X , EX ) and (Y , EY) be two measurable spaces, dθ > 0, and

Θ is a compact subset of Rdθ . For any θ ∈ Θ, let µθ, Fθ, and Gθ denote, respectively, a

probability measure on (X , EX ), a Markov transition kernel on (X , EX ), and a transitional

kernel from (X , EX ) to (Y , EY). Consider the Markov transition kernel Hθ defined on the

product space (X × Y , EX ⊗ EY) such that for all (x, y) ∈ X × Y, C ∈ EX ⊗ EY

Hθ[(x, y), C] =

∫

C

Fθ(x, dx
′)Gθ(x

′, dy′).

Then, the Markov chain {Xn, Yn}n≥1 with initial distribution µθ ⊗ Gθ, and with transi-

tional kernel Hθ is called a hidden Markov model (HMM) parametrised by θ.

Although this definition concerns the joint process {Xn, Yn}n≥1, the term ‘hidden’

is justified when only {Yn}n≥1 is observable. We call {Xn}n≥1 the hidden process and

its states the hidden states, and {Yn}n≥1 is called the observed process, containing the

observed states. We will deal with real valued vector processes, that is why we always

take X ∈ Rdx and Y ∈ Rdy . Note, also, that it is Definition 3.1 from which it follows

that {Xn}n≥1 is Markov(µθ, Fθ) and observations {Yn}n≥1 conditioned upon {Xn}n≥1

are independent and have the conditional distributions Gθ(xn, ·), i.e. for every A ∈ EX



3.2. HIDDEN MARKOV MODELS 41

and B ∈ EY we have

Pθ(X1 ∈ A) = µθ(A), Pθ (Xn ∈ A |X1:n−1 = x1:n−1 ) = Fθ(xn−1, A), (3.1)

Pθ

(
Yn ∈ B

∣∣∣{Xt}t≥1 = {xt}t≥1 , {Yt}t6=n = {yt}t6=n
)

= Gθ(xn, B). (3.2)

In the time series literature, the term HMM has been widely associated with the case

of X being finite [Rabiner, 1989] and those models with continuous X are often referred

to as state-space models. Again, in some works the term ‘state space models’ refers to

the case of linear Gaussian systems [Anderson and Moore, 1979]. We emphasise at this

point that in this thesis we shall keep the framework as general as possible. We consider

the general case of measurable spaces and we avoid making any restrictive assumptions

on µθ, Fθ, and Gθ that impose a certain structure on the dynamics of the HMM. Also, we

clarify that in contrast to previous restrictive use of terminology, we will use both terms

‘HMM’ and ‘general state space model’ to describe exactly the same thing as defined by

Definition 3.1.

For the rest of the thesis, we will be dealing with fully dominated HMMs, where µθ,

Fθ(x, ·) and Gθ(x, ·) have densities with respect to some dominating measures. We give

a formal definition of a fully dominated HMM here.

Definition 3.2 (fully dominated HMM). Consider the HMM in Definition 3.1. Sup-

pose that there exists probability measures λ on (X , EX ) and ν on (Y , EY) such that (i)

µθ is absolutely continuous with respect to λ (ii) for all x ∈ X , Fθ(x, ·) is absolutely con-

tinuous with respect to λ with transition density function fθ(·|x) and (iii) for all x ∈ X ,

Gθ(x, ·) is absolutely continuous with respect to ν with transition density function gθ(·|x).
Then the HMM is said to be fully dominated and the joint Markov transition kernel Hθ

is dominated by the product measure λ⊗ ν and admits the transition density function

hθ(x
′, y′|x, y) = fθ(x

′|x)gθ(y′|x′).

Therefore, for a fully dominated HMM as in Definition 3.2, the joint probability

density of (X1:n, Y1:n) exists and it is given by

pθ(x1:n, y1:n) = µθ(x1)gθ(y1|x1)
n∏

t=2

fθ(xt|xt−1)gθ(yt|xt) (3.3)

where, with abuse of notation, we have used µ also to denote the density of the probability

measure µ. Note, the joint law of all the variables of the HMM up to time n is summarised

in (3.3) from which we derive several probability densities of interest. One example is the
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likelihood of the observations up to time n which can be derived as

pθ(y1:n) =

∫
pθ(x1:n, y1:n)λ(dx1:n). (3.4)

Maximisation of this quantity with respect to θ is the main interest of this thesis. Another

important probability density, which will be pursued in detail, is the density of the

posterior distribution of X1:n given Y1:n = y1:n, which is obtained by using the Bayes’

theorem

pθ(x1:n|y1:n) =
pθ(x1:n, y1:n)

pθ(y1:n)
(3.5)

3.2.1 Extensions to HMMs

Although HMMs are the most common class of time series models in the literature, there

are also many time series models which are not a HMM and are still of great importance.

These models differ from HMMs mostly because they do not possess the conditional

independency of observations. Here, we give two examples that we will also use in this

thesis.

• In the first example of such models, the process {Xn}n≥1 is still a Markov chain;

however the conditional distribution of Yn, given all past variables X1:n and Y1:n−1,

depends not only on the value of Xn but also on the values of past observations

i.e. Y1:n−1. If we denote the probability density of this conditional distribution

gθ,n(yn|xn, y1:n−1), the joint probability density of (X1:n, Y1:n) is

pθ(x1:n, y1:n) = µθ(x1)gθ(y1|x1)

n∏

t=2

fθ(xt|xt−1)gθ,t(yt|xt, y1:t−1).

If Yn given Xn is independent of the past values of the observations prior to time

n− k, then we can define a gθ such that gθ,n(yn|xn, y1:n−1) = gθ(yn|xn, yn−k:n−1) for

all n. One example of such models is a changepoint model e.g. see Fearnhead and

Liu [2007]. We will encounter changepoint models in Chapter 4 of this thesis.

The terminology regarding the type of models where we have gθ(yn|xn, yn−k:n−1) is

not fully standardised. One term that is used is Markov switching models; Markov

jump systems is also used at least in cases where the hidden state space is finite

[Cappé et al., 2005]. These models have much in common with basic HMMs in the

sense that virtually identical computational tools may be used for both models. In

the particular context of SMC, the similarity between these to types of models is

more clearly exposed in Del Moral [2004] via the Feynman-Kac representation of

SMC methods, where the conditional density of observation at time n is treated

generally as a potential function of xn.
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• In another type of time series models that are not HMM the latent process {Xn}n≥1

is, again, still a Markov chain; however observation at current time depends on

all the past values, i.e. Yn conditional on (X1:n, Y1:n−1) depends on all of these

conditioned random variables. Actually, these models are usually the result of

marginalising an extended HMM. Consider the HMM {(Xn, Zn), Yn}n≥1, where the

joint process {Xn, Zn}n≥1 is a Markov chain such that its transitional law admits

the density fθ with respect to the product measure λ1⊗λ2 which can be factorized

as

fθ(xn, zn|xn−1, zn−1) = fθ,1(xn|xn−1)fθ,2(zn|xn, zn−1).

and the observation Yn depends only on Xn and Zn given all the past random vari-

ables and admits the probability density gθ(yn|xn, zn). Now, the marginal bivariate

process {Xn, Yn}n≥1 is not a HMM and we express the joint density of (X1:n, Y1:n)

as

pθ(x1:n, y1:n) = µθ(x1)pθ,1(y1|x1)

n∏

t=2

fθ,1(xt|xt−1)pθ,t(yt|x1:t, y1:t−1)

where the density pθ,n(yn|x1:n, y1:n−1) is given by

pθ,n(yn|x1:n, y1:n−1) =

∫
pθ(z1:n−1|x1:n−1, y1:n−1)fθ,2(zn|xn, zn−1)gθ(yn|xn, zn)λ2(dz1:n).

(3.6)

The reason {Xn, Yn}n≥1 might be of interest is that the conditional laws of Z1:n may

be available in close form and exact evaluation of the integral in (3.6) is available.

In that case, it can be more effective to perform Monte Carlo approximation for the

law of X1:n given observations Y1:n, which leads to the so called Rao-Blackwellised

particle filters in the literature [Doucet et al., 2000a].

The integration is indeed available in close form for some time series models. One

example is the linear Gaussian switching state space models [Chen and Liu, 2000;

Doucet et al., 2000a; Fearnhead and Clifford, 2003], where Xn takes values on a

finite set whose elements are often called ‘labels’, and conditioned on {Xn}n≥1,

{Zn, Yn}n≥1 is a linear Gaussian state-space model. A more sophisticated time

series model of the same nature is linear Gaussian multiple target tracking models,

which we will investigate in detail in Chapter 5.

Having stated that the interest of this thesis is on more general time series models

than HMMs, we note that the computational tools developed for HMMs are generally

applicable to a more general class of time series models with some suitable modifications.

For this reason we carry on this chapter with review of SMC and parameter estimation

methods for HMMs.
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3.3 Sequential inference in HMMs

3.3.1 Bayesian optimal filtering

In a HMM, one is usually interested in sequential inference on the variables of the hidden

process {Xt}t≥1 given observations Y1:n = y1:n up to time n. For example, one pursues

for the sequence of posterior distributions {pθ(x1:n|y1:n)}n≥1, where pθ(x1:n|y1:n) is given

in equation (3.5). It is also straightforward to generalise pθ(x1:n|y1:n) to the posterior

distributions of X1:n′ for any n′ ≥ 1. For n′ > n we have

pθ(x1:n′|y1:n) = pθ(x1:n|y1:n)

n′∏

t=n+1

fθ(xt|xt−1);

whereas for n′ < n the density pθ(x1:n′ |y1:n) can be obtained simply by integrating out

the variables xn′+1:n, i.e.

pθ(x1:n′ |y1:n) =

∫
pθ(x1:n|y1:n)λ(dxn′+1:n).

It is possible to obtain a recursion for these posterior distributions as one receives obser-

vations sequentially. Equations (3.3) and (3.5) reveal that we can write pθ(x1:n|y1:n) in

terms of pθ(x1:n−1|y1:n−1) as

pθ(x1:n|y1:n) =
fθ(xn|xn−1)gθ(yn|xn)

pθ(yn|y1:n−1)
pθ(x1:n−1|y1:n−1). (3.7)

The normalising constant pθ(yn|y1:n−1) can be written in terms of the known densities as

pθ(yn|y1:n−1) =

∫
pθ(x1:n−1|y1:n−1)fθ(xn|xn−1)gθ(yn|xn)λ(dx1:n). (3.8)

Also, by convention pθ(y1|y0) = pθ(y1) =
∫
gθ(y1|x1)µθ(x1)λ(dx1). The recursion in

(3.7) is essential since it enables efficient sequential approximation of the distributions

pθ(x1:n|y1:n) as we will see in Section 3.3.2.

From a Bayesian point of view, the probability densities pθ(x1:n′ |y1:n) are complete

solutions to the inference problems as they contain all the information about the hidden

states X1:n′ given the observations y1:n. For example, the expectation of a measurable

function ϕn′ : X n′ → Rdϕ(n′) conditional upon the observations y1:n can be evaluated as

Eθ [ϕn(X1:n′)|y1:n] =

∫
ϕ(x1:n′)pθ(x1:n′ |y1:n)λ(dx1:n′).

However, one can restrict her focus to a problem of smaller size, such as the marginal
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distribution of the random variable Xk, k ≤ n′, given y1:n. The probability density of such

a marginal posterior distribution pθ(xk|y1:n) is called a smoothing, filtering or prediction

density if k < n, k = n and k > n, respectively. Indeed, there are many cases where one

is interested in calculating the expectations of functions ϕ : X → Rdϕ of Xk given y1:n

Eθ [ϕ(Xk)|y1:n] =

∫
ϕ(xk)pθ(xk|y1:n)λ(dxk).

Although one we have pθ(x1:n′ |y1:n) for n′ ≥ k the marginal density can directly be

obtained by marginalization, the recursion in (3.7) may be intractable or too expensive

to calculate. Therefore it is useful to use alternative recursion techniques to effectively

evaluate the marginal densities sequentially. Here, we will cover the recursions for the

filtering and one-step prediction densities. Given the filtering density pθ(xn−1|y1:n−1) at

time n − 1, the filtering density at time n is usually obtained recursively in two stages,

which are called prediction and update. These are given as

pθ(xn|y1:n−1) =

∫
fθ(xn|xn−1)pθ(xn−1|y1:n−1)λ(dxn−1), (3.9)

pθ(xn|y1:n) =
gθ(yn|xn)pθ(xn|y1:n−1)

pθ(yn|y1:n−1)
. (3.10)

where this time we write the normalising constant as

pθ(yn|y1:n−1) =

∫
pθ(xn|y1:n−1)gθ(yn|xn)λ(dxn). (3.11)

The problem of evaluating the recursion given by equations (3.9) and (3.10) is called

the Bayesian optimal filtering (or shortly optimum filtering) problem in the literature. In

the following, we will look at the SMC methodology in the context of HMMs and review

how SMC methods have been used to provide approximate solutions to the optimal

filtering problem.

3.3.2 Particle filters for optimal filtering

There are cases when the optimum filtering problem can be solved exactly. One such case

is when X is a finite countable set [Rabiner, 1989]. Also, in linear Gaussian state-space

models the densities in (3.9) and (3.10) are obtained by the Kalman filter [Kalman, 1960].

In general, however, these densities do not admit a close form expression and one has to

use methods based on numerical approximations. One such approach is to use grid-based

methods, where the continuous X is approximated by its finite discretised version and the

update rules are used as in the case of finite state HMMs. Another approach is extended

Kalman filter [Sorenson, 1985], which approximates a non-linear transition by a linear
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one and performs the Kalman filter afterwards. The method fails if the nonlinearity in the

HMM is substantial. An improved approach based on the Kalman filter is the unscented

Kalman filter [Julier and Uhlmann, 1997], which is based on a deterministic selection of

sigma-points from the support of the state distribution of interest such that the mean and

the variance of the true distribution are preserved by the sample mean and covariance

calculated at these selected sigma-points. All of these methods are deterministic and not

capable of dealing with the most general state-space models; in particular they will fail

when the dimensions or the nonlinearities increase.

Alternative to the deterministic approximation methods, Monte Carlo can provide a

robust and efficient solution to the optimal filtering problem. SMC methods for opti-

mal filtering, also known as particle filters, have been shown to produce more accurate

estimates than the deterministic methods mentioned [Doucet et al., 2000b; Durbin and

Koopman, 2000; Kitagawa, 1996; Liu and Chen, 1998]. Some of the good tutorials on

SMC methods for filtering as well as smoothing in HMMs are Doucet et al. [2000b], Aru-

lampalam et al. [2002], Cappé et al. [2007], Fearnhead [2008], and Doucet and Johansen

[2009], from the earliest to the most recent. One can also see Doucet et al. [2001] as

a reference book, although a bit outdated. Also, the book Del Moral [2004] contains a

rigorous review of numerous theoretical aspects of the SMC methodology in a different

framework where a SMC method is treated as an interacting particle system associated

with the mean field interpretation of a Feynman-Kac flow.

With reference to the Monte Carlo methodology covered in Chapter 2, the filtering

problem in state space models can be considered as a sequential inference problem for

the sequence of probability distributions πθ,n on the product measurable spaces (Xn =

X n, En = E⊗(n))

πθ,n(dx1:n) := pθ(x1:n|y1:n)λ(dx1:n).

As we saw Section 2.5, we can perform SIS and SISR methods targeting {πθ,n}n≥1. The

SMC proposal distribution at time n, denoted as qθ,n, is designed conditional to the

observations up to time n and state values up to time n−1; and in the most general case

it can be written as

qθ,n(dx1:n) := Qθ,1(y1, dx1)

n∏

t=2

Qθ,t [(x1:t−1, y1:t), dxt]

= qθ,n−1(dx1:n−1)Qθ,n [(x1:n−1, y1:n), dxn] (3.12)

In fact, most of the time the transition kernel Qθ,n only depends only on the current

observation and the previous state, hence we simplify (3.12) by defining Qθ : X × Y →
P(E) and taking

Qθ,n [(x1:n−1, y1:n), dxn] = Qθ [(xn−1, yn), xn]
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for all n ≥ 1 with the convention Qθ [(x0, y1), x1] = Qθ(y1, x1). Suppose we design

Qθ [(x, y), ·] such that it is absolutely continuous with respect to λ with density qθ(·|x, y).
Therefore, we can write

qθ,n(dx1:n) =

[
qθ(x1|y1)

n∏

t=2

qθ(xt|xt−1, yt)

]
λ(dx1:n) (3.13)

If we wanted to perform SMC using the target distribution πθ,n directly, then we would

have to calculate the following incremental weight at time n

dπθ,n
dπθ,n−1 ⊗Qθ

(x1:n) =
fθ(xn|xn−1)gθ(yn|xn)

pθ(yn|y1:n−1)qθ(xn|xn−1, yn)
∝ fθ(xn|xn−1)gθ(yn|xn)

qθ(xn|xn−1, yn)
.

In most of the applications pθ(yn|y1:n−1) can not be calculated, hence
dπθ,n

dπθ,n−1⊗Qθ
(x1:n) is

not available. For this reason, instead of πθ,n SMC methods use the following unnor-

malised measure for importance sampling

π̂θ,n(dx1:n) = pθ(x1:n, y1:n)λ(dx1:n),

where the normalising constant is pθ(y1:n), the likelihood of observations up to time n.

In that case, the importance weight for the whole path X1:n is given by

wn(x1:n) = wn−1(x1:n−1)wn|n−1(xn−1, xn),

where the incremental importance weight wn|n−1(x1:n) is

wn|n−1(xn−1, xn) =
fθ(xn|xn−1)gθ(yn|xn)

qθ(xn|xn−1, yn)
.

Algorithm 3.1. SISR (Particle filter) for HMM

For n = 1; for i = 1, . . . , N sample X
(i)
1 ∼ qθ(·|y1), set W

(i)
1 ∝ µθ(X

(i)
1 )gθ(y1|X

(i)
1 )

qθ(X
(i)
1 |y1)

.

For n = 2, 3, . . .

• Resample {X(i)
1:n−1}1≤i≤N according to the weights {W (i)

n−1}1≤i≤N to get resampled

particles {X̃(i)
1:n−1}1≤i≤N with weight 1/N .

• For i = 1, . . . , N ; sample X
(i)
n ∼ qθ(·|X̃(i)

n−1, yn), set X
(i)
1:n = (X̃

(i)
1:n−1, X

(i)
n ), and set

W (i)
n ∝

fθ(X
(i)
n |X̃(i)

n−1)gθ(yn|X(i)
n )

qθ(X
(i)
n |X̃(i)

n−1, yn)
.

We present the SISR algorithm, aka the particle filter, for general state-space models in

Algorithm 3.1, reminding that SIS is a special type of SISR where there is no resampling.
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In the following we list some of the aspects of the particle filter.

• As in the general SISR algorithm, we can use an optional resampling scheme, where

we do resampling only when the estimated effective sampling size decreases below

a threshold value.

• A by-product of the particle filter is that it can provide unbiased estimates for

unknown normalising constants of the target distribution [Del Moral, 2004, Chapter

7]. For example, when SISR is used with an optional sampling scheme, if the last

time prior to n when resampling was performed is k, an unbiased estimator of

pθ(yk+1:n|y1:k) can be obtained as

pθ(yk+1:n|y1:k) ≈
1

N

N∑

i=1

n∏

t=k+1

wt|t−1(X
(i)
t−1, X

(i)
t ).

We will come back to this aspect of the particle filter in Section 3.4.1.

• The choice of the kernel Qθ for the proposal distribution in the particle filter is

important to ensure effective SMC approximation. The first genuine particle filter

in the literature, proposed by Gordon et al. [1993], involved proposing from the prior

distribution of X1:n, hence taking qθ(xn|xn−1, yn) = fθ(xn|xn−1) and the resulting

particle filter with this particular choice of Qθ is called the bootstrap filter. Another

interesting choice is to take qθ(xn|xn−1, yn) = qθ(xn|yn), which can be useful when

observations provide significant information about the hidden state but the state

dynamics are weak. This proposal was introduced in Lin et al. [2005] and the

resulting particle filter was called independent particle filter. The optimal choice

that minimises the variance of the incremental importance weights is, from equation

(2.12),

qoptθ (xn|xn−1, yn) = pθ(xn|xn−1, yn).

This results in the optimal incremental weights to be wopt

n|n−1(x1:n) = pθ(yn|xn−1),

which is independent from the value of xn. First works where qoptθ was used include

Kong et al. [1994]; Liu [1996]; Liu and Chen [1995].

• The auxiliary particle filter for optimal filtering [Pitt and Shephard, 1999] is imple-

mented by sampling X1:n−1 among the set of the particle paths up to time n − 1

and a new Xn from X in order to target

π̄θ,n(dx1:n) =

[
N∑

i=1

W
(i)
n−1w

opt

n|n−1(X
(i)
1:n−1)δX(i)

1:n−1
(dx1:n−1)

]
pθ(xn|xn−1, yn)λ(dxn).

Note that when pθ(yn|xn−1) can be calculated and pθ(xn|xn−1, yn) is available to
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sample from, then all the particles at time n will have equal weights. If this is not

the case, the proposal distribution to sample from this target distribution can be

written generally as

q̄θ,n(dx1:n) =

[
N∑

i=1

α
(i)
n−1δX(i)

1:n−1
(dx1:n−1)

]
qθ(xn|xn−1, yn)λ(dxn)

where αn−1(xn−1) and qθ(xn|xn−1, yn) is up to choice and should be close as possible

to the ideal choice. One attempt to make α
(i)
n−1 close to W

(i)
n−1pθ(yn|X(i)

n−1) (up to

normalising), which was suggested in the original work Pitt and Shephard [1999] on

the auxiliary particle filter, is to take α
(i)
n−1 = gθ(yn|x∗(i)n ), where x

∗(i)
n is a prediction

of Xn given X
(i)
n−1 based on the dynamics of the process, e.g. x∗n = Eθ[Xn|X(i)

n−1].

• Although the particle filter we presented in Algorithm 3.1 targets the path filtering

distributions πθ,n(dx1:n) = pθ(x1:n|y1:n)λ(dx1:n); it can easily be modified, or used

directly, to make inference on other distributions that might be of interest. For

example, consider the one step path prediction distribution

πpθ,n(dx1:n) = pθ(x1:n|y1:n−1)λ(dx1:n).

There is the following relation between πθ,n and πpθ,n.

πpθ,n(dx1:n) = πθ,n−1(dx1:n−1)fθ(xn|xn−1)λ(dxn),
dπθ,n
dπpθ,n

(x1:n) =
gθ(yn|xn)

πpθ,n(gθ(yn|·))
.

Therefore, it is easy to derive approximations to these distributions from each other:

obtaining πp,Nθ,n from πNn−1 requires a simple extension of the path X1:n−1 to X1:n

through fθ; this is done by sampling X
(i)
n conditioned on the existing particles paths

X
(i)
1:n−1, respectively for i = 1, . . . , N . Whereas; obtaining πNθ,n from πp,Nθ,n requires

a simple reweighting of the measure (or the approximate measure) according to

gθ(yn|·). As a second example, the approximations to the marginal distributions

πNn (dxk), k ≤ n (or πp,Nn (dxk)) are simply obtained from the k’th components of

the particles, e.g.

πNn (dx1:n) =

N∑

i=1

W (i)
n δ

X
(i)
1:n

(dx1:n)⇒ πNn (dxk) =

N∑

i=1

W (i)
n δ

X
(i)
k

(dxk).

Note that the optimal filtering problem corresponds to the case k = n. Therefore,

it may be sufficient to have a good approximation for the marginal posterior distri-

bution of the current state Xn rather than the whole path X1:n. This justifies the

resampling step of the particle filter in practice, since resampling trades off accu-
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racy for states Xk with k ≪ n for a good approximation for the marginal posterior

distribution of Xn.

3.3.3 The marginal particle filter

Recall that the standard particle filter follows the recursion in (3.7). It estimates πθ,n(dx1:n)

by taking an estimate of πθ,n−1(dx1:n−1) and augmenting it with xn at time n. It involves

a resampling step not to suffer from high variance which is a result of the sequential

nature of the algorithm and that the dimension of the sampled paths is increased by the

dimension of the state space at each time. When it is the filtering distribution πθ,n(dxn)

that is desired, one can use a somewhat more principled approach. The marginal particle

filter (MPF) [Klaas et al., 2005] follows the recursion in (3.9) and (3.10) and performs

particle filtering for the marginal distribution πθ,n(dxn) instead of the joint distribution

πθ,n(dx1:n).

Assume {X(i)
n−1,W

(i)
n−1}1≤i≤N is the set of particles and their weights obtained by the

MPF for the approximation of πθ,n−1(dxn−1). The MPF approximates the recursion in

(3.9) and (3.10) by substituting the predictive density pθ(xn|y1:n−1) with its approximation
∑N

i=1W
(i)
n−1f(xn|X(i)

n−1) in (3.9). Then it performs importance sampling for the following

resulting approximation of the marginal density pθ(xn|y1:n)

pNθ (xn|y1:n) ∝ gθ(yn|xn)
N∑

i=1

W
(i)
n−1f(xn|X(i)

n−1).

Although we have freedom to choose any proposal distribution qθ(xn|y1:n) that has ap-

propriate support, the authors in Klaas et al. [2005] suggest a proposal which takes a

similar form, namely

qθ(xn|y1:n) =
N∑

i=1

W
(i)
n−1qθ(xn|X(i)

n−1, yn). (3.14)

Note that the proposal in (3.14) suggests sampling X
(i)
t−1 from the particle estimate of

πθ,n−1(dxn−1) and then proposing the new component Xt. Instead, we may want to

design a proposal that samples particles which will be in high-probability regions of the

observation model. We can do this by re-weighting the particles at time n − 1 to boost

them in these regions, and this modification results in the auxiliary marginal particle

filter (AMPF) [Klaas et al., 2005]. The AMPF is the general version of the MPF where

the proposal distribution can be written more generally than (3.14) as

qθ(xn|y1:n) =
N∑

i=1

α
(i)
n−1qθ(xn|X(i)

n−1, yn). (3.15)
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Just as in the auxiliary particle filter in Section 3.3.2, one should ideally take

α
(i)
n−1 ∝W

(i)
n−1pθ(yn|X(i)

n−1)

if calculation of pθ(yn|X(i)
n−1) is possible; otherwise a suitable approximation of pθ(yn|X(i)

n−1)

should be used instead of pθ(yn|X(i)
n−1).

The pseudocode for the AMPF is given in Algorithm 3.2. The variance of the impor-

tance weights of the AMPF is less than or equal to the variance of the importance weights

of the standard auxiliary particle filter. Although this improvement of the marginal par-

ticle filter comes with the cost of O(N2) calculations per time compared to the O(N)

calculations in standard particle filters; it is possible to reduce this cost to O(N logN)

with a small and controllable error [Klaas et al., 2005].

Algorithm 3.2. The auxiliary marginal particle filter:

For n = 1; for i = 1, . . . , N sample X
(i)
1 ∼ qθ(·|y1), set W

(i)
1 ∝ µ(X

(i)
1 )gθ(y1|X

(i)
1 )

qθ(X
(i)
1 |y1)

.

For n = 2, 3, . . .

• For i = 1, . . . , N ; sample X
(i)
n ∼

∑N
i=1 α

(i)
n−1qθ(xn|X(i)

n−1, yn) where α(i) is propor-

tional to W
(i)
n−1pθ(yn|X(i)

n−1) or to an approximation of it.

• For i = 1, . . . , N ; set

W (i)
n ∝

gθ(yn|xn)
∑N

i=1W
(i)
n−1fθ(xn|X(i)

n−1)∑N
i=1 α

(i)
n−1qθ(X

(i)
n |X(i)

n−1, yn)
.

Finally, we note that another O(N2) particle filter can be found in Lin et al. [2005]

as a special case of what the authors call the independent particle filter. The name

‘independent’ is due to their proposal distribution at time n being independent of xn−1,

and this allows multiple matching with the previous particles which makes their algorithm

O(N2) in case of complete matching. Moreover; a slight extension of their algorithm

where the proposal distribution uses the past particles is also mentioned in their work, and

the MPF or AMPF can be considered to be equivalent to special cases of this extension.

3.3.4 The Rao-Blackwellised particle filter

Assume we are given a HMM {(Xn, Zn), Yn}n≥1 where this time the hidden state at time

n is composed of two components Xn and Zn. Suppose that the initial and transition

distributions of the Markov chain {Xn, Zn}n≥1 have densities µθ and fθ with respect to

the product measure λ1 ⊗ λ2 and they can be factorized as follows

µθ(x1, z1) = µθ,1(x1)µθ,2(z1|x1), fθ(xn, zn|xn−1, zn−1) = fθ,1(xn|xn−1)fθ,2(zn|xn, zn−1).
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Also, conditioned on (xn, zn) the distribution of observation Yn admit a density gθ(·|xn, zn)
with respect to ν. We are interested in the case where the posterior distribution

πθ,n(dx1:ndz1:n) = pθ(x1:n, z1:n|y1:n)λ1(dx1:n)λ2(dz1:n)

is analytically intractable and we are interested in approximating the expectations πθ,n(ϕn) =

Eθ [ϕn(X1:n, Z1:n)|y1:n] for bounded measurable functions ϕn : X n × Zn → Rdϕ(n). Ob-

viously, one way to do this is to run an SMC filter for {πθ,n}n≥1 which obtains the

approximation πNθ,n at time n as

πNθ,n(dx1:ndz1:n) =

N∑

i=1

W (i)
n δ

(X
(i)
1:n,Z

(i)
1:n)

(dx1:ndz1:n),

N∑

i=1

W (i)
n = 1.

However, if the conditional posterior probability distribution

πθ,2,n(dz1:n|x1:n) = pθ(z1:n|x1:n, y1:n)λ2(dz1:n)

is analytically tractable, there is a better SMC scheme for approximating πθ,n and esti-

mating πθ,n(ϕn). This SMC scheme is called the Rao Blackwellised particle filter (RBPF)

[Doucet et al., 2000a]. Consider the following decomposition which follows from the chain

rule

pθ(x1:n, z1:n|y1:n) = pθ(x1:n|y1:n)pθ(z1:n|x1:n, y1:n)

and define the marginal posterior distribution of X1:n conditioned on y1:n as

πθ,1,n(dx1:n) = pθ,1(x1:n|y1:n)λ1(dx1:n).

The RBPF is a particle filter for the sequence of marginal distributions {πθ,1,n}n≥1 which

produces at time n the approximation

πNθ,1,n(dx1:n) =

N∑

i=1

W
(i)
1,nδX(i)

1:n
(dx1:n),

N∑

i=1

W
(i)
1,n = 1.

and the Rao-Blackwellised approximation the full posterior distribution involves the par-

ticle filter estimate πNθ,1,n and the exact distribution πθ,2,n

πRB,N
θ,n (dx1:ndz1:n) = πNθ,1,n(dx1:n)πθ,2,n(dz1:n|x1:n).

Then, the estimator of the the RBPF for πθ,n(ϕn) becomes

πRB,N
θ,n (ϕn) = πNθ,1,n (πθ,2,n [ϕn(X1:n, ·)]) =

N∑

i=1

W
(i)
1,nπθ,2,n[ϕn(X

(i)
1:n, ·)].
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Assuming qθ(x1:n|y1:n) = qθ(x1:n−1|y1:n−1)qθ(xn|x1:n−1, y1:n) is used as the proposal distri-

bution, the incremental importance weight for the RBPF is given by

w1,n|n−1(x1:n) =
fθ,1(xn|xn−1)pθ(yn|x1:n, y1:n−1)

qθ(xn|x1:n−1, y1:n)

where the density pθ(yn|x1:n, y1:n−1) is given by

pθ,n(yn|x1:n, y1:n−1) =

∫
pθ(z1:n−1|x1:n−1, y1:n−1)fθ,2(zn|xn, zn−1)gθ(yn|xn, zn)λ2(dz1:n).

Also, the optimum importance density which reduces the variance of w1,n|n−1 is when the

incremental importance density qθ(xn|x1:n−1, y1:n) is taken to be pθ(xn|x1:n−1, y1:n) which

results in w1,n|n−1(x1:n) being equal to pθ(yn|x1:n−1, y1:n−1).

The use of the RBPF whenever it is possible is intuitively justified by the fact that we

substitute particle approximation of some expectations with their exact values. Indeed,

the theoretical analysis in Doucet et al. [2000a] and Chopin [2004, Proposition 3] revealed

that the RBPF has better precision than the regular particle filter: the estimates of the

RBPF never have larger variances. The favouring results for the RBPF are basically

due to the Rao-Blackwell theorem (see e.g. Blackwell [1947]), after which the proposed

particle filter gets its name.

The RBPF was formulated by Doucet et al. [2000a] and have been implemented in

various settings by Andrieu and Doucet [2002]; Chen and Liu [2000]; Särkkä et al. [2004]

among many. We will also use RBPFs in our works presented in Chapters 4, 5, and 7.

The use of Rao-Blackwellisation is not limited to marginalising out one of the com-

ponents of the hidden state; it may be possible to use Rao-Blackwellisation in the in-

termediate steps of a particle filter. In some time series models, an exact sequential

inference is not tractable but the exact one-step update of distributions conditioned on

the approximations made prior to the current time is possible. For such models, one can

calculate an expectation of interest using this exact one-step update that is available, and

then continue by approximating this exact update with particles in order to be able to

proceed to the next time step of the particle filter. For examples of such implementation

of Rao-Blackwellisation, see Fearnhead and Clifford [2003, p. 890], Fearnhead and Liu

[2007], and the Algorithm in Chapter 4 of this thesis.

3.3.5 Application of SMC to smoothing additive functionals

In this section, we provide an example for use of particle filters which is central to this

thesis due to its relation to parameter estimation. We are interested in approximating

smoothed estimates of additive functionals of state variables in a fully dominated HMM

{Xn, Yn}n≥1 defined in Definition 3.2. Let us have a sequence of functions st : X×X → R,
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t ≥ 1 and let Sn : X n → R, n ≥ 1 be the corresponding sequence of additive functionals

constructed from st as follows

Sn(x1:n) =

n∑

t=1

st(xt−1, xt)

where, by convention, we take s1(x0, x1) = s1(x1). In many instances it is necessary to

be able to compute the following expectations sequentially

Sθn = πθ,n(Sn) = Eθ [Sn(X1:n)|y1:n] =

∫
Sn(x1:n)pθ(x1:n|y1:n)λ(dx1:n).

The expectation is to be computed with respect to the density pθ(x1:n|y1:n) and for this

reason Sθn is referred to as a smoothed additive functional. Calculation of Sθn might be of

interest for its own sake, it is also necessary for computing the filter derivative and the

gradient of the log-likelihood of observations [Del Moral et al., 2011; Poyiadjis et al., 2011],

the intermediate function of the expectation-maximisation algorithm (see e.g. Del Moral

et al. [2009]), etc.

In most cases exact computation of Sθn is not available due to the unavailability of

pθ(x1:n|y1:n), therefore one has to use Monte Carlo methods, specifically SMC. The first

SMC method in the literature proposed to approximate Sθn uses the path space approxi-

mation of πθ,n directly [Cappé, 2009]. Let the SMC approximation of πθ,n be

πNθ,n(dx1:n) =
N∑

i=1

W (i)
n δ

X
(i)
1:n

(dx1:n),
N∑

i=1

W (i)
n = 1. (3.16)

Then, one obtains the path space approximation of the smoothed additive functional as

Ŝθn = πNθ,n(Sn) =

N∑

i=1

W (i)
n Sn(X

(i)
1:n) (3.17)

Observing Sn(x1:n) = Sn−1(x1:n−1) + sn(xn−1, xn), this approximation can be calculated

online for n along with the particle filter, see Cappé [2009] for an application exploiting

this fact. In this approximation, there is no need to store the entire ancestry of each

particle and computational cost of calculation of Ŝθn is linear in the number of parti-

cles, i.e. O(N). However; this approximation relies on the approximation of the joint

distribution πθ,n(dx1:n) which, as already mentioned in Section 2.5.2, is well-known in

the SMC literature to become progressively impoverished as n increases because of the

successive resampling steps. Indeed, it was shown in Del Moral and Doucet [2003] that

under favourable mixing assumptions, the authors established an upper bound on the Lp

error in the path space estimate in (3.17) which is proportional to n2/
√
N ; and under
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similar assumptions it was shown in Poyiadjis et al. [2011] that the asymptotic variance

of the path space estimate increases at least quadratically with n.

An O(N) SMC approach that reduces the variance is fixed-lag smoothing [Kitagawa

and Sato, 2001] which uses the following approximation

pθ(x1:k|y1:n) ≈ pθ(x1:k|y1:min(n,k+∆)), ∆ > 0. (3.18)

with the idea that for large enough ∆ the error introduced by ∆ will be negligible. The

SMC implementation of this approximation prevents the particle filter from updating path

X1:k beyond time k + ∆ and hence reduces the variance resulting from path degeneracy.

However; choosing the lag amount ∆ is a difficult task, and this approach introduces a

bias to the estimate of Sθn which does not vanish asymptotically in N , see Olsson et al.

[2008].

3.3.5.1 Forward filtering backward smoothing

A standard alternative to computing Sθn is to use SMC approximations of fixed-interval

smoothing techniques such as the forward filtering backward smoothing (FFBS) algo-

rithm [Doucet et al., 2000b; Godsill et al., 2004]. Let us define the marginal smoothing

distributions

ηθ,n,k(dxk) := πθ,n(dxk) = pθ(xk|y1:n)λ(dxk)

and define the backward transition kernel Mθ,n−1 : X → P(E) such that

Mθ,n−1(xn, dxn−1) = pθ(xn−1|xn, y1:n−1)λ(dxn−1).

FFBS relies on the additivity of the functional Sn and that pθ(xt−1, xt|y1:n)λ(dxt−1dxt) =

ηθ,n,t(dxt)Mθ,t−1(xt, dxt−1) for t ≤ n, which lead to

Sθn =

n∑

t=1

[ηθ,n,t ⊗Mθ,t−1] (st) =

n∑

t=1

∫
ηθ,n,t(dxt)Mθ,t−1(xt, dxt−1)st(xt−1, xt).

Moreover, once πθ,1, . . . , πθ,n are obtained up to time n (forward filtering), ηθ,n,1, . . . , ηθ,n,n

can be obtained with a backward recursion (backward smoothing) starting from ηθ,n,n(dxn) =

πθ,n(dxn) and recursing back with

ηθ,n,t = ηθ,n,t+1Mθ,t, t = n− 1, . . . , 1.

The SMC implementation of FFBS [Doucet et al., 2000b], which we will call SMC-
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FFBS, is based on the following alternative approximation to πθ,n

π∗,N
θ,n = ηNθ,n,n ⊗MN

θ,n−1 ⊗ . . .⊗MN
θ,1 (3.19)

where the particle approximation to the backward kernels are

MN
θ,n−1(xn, dxn−1) = ηNθ,n−1,n−1(dxn−1)

fθ(xn|xn−1)∫
ηNθ,n−1,n−1(dxn−1)fθ(xn|xn−1)λ(dxn)

. (3.20)

Therefore, once πNθ,1, . . . , π
N
θ,n are obtained up to time n (forward filtering), ηNθ,n,1, . . . , η

N
θ,n,n

can be obtained with a backward recursion (backward smoothing) starting from ηNθ,n,n(dxn) =

πNθ,n(dxn) and recursing back with

ηNθ,n,t = ηNθ,n,t+1M
N
θ,t, t = n− 1, . . . , 1.

Then, the SMC approximation to FFBS leads to the following estimate of the smoothed

functional

Ŝ∗,θ
n =

n∑

t=1

[
ηNθ,n,t ⊗MN

θ,t−1

]
(st).

The SMC implementation of FFBS requires O(N2) computations per time, compared to

the O(N) path space approximation. As a return, the estimator has better properties

over the estimator of the path space approximation. Douc et al. [2011] includes a cen-

tral limit theorem for Ŝ∗,θ
n and time uniform deviation inequalities for the SMC-FFBS

approximations of the marginals {ηθ,n,t}1≤t≤n. For alternative proofs to those in Douc

et al. [2011], see Del Moral et al. [2010]. Additionally, it was shown in Del Moral et al.

[2009] that under strong mixing conditions the asymptotic variance of Ŝ∗,θ
n as N → ∞

is linear in n. More general but more complicated results on the variance of Ŝ∗,θ
n with

weaker conditions can be found in Del Moral et al. [2010].

3.3.5.2 Forward-only smoothing

Filtering forwards and smoothing backwards, the FFBS algorithm is surely offline, unlike

the path space approximation. Also, it may be demanding since it requires the SMC

filters ηNθ,t,t to be stored up to time n. To circumvent the need for the backward pass in

the computation of Sθn, the following auxiliary function on X is introduced,

T θn(xn) = Mn−1 ⊗ . . .⊗M1 [Sn(·, xn)] (xn) = Eθ [Sn(X1:n)|Xn = xn, y1:n−1] .



3.3. SEQUENTIAL INFERENCE IN HMMS 57

It is apparent that Sθn = ηθ,n,n(T
θ
n). A forward recursion to compute {T θn}n≥1, hence

{Sθn}n≥1, is established by

T θn(xn) = Mθ,n−1

[
T θn−1 + sn(·, xn)

]
= Eθ

[
T θn−1(Xn−1) + sn(Xn−1, xn)

∣∣ xn, y1:n−1

]
.

(3.21)

for n ≥ 2, with the initial condition T θn(x1) = s1(x1). Note that online calculation

of T θn(xn) requires only an integration with respect to the measure Mn−1(xn, ·), i.e.

pθ(xn−1|xn, y1:n−1). The recursion in (3.21) has been rediscovered independently sev-

eral times (see e.g. Elliott and Krishnamurthy [1999]; Hernando et al. [2005]; Mongillo

and Deneve [2008]) and it was called forward smoothing recursion in Del Moral et al.

[2009].

A straightforward implementation of forward smoothing recursion would be by using

π∗,N
θ,n in (3.19) so that Mθ,n−1 in (3.21) is approximated by MN

θ,n−1 in (3.20). It can be

shown that when this approximation is used, we calculate exactly the same quantity as

SMC-FFBS. Therefore, the preferable statistical properties of SMC-FFBS is preserved.

Moreover, although the online calculation still requires O(N2) calculations per time, it

does not need to store the SMC filters {ηθ,n,t}1≤t≤n. Being a forward implementation of

SMC-FFBS, we call this implementation SMC-forward smoothing, or SMC-FS. SMC-FS

proves to be a very useful tool for online parameter estimation, as we shall see in Section

3.4 and throughout this thesis.

Algorithm 3.3. SMC-FS: Forward only SMC computation of FFBS for smooth-

ing additive functionals

For n = 1;

• compute the SMC approximation {X(i)
1 ,W

(i)
1 }1≤i≤N for ηθ,1,1.

• For i = 1, . . . , N , set T
(i)
1 = s1(X

(i)
1 ).

For n = 2, 3, . . .

• Compute the SMC approximation {X(i)
n ,W

(i)
n }1≤i≤N for ηθ,n,n.

• For i = 1, . . . , N ; set

T (i)
n =

∑N
j=1

[
T

(j)
n−1 + sn(X

(j)
n−1, X

(i)
n )
]
W

(j)
n−1fθ(X

(i)
n |X(j)

n−1)
∑N

j′=1W
(j′)
n−1fθ(X

(i)
n |X(j′)

n−1)
.

• Calculate Ŝ∗,θ
n =

∑N
i=1W

(i)
n T

θ(i)
n .

We present the SMC-FS algorithm in Algorithm 3.3. We note that; since SMC-FS

relies on particle estimates of the filtering distributions {ηθ,n,n}n≥1 only, the marginal
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particle filter in Section 3.3.3 can be used in Algorithm 3.3 the instead of the standard

particle filter. Finally, note that the SMC implementation of the forward smoothing

recursion by using the path space approximation is trivial in the sense that it reduces to

the approximation given in (3.16).

3.4 Static parameter estimation in HMMs

One problem that is largely dealt in the literature is that of estimating the true static

parameter θ∗ of the HMM given observations y1:n up to time n. There are two main

approaches to solving the parameter estimation problem, the Bayesian approach and the

maximum likelihood approach. We briefly summarise Bayesian methods and then give

a more detailed review on the maximum likelihood parameter estimation methods. We

refer the interested reader to Kantas et al. [2009] for a comprehensive review of SMC

methods that have been proposed for static parameter estimation in HMMs.

Bayesian parameter estimation: In the Bayesian approach, the static parameter is

treated as a random variable taking values θ in Θ with a probability density η(θ) with

respect to a dominating measure dθ, and the aim is to evaluate the density of the posterior

distribution of θ given y1:n, which follows from Bayes’ theorem as

η(θ|y1:n) =
η(θ)pθ(y1:n)∫
pθ(y1:n)η(θ)dθ

. (3.22)

When the likelihood pθ(y1:n) is analytically available, one can simply apply a MCMC

scheme for the posterior η(θ|y1:n). An MCMC algorithm can be inefficient when n is

large; however online Bayesian methods are also available. For example, the method

in Chopin [2002] is based on the SMC approximation of the sequence of distributions

{η(dθ|y1:t)}1≤t≤n. This approach is equivalent to the resample-move algorithm described

in Gilks and Berzuini [2001], which is a special SMC sampler.

More sophisticated techniques are required when pθ(y1:n) cannot be computed, which

is usually the case for a general HMM. The methods developed for this case consider

• the joint density p(θ, x1:n|y1:n) = η(θ)pθ(x1:n|y1:n) in the batch parameter estimation

setting

• the sequence of posterior densities {pθ(θ, x1:t|y1:t)}1≤t≤n in the online parameter

estimation setting.

One elegant method used in the batch estimation setting is particle MCMC (PMCMC)

[Andrieu et al., 2010]. Notice that an ideal Metropolis-Hastings algorithm targeting

pθ(θ, x1:n|y1:n) is not feasible in general since it requires exact sampling from pθ(x1:n|y1:n)
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and exact calculation of pθ(y1:n). A particle version of the Metropolis-Hastings algorithm,

which was called PMMH in Andrieu et al. [2010], runs an SMC for pθ(x1:n|y1:n) with N

particles and uses the SMC approximation of the unknown quantity pθ(y1:n). The validity

of this approach is not trivial to show; see, again, Andrieu et al. [2010] for a derivation.

In the same work, a particle version of the Gibbs sampler was also developed.

In Andrieu et al. [2010] the variance of the acceptance rate of the PMMH algorithm

was numerically shown to be proportional to n/N under favourable mixing conditions.

This suggests that one needs to increase the number of particles linearly with n in order

to keep the performance of the PMCMC algorithm at a certain level. Therefore, for

large n PMCMC may not be practical and online parameter estimation methods may be

required.

Although with possible modifications, all of the Bayesian methods for online pa-

rameter estimation rely on the SMC approximation of the sequence of distributions

pθ(θ, x1:t|y1:t), 1 ≤ t ≤ n. At first sight, it seems easy to achieve this using standard

SMC methods by introducing the extended state {θn, Xn}n≥1 with the initial distri-

bution µθ1(x1)λ(dx1)η(θ1)dθ and transitional distribution fθn(xn|xn−1)λ(dxn)δθn−1(dθn).

This implies θn = θn−1; therefore an SMC algorithm explores the parameter space only

at its initialisation. As a result of successive resampling steps, we will end up with only a

single value for θ, which makes the approximation to the marginal distribution η(dθ|y1:n)

clearly a bad approximation. Several methods have been proposed to avoid degeneracy

of particles for the static parameter of the HMM. We briefly mention them below.

One approach to avoid degeneracy, proposed originally in Gilks and Berzuini [2001],

is based on adding MCMC steps to re-introduce particle diversity. Assume that the SMC

approximation to p(θ, x1:n|y1:n) at time n contains particles (θ
(i)
n , X

(i)
1:n), i = 1, . . . , N ,

with equal weights. To add diversity in this population, a MCMC kernel Kn which leaves

p(d(θ, x1:n)|y1:n) invariant is applied to each of the particles. One remarkable point is

that the MCMC kernel need not be ergodic; indeed in practice one designs Kn so that it

moves only θ(i) and last L components of X
(i)
1:n. A first use of this method in an online

Bayesian parameter estimation context is seen in Andrieu et al. [1999], Kn is taken to be

a Gibbs move to update the parameter value only, i.e.

Kn [(x1:n, θ), d(x
′
1:n, θ

′)] = δx1:n(dx
′
1:n)p(θ|x1:n, y1:n)dθ

Similar strategies were used in Fearnhead [2002] and Storvik [2002]. The use of MCMC

within SMC steps is particularly elegant when (x1:n, y1:n) can be summarised by a set

of fixed dimensional sufficient statistics; since then the memory and computational re-

quirements for calculating densities such as pθ(y1:n|x1:n) or p(θ|x1:n, y1:n) does not increase

with time. Unfortunately; these MCMC-based methods suffer from the path degeneracy

problem of the SMC approximation, since the error in the estimate of pθ(x1:n|y1:n) will
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lead to an error in sufficient statistics to be used and these errors build up over time.

This disadvantage was first noticed in Andrieu et al. [1999] and a convincing example

was provided in Andrieu et al. [2005].

Another MCMC-based online Bayesian estimation method is called practical filtering

[Polson et al., 2008], which relies on a fixed-lag approximation as in (3.18). As for all

fixed-lag approaches, it is hard to tune the amount of lag and control the non-vanishing

bias introduced by the approximation.

Alternative to MCMC-based methods to avoid degeneracy, another class of methods

are based on introducing artificial dynamics for the parameter [Higuchi, 2001; Kitagawa,

1998]. More explicitly, it is assumed that

θ1 ∼ η(θ1), θn = θn−1 + ǫn, n ≥ 2,

where ǫn is a small artificial dynamic centred noise whose variance is decreasing with

n. Obviously, SMC applied to approximate {p(θn, x1:n|y1:n)}n≥1 under this assumption

will have better properties than before in terms of degeneracy. This approach is closely

related to the kernel density estimation method in Liu and West [2001], which proposes

regularising smoothing the empirical measure of the posterior distribution of the param-

eter with a smooth kernel density, such as Gaussian or Epanechnikov. A more general

approach where the kernel smoothing approach is also applied to the components of the

HMM is given in Campillo and Rossi [2009]. All these methods who introduce artificial

dynamics to the parameter require a significant amount of tuning and it suffers from bias

which is hard to quantify.

Maximum likelihood parameter estimation: In the maximum likelihood approach

to parameter estimation, one has a point estimate obtained by calculating the value of θ

that maximises the likelihood pθ(y1:n) over all the possible values of θ, i.e.

θML = arg max
θ∈Θ

pθ(y1:n).

This procedure is called maximum likelihood estimation (MLE). In this thesis we will

investigate methods for MLE applied to several time series models. In the following we

present some of the MLE methods directly applicable to HMMs.

3.4.1 Direct maximisation of the likelihood

The traditional approach of ML is to try to calculate the maximiser of pθ(y1:n) with

respect to θ by direct calculation of pθ(y1:n). Note that pθ(y1:n) also satisfies the following



3.4. STATIC PARAMETER ESTIMATION IN HMMS 61

recursive form

pθ(y1:n) = pθ(y1)

n∏

t=2

pθ(yt|y1:t−1) = pθ(y1:n−1)pθ(yn|y1:n−1). (3.23)

The incremental likelihood pθ(yn|y1:n−1) may be obtained by exploiting one the expres-

sions for it, such as the one in (3.8) or (3.11), whichever is available. In practice, one uses

the log-likelihood

lθ(y1:n) = log pθ(y1:n)

which is numerically better-behaved since this time the product in (3.23) is replaced by

a sum.

It is rarely the case that the likelihood (or log-likelihood) is in closed form and can

be maximised analytically. When it is not in closed form but it can be calculated, grid

based methods, where the likelihood is calculated on a grid based representation of Θ with

enough resolution, can be used. When even the likelihood can not even be calculated,

SMC approximation can be applied. Let τ1, . . . , τk be the times when the resampling step

is applied in the particle filter in Algorithm 3.1 and let τ0 = 0 and τk+1 = n. It is shown

in Del Moral [2004, Chapter 7] the following estimator of pθ(y1:n) is unbiased

pNθ (y1:n) =

k+1∏

j=1

pNθ (yτj−1+1:τj |y1:τj−1
), pNθ (yτj−1+1:τj |y1:τj−1

) =

N∑

i=1

τj∏

t=τj−1+1

w
(i)
t|t−1

Based on this unbiased estimator, an estimate of lθ(y1:n) is

lNθ (y1:n) =
k+1∑

j=1

log pNθ (yτj−1+1:τj |y1:τj−1
)

which is obviously biased due to the non-linear transformation of the unbiased estimators.

The bias can be reduced by using the following standard technique based on a Taylor

series expansion, see Andrieu et al. [2004].

Direct maximisation of the likelihood by means of calculating it point-wise is not a

practical approach unless Θ is a discrete space with small number of elements or a con-

tinuous space which can be well approximated by a grid. Unfortunately, these conditions

do not hold in almost all cases mainly because θ is of large dimension. In the following we

will review two alternative approaches that maximises pθ(y1:n) (at least locally) indirectly

without calculating it.
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3.4.2 Gradient ascent maximum likelihood

Gradient based maximum likelihood methods work with the gradient of the log-likelihood

rather than itself. The gradient ascent algorithm is an iterative procedure implemented

as follows: We begin with θ(0) and assume that we have the estimate θ(j−1) at the end of

the the (j − 1)’th iteration. At the j’th iteration we update the parameter

θ(j) = θ(j−1) + γj∇θlθ(y1:n)
∣∣
θ=θ(j−1) .

The gradient term ∇θlθ(y1:n) is also called the score vector. Here {γj}j≥1 is the sequence

of step sizes satisfying ∑

j≥0

γj =∞,
∑

j≥0

γ2
j <∞, (3.24)

ensuring convergence of the algorithm when it is used with the Monte Carlo approxima-

tions ∇N
θ lθ(y1:n) of the score vectors. A common choice is γn = n−a for 0.5 < a ≤ 1.

One way to calculate the gradient term is to use Fisher’s identity for the score vector

as

∇θlθ(y1:n) =

∫
pθ(x1:n, y1:n) log pθ(x1:n, y1:n)λ(dx1:n). (3.25)

i.e. the expectation of the complete data log-likelihood with respect to the posterior

distribution of the latent variables. Equation (3.25) can be rewritten as

∇θlθ(y1:n) = πθ,n(Sθ,n) (3.26)

where Sθ,n : X n → Rdθ is the additive function of of x1:n

Sθ,n(x1:n) =

n∑

t=1

sθ,t(xt−1, xt), (3.27)

sθ,1(x0, x1) = sθ,1(x1) = ∇θ log µθ(x1) +∇θ log gθ(y1|x1)

sθ,t(xt−1, xt) = ∇θ log gθ(yt|xt) +∇θ log fθ(xt|xt−1), t ≥ 2.

Notice that since Sθ,n is in the additive form, the approximation to its expectation

πθ,n(Sθ,n) can be carried out with one of the Monte Carlo methods mentioned in Sec-

tion 3.3.5 when exact calculation of πθ,n(Sθ,n) is not available. An SMC estimate of the

score vector using the O(N) path space approximation was provided in Andrieu et al.

[2004]. However; it was shown in Poyiadjis et al. [2011] that the variance of this estimate

increases typically quadratically with n. For this reason, Poyiadjis et al. [2011] proposed

to use the O(N2) method that is based on FFBS to estimate ∇θlθ(y1:n), and it was shown

in Del Moral et al. [2011] that this SMC estimate is stable.

An alternative to Fisher’s identity to compute the score vector ∇θlθ(y1:n) is a method
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based on infinitesimal perturbation analysis which was proposed in Coquelin et al. [2009].

This method is also estimating the expectation with respect to pθ(x1:n|y1:n) of an additive

functional of the form
∑n

t=1 sθ(xt−1, xt); so all the SMC smoothing techniques described

in Section 3.3.5 can also be applied to estimate this expectation.

3.4.2.1 Online gradient ascent

The batch gradient ascent MLE algorithm may be inefficient when n is large since each

iteration requires a complete browse over the whole data sequence. An alternative to

the batch algorithm is possible via online calculation of the score vector, leading to a

recursive maximum likelihood algorithm which we will call online gradient ascent. An

online gradient ascent algorithm can be implemented as follows [Del Moral et al., 2011;

Poyiadjis et al., 2011]: Let θ1 be the initial guess of θ∗ before having made any observations

and at time n and let θ1:n be the sequence of parameter estimates of the online gradient

ascent algorithm computed sequentially based on y1:n−1. When yn is received, we update

the parameter

θn+1 = θn + γn∇θ log pθ(yn|y1:n−1)
∣∣
θ=θn

. (3.28)

The incremental gradients ∇θ log pθ(yn|y1:n−1) can be calculated sequentially from the

gradients ∇θlθ(y1:n) using the relation

∇θ log pθ(yn|y1:n−1) = ∇θlθ(y1:n)−∇θlθ(y1:n−1)

= πθ,n(Sθ,n)− πθ,n−1(Sθ,n−1). (3.29)

However, since θn is changing over time, (3.29) hence (3.28) is impractical to calculate

sequentially. In practice, the integrals πθn,n(Sθn,n) are approximated by

πθ1:n,n

(
n∑

t=1

sθt(xt−1, xt)

)
,

where θ1:n in πθ1:n,n indicates that the distributions are calculated sequentially with vary-

ing θ’s.

This approach has previously appeared in the literature for finite state-space HMMs,

see e.g. Le Gland and Mevel [1997] and Collings and Ryden [1998]. The asymptotic

properties of this algorithm, i.e. the behaviour of θn in the limit as n goes to infinity, has

been studied by Titterington [1984] for i.i.d. hidden processes and by Le Gland and Mevel

[1997] for finite state-space HMMs. It is shown in Le Gland and Mevel [1997] that under

regularity conditions this algorithm converges towards a local maximum of the average

log-likelihood and that this average log-likelihood is maximised at θ∗.

Algorithm 3.4. SMC-online gradient ascent algorithm
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Choose θ1. Set S0 = 0. For n = 1, 2, . . .;

• If n = 1,

– Compute the SMC approximation {X(i)
1 ,W

(i)
1 }1≤i≤N for ηθ1,1,1.

– For i = 1, . . . , N ; for k = 1, . . . , r set T
(i)
γ,1,k = ∇θ log µθ(X

(i)
1 )+∇θ log gθ(y1|X(i)

1 ).

if n ≥ 2,

– Compute the SMC approximation {X(i)
n ,W

(i)
n }1≤i≤N for ηθ1:n,n,n.

– For i = 1, . . . , N set

T (i)
γ,n =

∑N
j=1

[
(1− γn)T (j)

γ,n−1 + γnsn(X
(j)
n−1, X

(i)
n )
]
W

(j)
n−1fθn(X

(i)
n |X(j)

n−1)
∑N

j′=1W
(j′)
n−1fθn(X

(i)
n |X(j′)

n−1)
.

where sn(X
(j)
n−1, X

(i)
n ) = ∇θn log fθn(X

(i)
n |X(j)

n−1) +∇θn log gθn(yn|X(i)
n )

• Calculate Sn =
∑N

i=1W
(i)
n T

(i)
γ,n and set θn+1 = θn + γn (Sn − Sn−1).

A SMC online gradient ascent method, which can be seen as a particle version of

the recursive maximum likelihood algorithm of Le Gland and Mevel [1997] is given in

Algorithm 3.4. This algorithm is based on the O(N2) SMC approximation of (3.29) and

calculates

θn+1 = θn + γn

[
π∗,N
θ1:n,n

(
n∑

t=1

sθt(xt−1, xt)

)
− π∗,N

θ1:n−1,n−1

(
n−1∑

t=1

sθt(xt−1, xt)

)]
. (3.30)

In Poyiadjis et al. [2011], this algorithm is used with the MPF described in Section 3.3.3

in order to approximate the filtering distributions ηθ,n,n. A very similar algorithm, which

is equivalent to Algorithm 3.4 in principle, can be found in Del Moral et al. [2011]; the

difference is that the authors include θn in the calculation of the second term in (3.29)

by using the relation

πθ,n−1(Sθ,n−1) = π̂θ,n(Sθ,n−1 +∇θ log fθ(xn|xn−1)).

We remind that π̂θ,n is distribution of X1:n conditioned on y1:n−1. Hence, (3.30) is replaced

by

θn+1 = θn+γn

[
π∗,N
θ1:n,n

(
n∑

t=1

sθt(xt−1, xt)

)
− π̂∗,N

θ1:n,n

(
∇θn log fθn(xn|xn−1) +

n−1∑

t=1

sθt(xt−1, xt)

)]
.

and the online implementation of this update is derived using the filter derivative at

time n. Similar to the O(N2) particle approximation to πθ,n(Sθ,n), the O(N2) particle
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approximation of π̂θ,n(Sθ,n) can be performed by taking

π̂∗,N
θ,n = η̂Nθ,n,n ⊗MN

θ,n−1 ⊗ . . .⊗MN
θ,1

where η̂Nθ,n,n(dxn) = π̂Nθ,n(dxn) is the particle approximation to the one step prediction

distribution obtained by marginalising the path particle approximation π̂Nθ,n.

3.4.3 Expectation-Maximisation

The expectation-maximisation (EM) algorithm [Dempster et al., 1977] is one of the most

popular methods for MLE. Given Y1:n = y1:n, the EM algorithm for maximising pθ(y1:n)

is given by the following iterative procedure: if θ(j) is the estimate of the EM algorithm

at the jth iteration, then at iteration j + 1 the estimate is updated by first calculating

the following intermediate optimisation criterion, which is known as the expectation (E)

step,

Q(θ(j), θ) =

∫
log pθ(x1:n, y1:n)pθ(j)(x1:n|y1:n)λ(dx1:n)

= Eθ(j) [log pθ(X1:n, y1:n)|y1:n] . (3.31)

The updated estimate is then computed in the maximisation (M) step

θ(j+1) = arg max
θ∈Θ

Q(θ(j), θ) (3.32)

The EM algorithm produces a sequence {θ(j)}j≥1 such that {pθ(j)(y1:n)}j≥1 is non-decreasing,

and under mild conditions this sequence is guaranteed to converge to a maximum point

of pθ(y1:n). In practice, the procedure in (3.31) and (3.32) is repeated until θ(j) ceases to

change significantly.

One important observation here is that the integrand in (3.31), which is the joint-log

density of the complete data (x1:n, y1:n), has the following additive structure.

log pθ(x1:n, y1:n) = µθ(x1) + log gθ(y1|x1) +

n∑

t=2

log fθ(xt|xt−1) + log gθ(yt|xt) (3.33)

Moreover, equation (3.33) suggests that when pθ(x1:n, y1:n) belongs to the exponential

family with respect to θ, then there exist an integer r > 0, functions si,t : X × X → R,

i = 1, . . . , r, t ≥ 1, such that the E-step and M-step of the EM algorithm reduce to

calculating

Sθ
(j)

i,n = πθ(j),n(Si,n) = Eθ(j) [Si,n(X1:n)| y1:n] , Si,n(x1:n) =

n∑

t=1

si,t(xt−1, xt), i = 1, . . . , r,
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and applying a maximisation rule Λ : Rr → Θ to compute (3.32) such that

θ(j+1) = Λ
(
Sθ

(j)

1,n , . . . , S
θ(j)

r,n

)
. (3.34)

Functionals S1,n, . . . , Sr,n are also called the sufficient statistics of the complete data

(x1:n, y1:n).

3.4.3.1 Stochastic versions of EM

The intermediate function Q(θ(j), θ) of the EM algorithm can be computed exactly only

in few HMMs such as linear Gaussian HMMs or finite state-space HMMs. When Q(θ(j), θ)

cannot be computed exactly, Monte Carlo approximation must be used to numerically

estimate it. The additive structure of log pθ(x1:n, y1:n) allows us to use several SMC

smoothing techniques for estimating Q(θ(j), θ); see Andrieu et al. [2004] for the path space

approximation, Olsson et al. [2008] for the fixed-lag approximation, Wills et al. [2008] for

the FFBS approximation and Briers et al. [2010] for generalised two-filter smoothing.

Using Monte Carlo estimate of the intermediate function leads to the stochastic ver-

sions of the EM algorithm. There are three different main stochastic versions of the EM

algorithm proposed in the literature, we will review them below.

• If we use a constant number N of particles for all iterations, the resulting algorithm

is called the stochastic EM algorithm (SEM) [Celeux and Diebolt, 1985]. Since

the Monte Carlo variance is never reduced over iterations, this algorithm will not

converge to a point in Θ; however one expects to have an ergodic homogeneous

Markov chain of estimates {θ(j)}j≥0 whose stationary distribution is concentrated

around θML [Nielsen, 2000].

• The settlement of the Markov chain in the SEM algorithm to its equilibrium may

take too much time. An alternative to SEM is introduced in Wei and Tanner

[1990] and is called Monte Carlo EM (MCEM). In MCEM, the number of particles

for Monte Carlo approximation increases with j in order to ensure convergence to

the maximum likely parameter value θML rather than convergence to a stationary

distribution around it. The disadvantage of this approach is having to use an

increasing amount of computational resource because of the increasing number of

particles over iterations.

• Another stochastic version of the EM algorithm involves a stochastic approximation

procedure for which it is called stochastic approximation EM (SAEM) [Delyon et al.,

1999]. In SAEM, the E-step involves a weighted average of the approximations of

the intermediate quantity of EM obtained in the current as well as in the previous

iterations. Specifically, consider step size sequence {γj}j≥0 satisfying the conditions
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in (3.24). Then we calculate the weighted average of the estimates QN(θ(j), θ) of

the intermediate functions recursively as

Qγ,j(θ) = (1− γj)Qγ,j−1(θ) + γjQ
N(θ(j), θ),

with the initialisation Qγ,−1(θ) = 0 and at the M-step at iteration j θj+1 is set

to be the maximiser of Qγ,j(θ) with respect to θ. When pθ(x1:n, y1:n) is in the

exponential family, the above recursion is in terms of the smoothed estimates of

sufficient statistics; we will see a use of SAEM in this case in Chapter 5.

3.4.3.2 Online EM

The online EM algorithm [Cappé, 2009, 2011; Elliott et al., 2002; Kantas et al., 2009;

Mongillo and Deneve, 2008] is a variation over the batch EM where, as in online gra-

dient ascent algorithm, the parameter is re-estimated each time a new observation is

collected. We assume that pθ(x1:n, y1:n) is in the exponential family and there exists suf-

ficient statistics so that the M-step can be characterised by (3.34). In the online EM

algorithm, running averages of Sθi,n are computed. Specifically, let γ = {γn}n≥1, called

the step-size sequence, be a positive decreasing sequence satisfying
∑

n≥1 γn = ∞ and
∑

n≥1 γ
2
n <∞. Let θ1 be the initial guess of θ∗ before having made any observations and

at time n and let θ1:n be the sequence of parameter estimates of the online EM algorithm

computed sequentially based on y1:n−1. When yn is received, online EM computes for

i = 1, . . . , r

Tγ,i,n(xn) = Mθ1:n,n−1 [(1− γn)Tγ,i,n−1 + γnsi,n(·, xn)] (xn), (3.35)

Si,n = ηθ1:n,n,n(Tγ,i,n) (3.36)

and then sets

θn+1 = Λ (S1,n, . . . ,Sr,n) .

The subscript θ1:n on Mθ1:n,n−1 and ηθ1:n,n,n indicates that these laws are being computed

sequentially using the parameter θt at time t, t ≤ n. In practice, the maximisation step

is not executed until a burn-in time nb for added stability of the estimators as discussed

in Cappé [2009].

The online EM algorithm can be implemented exactly for a linear Gaussian state-space

model [Elliott et al., 2002] and for finite state-space HMM’s. [Cappé, 2011; Mongillo and

Deneve, 2008]. An exact implementation is not possible for state-space models in general,

therefore SMC implementations of the online EM algorithm are used. Both the O(N)

and O(N2) approximations are used for the SMC implementation on online EM in the

literature, we present both of them in Algorithms 3.5 and 3.6. The first SMC online
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EM algorithm, proposed in Cappé [2009] uses the path space approximation to equations

(3.35) and (3.36) resulting in Algorithm 3.5. The O(N2) approximation was proposed in

Del Moral et al. [2009], resulting in Algorithm 3.6.

Algorithm 3.5. SMC-online EM: O(N) implementation

Choose θ1. For n = 1, 2, . . .;

• If n = 1,

– Compute the SMC approximation {X(i)
1 ,W

(i)
1 }1≤i≤N for πθ1,1.

– For i = 1, . . . , N ; for k = 1, . . . , r set T
(i)
γ,k,1 = sk,1(X

(i)
1 ).

if n ≥ 2,

– Compute the SMC approximation {X(i)
1:n,W

(i)
n }1≤i≤N for πθ1:n,n. Construct the

N × 1 vector A of resampling indexes such that X
(i)
1:n = (X

(A(i))
1:n−1 , X

(i)
n ).

– For i = 1, . . . , N ; set j = A(i), and compute for k = 1, . . . , r set

T
(i)
γ,k,n = (1− γn)T (j)

γ,k,n−1 + γnsk,n(X
(j)
n−1, X

(i)
n ).

• If n ≥ nb, calculate Sk,n =
∑N

i=1W
(i)
n T

(i)
γ,k,n for k = 1, . . . , r and set θn+1 =

Λ (S1,n, . . . ,Sr,n). Else, set θn+1 = θn.

Algorithm 3.6. SMC-online EM: O(N2) implementation

Choose θ1. For n = 1, 2, . . .;

• If n = 1,

– Compute the SMC approximation {X(i)
1 ,W

(i)
1 }1≤i≤N for ηθ1,1,1.

– For i = 1, . . . , N ; for k = 1, . . . , r set T
(i)
γ,k,1 = sk,1(X

(i)
1 ).

if n ≥ 2,

– Compute the SMC approximation {X(i)
n ,W

(i)
n }1≤i≤N for ηθ1:n,n,n.

– For i = 1, . . . , N ; for k = 1, . . . , r set

T
(i)
γ,k,n =

∑N
j=1

[
(1− γn)T (j)

γ,k,n−1 + γnsk,n(X
(j)
n−1, X

(i)
n )
]
W

(j)
n−1fθn(X

(i)
n |X(j)

n−1)
∑N

j′=1W
(j′)
n−1fθn(X

(i)
n |X(j′)

n−1)
.

• If n ≥ nb, calculate Sk,n =
∑N

i=1W
(i)
n T

(i)
γ,k,n for k = 1, . . . , r and set θn+1 =

Λ (S1,n, . . . ,Sr,n). Else, set θn+1 = θn.
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3.4.4 Iterated filtering

As a batch MLE method for HMMs, iterated filtering Ionides et al. [2011] can be useful

to non-linear state space dynamics. The iterated filtering algorithm works as follows. We

begin with θ(0) and assume that at the end of the j−1’th iteration we obtain the estimate

θ(j). Iterated filtering extends the HMM further as {Xt, θt, Yt}t≥1 by introducing a slowly

moving Markov chain for the static parameter as {θt}t≥1. At iteration j, the Markov

chain for {θt}t≥1 is a random walk typically with Gaussians steps.

θ1 ∼ N (θ(j), τ 2
j Σ), θk|θk−1 ∼ N (θk−1, σ

2
jΣ), k ≥ 2. (3.37)

At iteration j, one runs an SMC filter for the {Xt, θt, Yt}t≥1 with Nj particles, and

calculates at every time step the mean and variance estimates for θt with respect to the

filtering and prediction densities, respectively

mt = Eθ(j−1) [θt|y1:t] , Vk = varθ(j−1) [θt|y1:t−1] , t = 1, . . . , n. (3.38)

Denoting the SMC estimates of these quantities as m̃t and Ṽt and letting m̃0 = 0, the

algorithm updates the parameter estimates by

θ(j) = θ(j−1) + γj

n∑

t=1

Ṽ −1
t (m̃t − m̃t−1) (3.39)

Actually, the quantity
∑n

t=1 Ṽ
−1
t (m̃t − m̃t−1) is an approximation to the gradient of the

log likelihood, ∇θlθ(y1:n) at θ = θ(j−1).

Here, the positive sequences {τj}j≥0 and {σj}j≥0 satisfy the conditions limj→∞ τj = 0

and limj→∞ σj/τj = 0, which are the conditions leading to an annealing schedule. More-

over, the sequences of number of particles and step sizes must satisfy Njτj → ∞ and
∑

j γ
2
jN

−1
j τ−2

j < ∞, which are the conditions for convergence of the stochastic approxi-

mation for θ to a local maximum [Ionides et al., 2011].

3.4.5 Discussion of the MLE methods

One one hand, one might prefer a gradient ascent procedure over the EM algorithm for

a number of reasons. Firstly, when lθ(y1:n) is a concave function of θ, if γj is replaced by

−γjΓ−1
j where Γj is the Hessian of lθ(y1:n) evaluated at θj , then the rate of convergence is

quadratic and thus faster than the EM which converges linearly. The Hessian matrix can

be estimated using SMC techniques, see Poyiadjis et al. [2011]. Secondly, the gradient

ascent algorithm is more general since it can be implemented in those cases where M-step

of the EM cannot be solved in closed-form. On the other hand, scaling the gradients
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might be quite hard. In addition, the EM needs less tuning and its M-step is typically

numerically stable. Therefore, one might prefer an EM approach if the M-step can be

computed analytically. Finally, both approaches have online versions, which makes them

very powerful tools in dealing with large sequential data sets.

An advantage of iterative filtering over standard gradient and EM techniques is that

it only requires being able to sample from fθ(x
′|x) and there is no explicit calculations

of the derivative. However, it might require a bit of tuning when the parameter is high-

dimensional. Another disadvantage of iterated filtering is the necessity to use increasing

number of particles versus iterations in order to ensure convergence. Finally, iterated

filtering does not have an online version hence can only be used in a batch setting.



Chapter 4

An Online

Expectation-Maximisation

Algorithm for Changepoint Models

Summary: Changepoint models are widely used to model the heterogeneity of sequential

data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximisation

(EM) algorithm for estimating the static parameters of such models. The SMC online

EM algorithm has a cost per time which is linear in the number of particles and could

be particularly important when the data is representable as a long sequence of observa-

tions, since it drastically reduces the computational requirements for implementation. We

present an asymptotic analysis for the stability of the SMC estimates used in the online

EM algorithm and demonstrate the performance of this scheme using both simulated and

real data originating from DNA analysis.

The work done in this chapter is published in Yıldırım et al. [2012d]. The idea was

initiated in a discussion Dr. Sumeetpal S. Singh had with Prof. Arnaud Doucet. I did all

the work except that Section 4.4 was done in collaboration with Dr. Sumeetpal S. Singh.

4.1 Introduction

Consider a sequence of observations {y1, y2, . . .} collected sequentially in time. A change-

point model is a particular model for heterogeneity of sequential data that postulates the

existence of a strictly increasing time sequence t1, t2, . . . with t1 = 1, that partitions the

data into disjoint segments

{yt1 , . . . , yt2−1}, {yt2, . . . , yt3−1}, . . .

and that the data is correlated within a segment but are otherwise independent across

segments. The time instances t1, t2, . . . are known as the changepoints and constitute a

random unobserved sequence. This segmental structure is both an intuitive and versatile

model for heterogeneity and it is the reason why changepoint models have enjoyed a wide

71
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appeal in a variety of disciplines such as Biological Science [Braun and Muller, 1998;

Caron et al., 2011; Fearnhead and Vasileiou, 2009; Johnson et al., 2003], Physical Science

[Lund and Reeves, 2002; Ó Ruanaidh and Fitzgerald, 1996] Signal Processing [Cemgil

et al., 2006; Punskaya et al., 2002], and Finance [Dias and Embrechts, 2004].

In a Bayesian approach to inferring changepoints, one adopts a prior distribution on

their locations and a likelihood function for the observed process given these change-

points. However, both of these laws typically depend on a finite dimensional real pa-

rameter vector θ ∈ Θ where Θ denotes the set of permissible parameter vectors. In

all realistic applications, the static parameter θ is unknown and needs to be estimated

from the data as well. A fully Bayesian approach would assign a prior distribution to θ.

However the resulting posterior distribution is intractable. Several Markov chain Monte

Carlo (MCMC) schemes have been proposed in this context [Chib, 1998; Fearnhead,

2006; Lavielle and Lebarbier, 2001; Stephens, 1994]. Unfortunately these algorithms are

far too computationally intensive when dealing with very large datasets. Alternative

to an MCMC based full Bayesian analysis is sequential Monte Carlo (SMC); however,

SMC methods to perform online Bayesian static parameter estimation suffer from the

well-known particle path degeneracy problem and can provide unreliable estimates; see

Andrieu et al. [2005], Olsson et al. [2008] for a discussion of this issue. This is why we

focus here on estimating the parameter θ using a maximum likelihood approach; i.e. the

Maximum Likelihood Estimate (MLE) of interest is the parameter vector from Θ that

maximises the probability density of the observed data sequence pθ(y1, . . . , yn). This is a

challenging problem as computing the likelihood pθ(y1, . . . , yn) requires a computational

cost increasing super-linearly with n [Chopin, 2007; Fearnhead and Liu, 2007].

Our main contribution is a novel online EM algorithm to compute the MLE of the

static parameter θ for changepoint models. We remark that standard batch EM algo-

rithms for a restricted class of changepoint models have been proposed before, e.g. see

Gales and Young [1993], Barbu and Limnios [2008], Fearnhead and Vasileiou [2009]. The

main reason why an online algorithm is desirable is that huge computational and mem-

ory savings are possible. For a long data sequence, a standard EM algorithm requires

a complete browse through the entire data set at each iteration to update the MLE of

θ; and many such iterations are needed until the estimate of θ converges. This not only

requires storing the entire data sequence but also the probability laws that are needed in

the intermediate computations done in each EM iteration, which can be impractical. For

this reason, there has been a strong interest in online methods which make parameter

estimation possible by browsing through the data only once and hence circumventing the

need to store it in its entirety (see Kantas et al. [2009] for a review). The only other

work on computing the MLE of θ for a more restrictive class of changepoint models in

an online manner that we are aware of is Caron et al. [2011], where the authors used
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a recursive gradient algorithm. If the model permits an EM implementation then it is

fair to say that the EM is generally preferred by practitioners as no algorithm tuning is

required whereas it can be difficult to properly scale the components of the computed

gradient vector.

For finite state-space Hidden Markov Models (HMM) [Cappé, 2011; Mongillo and

Deneve, 2008] and linear Gaussian state-space models [Elliott et al., 2002], it is possible

to implement exactly the online EM algorithm. A detailed study of this algorithm in

the finite state-space case can be found in Cappé [2011]. For changepoint models, it is

necessary to approximate numerically certain expectations sequentially over time with

respect to (w.r.t.) the conditional law of the changepoints and other latent random vari-

ables of the model given the available observations up to that point in time. We present

SMC estimates of these expectations and establish the stability (via the variance) of

these estimates w.r.t. time n and the number of particles N both theoretically and with

numerical examples. Stability of the SMC estimates of the expectations is important for

assessing the performance and reliability of the EM algorithm and is not to be taken for

granted because these expectations are computed w.r.t. a probability law whose dimen-

sion increases linearly with time n. We note that the computational cost of the proposed

SMC online EM algorithm is O(N) per-time whereas a O(N2) per-time algorithm is re-

quired to obtain similar stability results for general state-space HMMs [Del Moral et al.,

2009]. Cappé [2011], remarked that “although the online EM algorithm resembles a clas-

sical stochastic approximation algorithm, it is sufficiently different to resist conventional

‘analysis of convergence’. We believe that limited results similar to those discussed in

Cappé [2011, Section 4] identifying the potential accumulation points of the online EM

procedure could be established but this is beyond the scope of this work. In the nu-

merical studies reported in this work, and indeed in all the ones we have conducted, the

SMC online EM algorithm converges, and to a very close vicinity of the correct values

when these are known, e.g. in synthetic examples. Moreover, we observed that online EM

converged significantly quicker than the batch EM implementation.

The organisation of the chapter is as follows. In Section 4.2, we describe a general

changepoint model. In Section 4.3, we present the associated online EM algorithm and

its SMC implementation. Theoretical results on the stability of the SMC estimates used

in the online EM algorithm are given in Section 4.4. In Section 4.5, we demonstrate the

performance of the SMC online EM algorithm on both simulated and real data. We finish

with a discussion in Section 4.6 and finally, some detailed model specific derivations as

well as mathematical proofs are given in Appendix.
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4.2 The changepoint model

In this work a changepoint model is defined to be comprised of two discrete-time stochastic

processes which are {(Xk, Zk)}k≥1 and {Yk}k≥1. {(Xk, Zk)}k≥1 is an unobserved time-

homogeneous Markov chain taking values in X × Z where X = {1, 2, . . .} × {1, . . . , R}
and Z ⊆ Rp. (While the definition of X in this manner is necessary for the resulting model

to be a changepoint model, the definition of Z can change depending on the application

domain.) We denote realisations of the first component of this chain by xk = (dk, mk).

The variable mk takes values in the index set {1, . . . , R} and indicates the (generative)

model the chain is in at that time while dk indicates the duration the chain has spent in

model mk. The transition law of {(Xk, Zk)}k≥1 is

X1 ∼ µ, Xk |(xk−1 = (d,m), zk−1) =

{
(d+ 1, m) w.p. 1− λθ,m(d)

(1, m′) w.p. λθ,m(d)× Pθ(m,m′)
,

Zk |(xk = (d′, m′), xk−1, zk−1) ∼
{
fθ,m′(z|zk−1)dz if d′ 6= 1

πθ,m′(z)dz if d′ = 1
, (4.1)

where λθ,m(d) ∈ [0, 1] for all θ ∈ Θ and (d,m) ∈ X ; Pθ is an R×R row stochastic matrix;

for each θ and m, fθ,m(z|zk−1) is the density of a Markov transition kernel on Z w.r.t.

a suitable dominating measure which is denoted by dz; and for each θ and m, πθ,m is

a probability density on Z. The transition kernel of the Markov chain {(Xk, Zk)}k≥1 is

assumed to be parametrised by the finite dimensional parameter θ ∈ Θ. Without loss of

generality, it is assumed that the probability distribution of the initial state of the chain

{Xk}k≥1, denoted µ, has all its mass on {(1, 1), . . . , (1, R)}, e.g. the uniform distribution

on {(1, 1), . . . , (1, R)}.
For a sequence {ak}k≥1 and integers i, j, let ai:j denote the set {ai, ai+1, ..., aj}, which

is empty if j < i, and ai:∞ = {ai, ai+1, ...}. The process {Yk}k≥1 is a Y-valued observed

process which satisfies the following conditional independence property:

Yk
∣∣({xk, zk}k≥1 , y1:k−1, yk+1:∞

)
∼ gθ,mk(y|zk)dy (4.2)

where for each θ and m, gθ,m is a probability density on Y with respect to the dominating

measure dy. In this work Y ⊆ Rq although the definition of Y may be altered depending

on the application. Equations (4.1) and (4.2), now define the law of (X1:n, Z1:n, Y1:n).

Note that {Xk}k≥1 itself is a Markov chain and we denote its transition matrix by

pθ (xk| xk−1). Secondly, it is useful to visualise a realisation of {Xk}k≥1 as a labelled con-

tiguous partition of {1, 2, . . .}, {[t1, t2), [t2, t3), . . .} and ti+1 > ti, where each set [ti, ti+1) of

the partition, which we call a segment, is accompanied by mti , the model number during

that segment. The variables ti are the instances {Xk}k≥1 visits the set {1} × {1, . . . , R}
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and are called as the changepoints. As {Zk}k≥1 forgets its past at times of changepoints,

within the segment [ti, ti+1), {(Zk, Yk)}ti≤k<ti+1
is a HMM with initial, state transition,

and observation densities πθ,mti , fθ,mti , and gθ,mti respectively. In this sense, our model

is general enough to encompass both hidden semi-Markov models ([Barbu and Limnios,

2008; Murphy, 2002] and segmented hidden semi-Markov models [Dong and He, 2007;

Gales and Young, 1993]. Below, we give an example of a changepoint model, which we

will use in our experiments throughout this chapter.

Example 4.1. Consider the following changepoint model presented in Fearnhead and

Vasileiou [2009], where Zk = (Zk,1, Zk,2) ∈ R× R+, and Y = R. The model satisfies

X1 ∼ U{1}×{1,...,R}, Xk |(xk−1 = (d,m)) =

{
(d+ 1, m) w.p. (1− λm)

(1, m′) w.p. λm × P (m,m′)
,

Zk |(xk = (d′, m′), zk−1) ∼
{
δzk−1

if d′ 6= 1

NΓ−1(ξm, κm, α, β) if d′ = 1
,

Yk |zk ∼ N (zk,1, zk,2),

where NΓ−1(·) denotes the normal-inverse gamma distribution and UA is the uniform

distribution over the set A. In relation to (4.1) and (4.2), we have λθ,m(d) = λm,

fθ,m(z|zk−1)dz = δzk−1
(dz), πθ,m = NΓ−1(ξm, κm, α, β), and gθ(y|zk) = N (y; zk,1, zk,2).

Therefore, the parameters of interest are θ = (ξ1:R, κ1:R, λ1:R, α, β, P ). In this model,

the observations in each segment are i.i.d. Gaussian random variables whose mean and

variance change from segment to segment and are drawn from the normal-inverse gamma

distribution.

The following important conditional independence property, which follows from (4.1)

and (4.2), will be frequently used in the derivations to follow: for any k′ ≥ k,

pθ(yk|x1:k′, y1:k−1) = pθ(yk|xk, y1:k−1) = pθ(yk|xk, yk−dk+1:k−1).

(Recall that dk is the first component of xk.) This equation may be interpreted to mean

that yk only depends statistically on the past observations that are received since the most

recent changepoint and not on the observations before that. For the models considered in

this work we assume that pθ(yk|xk, y1:k−1) can be evaluated for any xk and y1:k (whenever

the conditional law is well defined). This assumption is satisfied by some important

models (e.g. Caron et al. [2011]; Fearnhead and Vasileiou [2009]; Whiteley et al. [2009]),

and allows us to focus inference on X1:n and θ given Y1:n as Z1:n may be integrated out.

For a given realisation of observations {yk}k≥1, we define the potential function Gθ,k :
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X → [0,∞) as

Gθ,k(xk) =

∫
πθ,mk(zj)

∏k
i=j+1 fθ,mk(zi|zi−1)

∏k
i=j gθ,mk(yi|zi)dzj:k∫

πθ,mk(zj)
∏k−1

i=j+1 fθ,mk(zi|zi−1)
∏k−1

i=j gθ,mk(yi|zi)dzj:k−1

, j = max(k−dk+1, 1).

(Gθ,k is introduced for brevity.) Note that Gθ,k(xk) is precisely pθ(yk|xk, y1:k−1) at values

of xk where the latter is well defined. We can now express the probability density of the

observed process, or likelihood, succinctly as

pθ (y1:n) = Eθ

[
n∏

k=1

Gθ,k(Xk)

]
.

4.3 EM algorithms for changepoint models

Our main aim is to estimate the static parameter θ of the changepoint model in an online

manner using the EM algorithm. We first introduce the batch EM algorithm and then

explain how it can be modified to obtain the online EM version.

4.3.1 Batch EM

Given Y1:n = y1:n, the EM algorithm for maximising pθ(y1:n) is given by the following

iterative procedure: if θi is the estimate of the maximiser at the ith iteration, then at

iteration i+ 1 we first calculate the following intermediate optimisation criterion,

Q(θi, θ) = Eθi [ log pθ(y1:n, Z1:n, X1:n)| y1:n]

= Eθi [ log pθ(X1:n) + log pθ(y1:n, Z1:n|X1:n)| y1:n]

= Eθi [ log pθ(X1:n) + Eθi { log pθ(y1:n, Z1:n|X1:n)| y1:n, X1:n}| y1:n] . (4.3)

This step is known as the expectation (E) step. The inner expectation in (4.3) is w.r.t.

the law of Z1:n conditioned on y1:n and X1:n under θi, that is pθi (z1:n| y1:n, x1:n), whereas

the outer expectation is w.r.t. the law of X1:n conditioned on y1:n under θi, that is

pθi (x1:n| y1:n) . The updated estimate is then computed in the maximisation (or M) step

θi+1 = arg max
θ
Q(θi, θ).

This procedure is repeated until θi converges (or ceases to change significantly).

Let us define the integrand of the outer expectation in (4.3) as the function Hk :

X k × Yk ×Θ2 → R, k = 1, . . . , n,

Hk(x1:k, y1:k, θi, θ) := log pθ(x1:k) + Eθi [ log pθ(y1:k, Z1:k|x1:k)| y1:k, x1:k]
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We can exploit the following three properties of Hk and Q(θi, θ). Firstly, Hk has an

additive structure (see Appendix 4.A.1 for a derivation):

Hk(x1:k, y1:k, θi, θ) = Hk−1(x1:k−1, y1:k−1, θi, θ) + hk(xk−1, xk, yk−dk+1:k, θi, θ) (4.4)

where the incremental term hk is a function of (xk−1, xk, yk−dk+1, . . . , yk, θi, θ). Secondly,

when the transition laws of the changepoint model given in (4.1)-(4.2) belong to the

exponential family then the incremental terms can be expressed as

hk(xk−1, xk, yk−dk+1:k, θi, θ) = vT
θ sk(xk−1, xk, yk−dk+1:k, θi) (4.5)

where vθ is a r × 1 vector depending only on θ, sk is a r × 1 vector valued function of

(xk−1, xk, yk−dk+1, . . . , yk, θi). (From now on, we omit the dependency of Hk, hk, and sk on

y1:k for the sake of conciseness.) If (4.5) holds, Q(θi, θ) = vT
θ Eθi [Sn(X1:n, θi)| y1:n] where

Sn(x1:n, θi) =

n∑

j=1

sj(xj−1, xj , θi), (4.6)

with s1(x0, x1, θ) = s1(x1, θ) by convention, and its maximiser is explicitly characterised

by a function Λ : Rr → Θ

arg max
θ∈Θ

Q(θi, θ) = Λ (Eθi [Sn(X1:n, θi)| y1:n]) . (4.7)

Hence from a practical point of view, it is necessary to compute the expectation of

additive functionals (4.6) w.r.t. pθi (x1:n| y1:n). As for a standard HMM, this can be

achieved using a forward-backward type algorithm; see Gales and Young [1993], Barbu

and Limnios [2008], Fearnhead and Vasileiou [2009]. However in a general scenario the

computational complexity is quadratic in n and approximations are necessary when n is

very large. In Fearnhead and Vasileiou [2009] a Monte Carlo EM (MCEM) algorithm

was proposed for a specific changepoint model (see Section 4.5) where the expectations

in the E-step are computed using a backward Monte Carlo sampling procedure.

4.3.2 Online EM

The development of an online version of the EM rests on the following key fact [Cappé,

2011; Del Moral et al., 2009]. The quantity Eθ [Sn(X1:n, θ)| y1:n] when Sn has the additive

structure in (4.6) can be evaluated sequentially with the following recursion which we
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will refer to as the forward smoothing recursion:

Tn(xn, θ) :=
∑

x1:n−1∈Xn−1

Sn(x1:n, θ)pθ(x1:n−1|y1:n−1, xn)

=
∑

xn−1∈X

[Tn−1(xn−1, θ) + sn(xn−1, xn, θ)] pθ(xn−1|y1:n−1, xn)

with T1(x1, θ) = s1(x1, θ). The second line follows from (4.6) and the decomposition

pθ(x1:n−1|y1:n−1, xn) = pθ(x1:n−2|y1:n−2, xn−1)pθ(xn−1|y1:n−1, xn) (4.8)

due to the fact that given xn−1, x1:n−2 do not depend on xn, xn+1, . . . , yn−1, yn, . . ., which

follows from (4.1) and (4.2). The function Tn(·, θ) : X → Rr can be computed in an

online manner and hence so can

Eθ [Sn(X1:n, θ)| y1:n] =
∑

xn∈X

Tn(xn, θ)pθ(xn|y1:n).

It is possible to use this recursion to implement the batch EM algorithm. Compared to

the standard forward-backward implementation, this approach does not require a back-

ward pass to compute the expectations of interest and hence requires far less memory to

implement.

The online EM algorithm is a variation over the batch EM where the parameter is re-

estimated each time a new observation is collected. In this approach running averages of

Eθ [Sn(X1:n, θ)| y1:n] are computed [Cappé, 2009, 2011; Elliott et al., 2002; Mongillo and

Deneve, 2008], [Kantas et al., 2009, Section 3.2.]. Let γ = {γn}n≥1, called the step-size

sequence, be a positive decreasing sequence satisfying
∑

n≥1 γn = ∞ and
∑

n≥1 γ
2
n < ∞.

A common choice is γn = n−a for 0.5 < a ≤ 1. Let θ1 be the initial guess of θ∗ before

having made any observations and let θ1:n be the sequence of parameter estimates of the

online EM algorithm computed sequentially based on y1:n−1. When yn is received, online

EM computes

Tγ,n(xn) =
∑

xn−1∈X

[(1− γn)Tγ,n−1(xn−1) + γnsn(xn−1, xn, θn)] pθ1:n(xn−1|y1:n−1, xn), (4.9)

Sn =
∑

xn∈X

Tγ,n(xn)pθ1:n(xn|y1:n) (4.10)

and then sets θn+1 = Λ (Sn). The subscript θ1:n on pθ1:n(xn−1|y1:n−1, xn) and pθ1:n(xn|y1:n)

indicates that these laws are being computed sequentially using the parameter θk at time

k, k ≤ n. (See Algorithm 4.1 for details.) In practice, the maximisation step is not

executed until a burn-in time nb for added stability of the estimators as discussed in

Cappé [2009].
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The online EM algorithm can be implemented exactly for a linear Gaussian state-space

model [Elliott et al., 2002] and for finite state-space HMM’s. [Cappé, 2011; Mongillo and

Deneve, 2008]. An exact implementation is not possible for changepoint models in general,

therefore we now investigate SMC implementations of the online EM algorithm.

4.3.3 SMC implementations of the online EM algorithm

Let Qθ,n(x1:n) = pθ (x1:n|y1:n−1) denote the law of X1:n conditioned on the sequence of

observed variables y1:n−1, and let ηθ,n(xn) = pθ(xn|y1:n−1) denote the time n marginal of

Qθ,n. ηθ,n is also known as the predicted filter but we refer to it simply as the filter. In

order to execute (4.9) and (4.10) at time n, we need to calculate the following probability

distributions:

pθ(xn−1|xn, y1:n−1) =
ηθ,n−1(xn−1)Gθ,n−1(xn−1)pθ(xn|xn−1)∑
x′n−1

ηθ,n−1(x′n−1)Gθ,n−1(x′n−1)pθ(xn|x′n−1)
(4.11)

pθ(xn|y1:n) =
ηθ,n(xn)Gθ,n(xn)∑
x′n
ηθ,n(x′n)Gθ,n(x′n)

(4.12)

Note that to calculate these probability distributions we only need ηθ,n−1 and ηθ,n at time

n. Besides, ηθ,n may be computed recursively using Bayes’ formula:

ηθ,n(xn) =

∑
xn−1

ηθ,n−1 (xn−1)Gθ,n−1 (xn−1) pθ (xn|xn−1)∑
xn−1

ηθ,n−1 (xn−1)Gθ,n−1 (xn−1)
, n > 1, (4.13)

However, the computational cost of the filtering recursion in (4.13) at time n is O(nR);

this follows since pθ(x
′|x) is non-zero for at most R + 1 values of x′. For the analysis

of large amounts of data, exact filtering is computationally infeasible and SMC methods

have been introduced as a viable alternative [Chopin, 2007; Fearnhead and Liu, 2007].

One way to obtain the SMC approximation to ηθ,n is via the path space particle

approximation of Qθ,n. This is the empirical measure corresponding to a set of N ≥ 1

random samples termed particles [Del Moral, 2004]:

Q
p,N
θ,n (x1:n) =

1

N

N∑

i=1

δ
X

(i)
1:n

(x1:n) . (4.14)

where δa(·) is the probability mass function concentrated at a. These particles are then

propagated in time using importance sampling and resampling steps; see Doucet et al.

[2001] and Cappé et al. [2005] for a review of the literature. Specifically, Q
p,N
θ,n is the
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empirical measure constructed from N independent samples from

Q
p,N
θ,n−1 (x1:n−1)Gθ,n−1 (xn−1) pθ (xn|xn−1)∑

x1:n−1
Q

p,N
θ,n−1 (x1:n−1)Gθ,n−1 (xn−1)

. (4.15)

The particle approximation of ηθ,n can now be obtained from Q
p,N
θ,n by marginalization

ηNθ,n(xn) =
1

N

N∑

i=1

δ
X

(i)
n

(xn) . (4.16)

Other than the one in (4.16), there are other ways to sequentially update ηNθ,n−1 so

that ηθ,n is approximated at N distinct particles. Given ηNθ,n−1, at time n the distribution

∑
xn−1

ηNθ,n−1 (xn−1)Gθ,n−1 (xn−1) pθ (xn| xn−1)∑
xn−1

ηNθ,n−1 (xn−1)Gθ,n−1 (xn−1)

with support at N + R points is calculated exactly and then ηNθ,n is obtained by sam-

pling this distribution independently N times (see Algorithm 4.1). Caron et al. [2011]

propose truncating to the N support points with the highest weights. This deterministic

resampling scheme introduces bias, but the authors report that this bias is negligible.

Fearnhead and Liu [2007] propose an unbiased resampling scheme that retains the max-

imum number of unique particles in the reduced representation of size N . In the same

work, and in Fearnhead and Vasileiou [2009], resampling schemes that allow changing

number of particles in time are proposed.

The online EM algorithm in Section 4.3.2 can be approximated with O(N) cost per

time using the SMC approximation of the densities in (4.11) and (4.12). The resulting

algorithm, presented as Algorithm 4.1, will be referred to as the SMC-FS online EM

algorithm.

Algorithm 4.1. SMC-FS online EM algorithm for changepoint models

• E-step: If n = 1, initialise θ1; sample X̃
(i)
1 ∼ µ, set T̃

(i)
1 = s1(X̃

(i)
1 , θ1), i =

1, . . . , N .

If n ≥ 2

– For i = 1, . . . , N , set X̃
(i)
n = (d

(i)
n−1 + 1, m

(i)
n−1) , where X

(i)
n−1 = (d

(i)
n−1, m

(i)
n−1)

– For m = 1, . . . , R, set X̃
(N+m)
n = (1, m).

– For i = 1, . . . , N +R, compute W̃
(i)
n =

∑N
j=1Gθn−1,n(X

(j)
n−1)pθn(X̃

(i)
n |X(j)

n−1) and

T̃ (i)
n =

1

W̃
(i)
n

N∑

j=1

Gθn−1,k(X
(j)
n−1)pθn(X̃

(i)
n |X(j)

n−1)
[
(1− γn)T (j)

n−1 + γnsn(X
(j)
n−1, X̃

(i)
n , θn)

]
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Resample {X̃(i)
n , T̃

(i)
n }i=1,...,N+R according to the weights {W̃ (i)

n }i=1,...,N+R to get re-

sampled particles {X(i)
n , T

(i)
n }i=1,...,N each with weight 1/N .

• M-step: If n < nb, set θn+1 = θn else, calculate using the particles before resam-

pling

Sn =

∑N+R
i=1 T̃

(i)
n W̃

(i)
n Gθn,n(X̃

(i)
n )

∑N+R
i=1 W̃

(i)
n Gθn,n(X̃

(i)
n )

,

update the parameter θn+1 = Λ (Sn).

4.3.4 Comparison with the path space online EM

As shown in Section 4.3.1, the EM algorithm requires certain expectations w.r.t. the

measure Qθ,n, and the online EM algorithm in Section 4.3.2 relies on the running averages

of these expectations. Consider the following backward representation of Qθ,n

Qθ,n(x1:n) = ηθ,n(xn)

2∏

k=n

pθ(xk−1|xk, y1:k−1).

Then a corresponding particle approximation, different from the path-space one, is given

by

QN
θ,n(x1:n) = ηNθ,n(xn)

2∏

k=n

pNθ (xk−1|xk, y1:k−1). (4.17)

where pNθ (xk−1|xk, y1:k−1) is (4.11) with ηθ,k−1 replaced with ηNθ,k−1. One can then show

that the online EM algorithm using the SMC approximation to the forward smoothing

recursion relies on the particle approximation QN
θ,n described above. More precisely,

in Algorithm 4.1, if γi = 1/i, n < nb (see the M-step), θ1 = · · · = θn+1 = θ, and

sn+1(xn, xn+1, θ) = 0, then

Sn+1 = QN
θ,n+1((n + 1)−1Sn).

This observation will be useful for analysing the stability properties of the sufficient

statistics calculated SMC-FS online EM algorithm in Section 4.4.

As an alternative to SMC-FS online EM, we could have proposed an SMC online EM

algorithm relying on the particle approximation Q
p,N
θ,n defined in (4.14)-(4.15). In that

case (using the short-hand notation in Algorithm 4.1) the approximation to (4.9) and

(4.10) becomes

T̃ (i)
n = (1− γn)T (i)

n−1 + γnsn(X
(i)
n−1, X̃

(i)
n , θn)
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for each i = 1, . . . , N , and then calculating the estimates of sufficient statistics as

Sn =

∑N
i=1 T̃

(i)
n Gθn,n(X̃

(i)
n )

∑N
i=1Gθn,n(X̃

(i)
n )

.

Recall that each X̃
(i)
n is sampled from pθn(xn|X(i)

n−1). {X̃(i)
n , T̃

(i)
n }i=1,...,N are then resampled

to obtain {X(i)
n , T

(i)
n }i=1,...,N according to the weights {Gθn,n(X̃

(i)
n )}i=1,...,N . Based on the

path space approximation, we will hereafter call this algorithm the SMC-PS online EM

algorithm. In the context of general state-space HMM, this was proposed in Cappé [2009]

and only requires O(N) computations per time step. However, it is a well-known fact

that Q
p,N
θ,n becomes progressively impoverished as n increases because of the successive

resampling steps [Del Moral and Doucet, 2003; Olsson et al., 2008]. That is, the number

of distinct particles representing the marginal Q
p,N
θ,n (x1:k) for any fixed k < n diminishes as

n increases until it eventually collapses to a single particle – this is known as the particle

path degeneracy problem. Whereas, in the backward particle approximation QN
θ,n, we

do not have this problem since it relies on the SMC approximations to the filters ηθ,n

only. Therefore, we expect that the resulting SMC estimates in the SMC-PS online

EM algorithm have higher variances than those in the SMC-FS online EM algorithm

[Del Moral et al., 2009]. For a numerical illustration of this fact, see Section 4.5.

4.4 Theoretical results

Recall that the M-step of the exact online EM algorithm applies a mapping Λ which maps

expectations of sufficient statistics Qθ,n+1(n
−1Sn) = Eθ [n−1Sn(X1:n)|y1:n] to a parameter

estimate in Θ; see (4.9) and (4.10) with γn = n−1. It follows from the discussion in

Section 4.3.4 that the reliability of the SMC online EM algorithm described in Section

4.3.2 depends on how stable the estimates of expectations of the type QN
θ,n(Sn) are.

One convenient way of assessing the stability is to check how the asymptotic (in particle

number) variance of
√
N
(
QN
θ,n −Qθ,n

)
(Sn) changes with time n. The asymptotic analysis

will give us an idea about what will happen when we use a large number of particles.

We would like the order of the variance to grow less than quadratically in time n; since

then the variance of
√
N
(
QN
θ,n −Qθ,n

)
(n−1Sn), which is the variance of the estimates in

the M-step, is not only time uniformly bounded but also vanishes. This should result in

the variability of the EM’s parameter update step to particle realisation also diminishing

over time. Before proceeding further we shall make clear that our analysis is for the

approximation QN
θ,n defined in (4.17) for a fixed θ. That is, our results are only indicative

of the stability of the sufficient statistics calculated in the SMC-FS online EM algorithm,

which actually uses a changing sequence of θ’s. In summary, our main result in this

section establishes that (under certain assumptions) the asymptotic (in particle number)
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variance of
√
N
(
QN
θ,n −Qθ,n

)
(Sn) is upper bounded by a term O(n) or O(n log2 n). The

tighter O(n) bound is for finite duration models while the looser O(n log2 n) bound is for

infinite duration models.

The results in this section are phrased for any fixed θ and any sequence of observations

y = {yn}n≥1. Also, to keep the notation “light” θ is omitted from the subscripts. Some

basic definitions are provided first. For a real valued functions ϕ : X → R, let ‖ϕ‖A =

supx∈A |ϕ(x)| for A ⊆ X . Let B(X ) denote the space of bounded real valued functions

on X . For a probability measure ν on X , let ν(ϕ) =
∑

x∈X ν(x) ϕ(x), and for A ∈ X ,

ν(A) = ν(IA) where IA is the indicator function for the set A such that IA(x) = 1 if x ∈ A,

0 otherwise. Denote the support of ν by supp(ν) = {x ∈ X : ν(x) > 0}. If M(x, x′) is a

transition probability (from x to x′) on X , let (Mϕ)(x) = M(ϕ)(x) =
∑

x′ M(x, x′)ϕ(x′).

For ϕ ∈ B(X ) and A ⊆ X , let oscA(ϕ) = supx,x′∈A |ϕ(x)− ϕ(x′)| be the oscillation of the

function over A and osc(ϕ) = oscX (ϕ). The complement of a set A is A.

We will require the following result concerning the asymptotic variance of particle

smoothing [Del Moral et al., 2010].

Theorem 4.1. Given y = {yn}n≥1, assume there exists finite constants cn such that

c−1
n ≤ Gn ≤ cn for all n. For any n ≥ 1, Fn ∈ B(X n),

√
N
(
QN
n −Qn

)
(Fn) converges in

law, as N →∞, to a centered Gaussian random variable with variance

n∑

i=1

ηi
(
[Gi,n Di,n(Fn −Qn(Fn))]

2) . (4.18)

where, for 1 ≤ i ≤ n, the potential function Gi,n and the bounded integral operator Di,n

are

Gi,n(xi) :=
p(yi:n−1|xi, y1:i−1)

p(yi:n−1|y1:i−1)
, Di,n(Fn)(xi) := E [Fn(X1:n)| y1:n−1, xi] .

The assumption that the potentials Gn are uniformly bounded below by c−1
n is not

overly restrictive as it is satisfied when gm(y|z) > 0 for all m, y and z. The latter is a

typical assumption in the context of the analysis of particle filters to avoid the possibility

of all the particles having weight zero [Del Moral, 2004].

In order to discuss the rate of growth of the asymptotic variance (4.18) as a function

of time n, we need to quantify the sensitivity of the forward and backward smoothers to

their initialisations. For a given sequence of observations y1:n, the forward smoother is

defined as the Markov chain on X with transition kernel p(xk+1|xk, y1:n), k = 1, . . . , n−1.

Similarly, the backward smoother is the reverse time Markov chain with transition kernel

p(xk|xk+1, y1:n), k = n − 1, n − 2, . . . , 1. Each term of the sum in (4.18) is an integral

over X n and will typically grow linearly with n unless both the forward and backward

smoother forget their initialisations quick enough (e.g. with geometric rate) and the

class of functions Fn is restricted. Indeed the E-step of the EM algorithm computes the
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expectation for not an arbitrary Fn but one that has a specific additive structure; see

Section 4.3.1, also Proposition 4.1. A definition of geometric rate is as follows. Given

{yi}i≥1, if for some integer L > 0 there exists a finite constant c(L) ≥ 1 such that for all

m− k ≥ L, n ≥ m,

|E [s(Xm)|xk, y1:n]− E [s(Xm)| x′k, y1:n]| ≤ osc(s)(1− c(L)−2)⌊m−k
L ⌋ (4.19)

irrespective of (xk, x
′
k) provided both conditional expectations are well defined, then the

forward smoother is said to forget its initialisation with geometric rate. (A similar defi-

nition applies for the backward smoother; see (4.32)). Henceforth, when we say forward

forgetting we mean that the forward smoother forgets its initial condition in the sense of

(4.19) but without any specific reference to a rate. By backward forgetting, similarly, we

will mean the insensitivity of the backward smoother to its initialisation.

A typical route to establish forward and backward forgetting is to exploit the fact

that the Markov chain {Xk}k≥1 satisfies a majorization and a minorization condition:

that is there exists a probability measure m(x), positive integer l and positive constant

c such that c −1m(xk) ≤ p(xk|xk−l) ≤ cm(xk) for all (xk−l, xk) ∈ X 2. When this condi-

tion is satisfied it may be shown that the backward and forward smoothers forget their

initialisations at geometric rate, which is quick enough such each term of the sum (4.18)

is uniformly bounded over time. For changepoint models however, the majorization-

minorization condition is not satisfied in general. Consider the following example: let

R = 1 (in which case we drop the variable mk from xk, i.e. xk = dk) and

Xk =

{
xk−1 + 1 w.p. 1− λ

1 w.p. λ
(4.20)

Furthermore, given Xk = d then it must be that Xk−i = d − i for i < d. Thus the

distance between the probability distributions Pr(Xk−i|Xk = d) and Pr(Xk−i|Xk = d′)

will not decrease at geometric rate and the same cannot be expected for the backward

smoother (which is essentially these laws but with additional conditioning on y1:k−1.) In

this work, we analyse the asymptotic variance for changepoint models using a slightly

refined approach.

We analyse two types of changepoint models separately, namely finite duration change-

point models and infinite duration changepoint models. We distinguish between the two

models as follows. In a finite duration changepoint model, for each m ∈ {1, . . . , R} there

exists some finite d̄m such that λm(d) = 1 for all d ≥ d̄m, and smallest such d̄m is the

maximum duration length for model m. If, for at least one m ∈ {1, . . . , R}, λm(d) < 1

for all d > 0, then the model is called an infinite duration model.
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Given {yn}n≥1, for positive integers k ≥ 1, (lag) l and set A ⊆ X , let

ck,l(A) = sup
xk+l∈A,

xk,x
′

k∈supp(ηk)

p(xk+l, yk:k+l−1|xk, y1:k−1)

p(xk+l, yk:k+l−1|x′k, y1:k−1)
(4.21)

where ck,l is taken to be infinity if the denominator can be made zero while the numerator

is not. By convention 0/0 = 1. The variables xk and x′k range over supp(ηk) to ensure

the conditional expectations in the numerator and denominator are well defined. Also,

we abbreviate ck,l(X ) to ck,l. The variance result is now stated for additive functions

of the form Sk(x1:k) =
∑k

i=1 si(xi) and may be extended to the case where Sk(x1:k) =∑k
i=1 si(xi−1, xi). The proof of the result is based on some supporting results and is given

in Appendix 4.A.3.

Proposition 4.1. Assume Sn(x1:n) =
∑n

k=1 sk(xk) where osc(sk) ≤ 1.

• If {Xk} is a finite duration changepoint model which is irreducible and aperiodic;

and there exists a finite constant c such that c−1 ≤ Gn ≤ c for all n, then the

asymptotic variance of
√
N
(
QN
n −Qn

)
(Sn) given in (4.18) is upper bounded by a

term O(n).

• Assume {Xk} is an infinite duration changepoint model whose forward smoother

forgets its initialisation at geometric rate in the sense of (4.19). Furthermore, let

A = {1, . . . , L} × {1, . . . , R}. If there exist a finite positive constant c such that

c−1 ≤ Gn ≤ c for all n and finite positive constants C, γ ∈ (0, 1) and c′ such that

for all n and L

sup
i≥1

ηi(A) ≤ CγL, and sup
i≥1

ci,L(A) ≤ c′, (4.22)

then the asymptotic variance of
√
N
(
QN
n −Qn

)
(Sn) is upper bounded by O(n log2 n).

The first condition in (4.22) is a uniform tightness condition on the probabilities ηi,

whereas the second condition means that if a changepoint occurs between times k and

k + L, the observations up to the last changepoint prior to time k + L do not favour

one xk over another too much. Proposition 4.1 is now shown to be applicable to the

infinite duration model in (4.20) with the following example whose verification is shown

in Appendix 4.A.3.1.

Example 4.2. For the infinite duration model in (4.20), recall that Zk (see Section 4.2)

is a Markov process that “resets” itself when Xk returns to state 1, i.e.

Zk |(x1:k, z1:k−1) ∼
{
π(zk)dzk if xk = 1

f(zk|zk−1)dzk otherwise
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We will assume that the process {Zk}k≥1 assumes values from a compact space and that

there exists some positive constant c such that for all (zk−1, zk)

c−1/2 ≤ π(zk) ≤ c1/2, c−1/2 ≤ f(zk|zk−1) ≤ c1/2. (4.23)

Furthermore, assume g(yk|zk) > 0 for all zk, yk. For example, a changepoint model

satisfying these assumptions could be the changepoint model in Example 4.1 in Section

4.2 with R = 1 and instead of a static {Zk}k≥1 process, a slowly moving one which

is “mixing”. Note that a slowly moving {Zk}k≥1 process permits a more parsimonious

representation of the data.

4.5 Numerical examples

4.5.1 Simulated experiments

For the experiments in this section, we will use the infinite duration changepoint model

in Example 4.1 in Section 4.2, where θ = (ξ1:R, κ1:R, λ1:R, α, β, P ). The constituent distri-

butions of this model belong to the exponential family and so (4.5) holds; see Appendix

4.A.2 for details.

4.5.1.1 Online EM applied to long data sequence

We applied Algorithm 4.1 to a data sequence of length 500000 generated by the model

in Example 4.1 with R = 2 and parameter values α = 10, β = 0.1, ξ1 = 1.445, ξ2 =

−0.214, κ1 = 1.588, κ2 = 0.379, λ1 = 0.12, λ2 = 0.09, Pij = 0.5, i, j = 1, 2. The M-step

was not executed for the first 2000 points (i.e. nb = 2000). The step-size sequence was

γn = n−0.8. Figure 4.1 shows the trace parameter estimates over time. We observe that

the algorithm converges towards the true values. We also did multiple runs to check that

the algorithm would not only converge to a local maximum.

4.5.1.2 Comparison between online and batch EM for a short data sequence

Figure 4.1 also suggests that online EM requires a long data sequence for convergence.

Therefore, for short data sequences the algorithm may not converge and its potential use

is questionable. One can of course use the batch EM algorithm in such cases but another

solution might be to apply online EM to the concatenated sequence {y1:K , y1:K , . . .}.
By doing so, the online EM solution is not ‘online’ anymore. However, it can still be

significantly faster than the offline version as we demonstrate below. Figures 4.2 and

4.3 show results for such a scenario for 2000 data points. We used Algorithm 4.1 to

obtain the results in Figure 4.2 by replicating y1:K 100 times and the SMC-FS batch EM
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Figure 4.1: SMC-FS online EM estimates vs time for a long simulated data sequence.
The true parameter values are indicated with a horizontal line.
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Figure 4.2: SMC-FS online EM estimates vs number of passes for the concatenated
data set {y1:2000, y1:2000, . . .} where each pass is one complete browse of y1:2000. The true
parameter values: α = 10, β = 0.1, ξ1 = 1.78, ξ2 = 3.56, κ1 = 0.30, κ2 = 0.03, λ1 = λ2 =
0.1, Pi,j = 0.5.
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Figure 4.3: SMC-FS batch EM estimates vs number of iterations for for the same y1:2000

used to produce the results in Figure 4.2.

algorithm (the batch version of SMC-FS online EM) to obtain the results in Figure 4.3.

The true parameter values are α = 10, β = 0.1, ξ1 = 1.78, ξ2 = 3.56, κ1 = 0.30, κ2 =

0.03, λ1 = λ2 = 0.1, Pi,j = 0.5, i, j = 1, 2.

There are two main outcomes to be stressed from the results in Figures 4.2 and

4.3. First, the online EM algorithm in this example is much faster since it converges

after around 50 passes, whereas the batch EM algorithm needs over 1000 iterations for

convergence. Notice that the computational cost of one pass over the data in the online

case and one iteration in the batch case are almost the same and therefore the comparison

makes sense. Second, the parameter estimates of both algorithms converge to almost the

same points. This empirically validates the potential benefit of the online EM algorithm

even in the offline setting.

4.5.1.3 Comparison with the path space method

As stated in Section 4.3.3, other than the SMC-FS online EM algorithm, it is possible

to devise an online EM algorithm using Q
p,N
θ,n (SMC-PS online EM), but it suffers from

higher variance. In the following, we compare the performances of these two online EM

algorithms.

In the first experiment, we compare the variability in the estimates of the sufficient

statistics of the changepoint model defined above when the SMC-FS online EM algorithm

and the SMC-PS online EM algorithm (see Section 4.3.4) are used with θn frozen to θ.

We show the results for only one of the statistics, S1
6,n, required for the EM algorithm (see

Appendix 4.A.2) in Figure 4.4. The figures are obtained after running 100 Monte Carlo
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simulations for the same sequence of observation data. For illustration purposes, while

the box plots show the estimates up to time 10000, we show the relative variance along

100000 time steps. We can deduce from the box-plots and relative variance that there

is much less variability in the estimates obtained by using forward smoothing and the

SMC-FS method always outperforms the SMC-PS method in time and thus should be

favoured. Note that, using a finite number of particles, these SMC estimates are biased

and will result in a loss of accuracy in the EM algorithms. To assess this bias, studies in

the context of Feynman-Kac formulae are helpful. For example, the result in Del Moral

et al. [2009] suggests that the bias of SMC-FS estimate of Sn/n for finite duration models

is bounded by a term O(1/N).
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Figure 4.4: Comparison of the forward smoothing and the path space methods in terms
of the variability in the estimates of S1

6,n. The box plots and the relative variance plot
are generated from 100 Monte Carlo simulations using the same observation data.

The second experiment compares the variability in the parameter estimates of the

SMC-FS online EM and the SMC-PS online EM algorithms. Figure 4.5 shows the es-

timation results for the parameter λ1 when the two algorithms are used. The results

are obtained from 100 Monte Carlo simulations using the same sequence of observation

data of length 10000. It is interesting to observe that the trends of estimates over time

are similar for both algorithms; however, it is obvious from the box plots as well as the

relative variance over time that the SMC-FS online EM estimates have less variance than

the SMC-PS online EM estimates.

4.5.2 GC content in the DNA of Human Chromosome no. 2

We applied our online EM method to estimate the parameters of a changepoint model

used for modelling the Guanine+Cytosine (GC) content along human chromosome. It

appears that many features of the genome are correlated with GC content, such as gene

density, repeat density, substitution rates, and recombination rates; see Fearnhead and
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Figure 4.5: Comparison of SMC-FS online EM and SMC-PS online EM in terms of the
variability in their estimates of λ1 = 0.1. The two plots at the top generated by super-
imposing different estimates, the box plots, and the relative variance plot are generated
from estimates out of 100 different Monte Carlo runs using the same observation data.

Vasileiou [2009] and the references therein for further explanation. It is assumed that the

chromosome is separated into successive segments by changepoints and the GC content

during each segment is constant. However, as the signal is obscured by small scale noise,

a statistical approach may be used to uncover the sequence of changepoints. There is a

commonly used binary segmentation approach implemented within the program IsoFinder

[Oliver et al., 2004]. Fearnhead and Vasileiou [2009] proposed the changepoint model de-

scribed in Example 4.1. Regarding the model variables, Zk = (Zk,1, Zk,2) were interpreted

as the mean and variance of the GC content during the segment at window k, and Yk

was taken to be the observed GC content of the k’th window. The authors estimated the

model parameters by using a MCEM approach and their results outperformed the ones

obtained using IsoFinder.

In our experiments we used human chromosome 2, which can be downloaded via the

link http://hgdownload.cse.ucsc.edu/goldenPath/hg17. The raw data was prepro-

cessed as follows. The raw data consists of a single contiguous stretch of DNA data

containing only four different letters: A, C, G, and T. We summarised the DNA data

by partitioning the 24 Megabase (Mb) region, which is nearly the whole data set, into

80000 windows, each 3.0 kb long, and for each window recording the proportion of let-

ters within that window that are G or C. Some parts of the DNA sequence could not

be measured leading to missing parts. The noisy GC content with missing parts, which
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we use as the observation sequence, is shown in Figure 4.6. We assumed two generative
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Figure 4.6: Noisy GC content over 3 kb windows in human DNA chromosome 2.

models (R = 2) to represent segments of high and low GC contents. The missing data

problem is straightforward to handle, e.g. see Fearnhead and Vasileiou [2009]. Figure 4.7

shows the online EM parameter estimates versus number of passes over the data obtained

with Algorithm 4.1. One can see that most of the parameter estimates converge after 10

passes, whereas for convergence of the rest 30 passes are enough.

0 5 10 15 20 25 30
0

5

10

15
α estimate

Number of passes
0 5 10 15 20 25 30

0

0.02

0.04

0.06
β estimate

Number of passes

0 5 10 15 20 25 30
0

2

4

6
κ estimate

Number of passes

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4
λ estimate

Number of passes

0 10 20 30
0

0.5

1

Number of passes

P
1 1

0 10 20 30
0

0.5

1

Number of passes

P
1 2

0 10 20 30
0

0.5

1

Number of passes

P
2 1

0 10 20 30
0

0.5

1

Number of passes

P
2 2

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5
ξ estimate

Number of passes

Figure 4.7: Online EM estimates vs number of passes over the data sequence in Figure
4.6.

4.6 Discussion

We have presented a novel SMC online EM algorithm for changepoint models and we

have studied the stability of the associated SMC estimates. The proposed EM algorithm
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does not require the filters to be stored and has memory requirements independent of the

size of the dataset. We have shown that it is practical for very long data sequences, and

it can outperform the batch EM even when the data length is not so long that batch EM

is impractical (in terms of memory requirement to store the filters and the entire data

set).

From a Monte Carlo point of view, our SMC implementation of the forward smoothing

recursion at the core of the online EM algorithm is essentially an online implementation

of the forward-filtering backward-smoothing algorithm of Doucet et al. [2000b] where the

filtering densities are approximated using SMC and then backward smoothing is executed

exactly. This method is more efficient than using the path space method as demonstrated

in Section 4.5.1.3. Since we need only the SMC approximation of the filters, we could

even use more effective SMC routines that are not applicable to a path space method;

see for example the SMC algorithm in Fearnhead and Vasileiou [2009]. Besides, unlike

the general state-space model case [Del Moral et al., 2009], the computational cost of our

algorithm is of the same order as the cost of using a path space method in changepoint

models.

Even though the numerical examples were presented for one specific changepoint

model, our online EM algorithm is also applicable to the changepoint models studied

in Whiteley et al. [2009] and Caron et al. [2011]. More generally, the proposed online

EM algorithm is applicable when the constituent laws of the changepoint model given

in (4.1)-(4.2) belong to the exponential family and the latent variable {Zk}k≥1 can be

integrated out analytically.

4.A Appendix

4.A.1 Derivation of Hk in (4.4)

Given {xk}k≥1, consider the partition of {1, 2, . . .} {[t1, t2) , [t2, t3) , . . .} where ti is the i’th

time when dk = 1. Each set [tn, tn+1) is called a segment. To emphasise the segmented

structure of the changepoint model, we define ak =
∑k

i=1 I{1}(dk) to be the number of

segments up to time k, ln = tn+1− tn to be the length of the n’th segment, and m̄n = mtn

to be the model number in the n’th segment. Also, we define Z̄n = Ztn:tn+1−1 and

Ȳn = Ytn:tn+1−1 to group the variables Zk and Yk that belong to the same segment with

shorthand notation. Recall that

Hk(x1:k, y1:k, θi, θ) = log pθ(x1:k) + Eθi [ log pθ(y1:k, Z1:k|x1:k)| y1:k, x1:k] . (4.24)
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Proposition 4.2. For any changepoint model defined as in Section 4.2, we have

Hk(x1:k, θ
′, θ) = Hk−1(x1:k−1, θ

′, θ) + hk(xk−1, xk, θ
′, θ)

Proof. Since {Xk}k≥1 is a Markov chain, so log pθ(x1:k) = log pθ(x1:k−1)+ log pθ(xk|xk−1),

and we are done for the first term in (4.24). For the second term in (4.24), due to the

conditional independence of (Z̄n, Ȳn) given the model number at the segment n, which is

m̄n, we have

pθ′(z1:k|y1:k, x1:k) =

[
ak−1∏

n=1

pθ′(z̄n|ȳn, m̄n)

]
pθ′(zk−dk+1:k|yk−dk+1:k, mk) (4.25)

log pθ(y1:k, z1:k|x1:k) =

[
ak−1∑

n=1

log pθ(ȳn, z̄n|m̄n)

]
+ log pθ(yk−dk+1:k, zk−dk+1:k|mk) (4.26)

Combining (4.25) and (4.26), we have

Hk(x1:k, θ
′, θ) = log pθ(x1:k) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

+ Eθ′ [ log pθ(yk−dk+1:k, Zk−dk+1:k|mk)| yk−dk+1:k, mk]

Now consider Hk−1. Given dk−1, there are two possibilities for dk, either dk = 1, dk =

dk−1 + 1.

• If dk = 1, it means a new segment starts at time k. Therefore, ak = ak−1 + 1 and

the ak−1’th segment ends at time k − 1. This gives Hk−1(x1:k−1, θ
′, θ) being equal

to

log pθ(x1:k−1) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

• If dk = dk−1 + 1, then we are still at the segment at which we were at time k − 1.

Therefore, we have ak = ak−1, mk = mk−1, and Hk−1(x1:k−1, θ
′, θ) is equal to

log pθ(x1:k−1) + Eθ′

[
ak−1∑

n=1

log pθ(ȳn, Z̄n|m̄n)

∣∣∣∣∣ ȳn, m̄n

]

+ Eθ′ [ log pθ(yk−dk:k−1, Zk−dk:k−1|mk)| yk−dk+1:k−1, mk]
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Therefore, we have Hk(x1:k, θ
′, θ) = Hk−1(x1:k−1, θ

′, θ) + hk(xk−1, xk, θ
′, θ) where

hk(xk−1, xk, θ
′, θ) = log pθ(xk|xk−1)

+





Eθ′ [ log pθ(yk, Zk|mk)| yk, mk] , if dk = 1

Eθ′ [ log pθ(yk−dk+1:k, Zk−dk+1:k|mk)| yk−dk+1:k, mk]

−Eθ′ [ log pθ(yk−dk+1:k−1, Zk−dk+1:k−1|mk)| yk−dk+1:k−1, mk] , if dk = dk−1 + 1

which does not depend on the values of x1 to xk−2.

4.A.2 Derivation of the EM algorithm for the model in Section

4.5

We write (Z1, Z2) ∼ NΓ−1(ξ, κ, α, β) to mean Z2 ∼ Γ−1(α, β) and Z1|z2 ∼ N (ξ, z2
κ
). If

Yk| (z1, z2) ∼ N (z1, z2) for k = 1, . . . , n, the marginal likelihood and the posterior are:

p(y1:n) =
π−n/2 (2β)α Γ (α+ n/2)

(
2β +

∑n
k=1 y

2
k + ξ2κ−

Pn
k=1 yk+ξ

2κ

n+κ

)n/2+α

(Z1, Z2) | (y1:n) ∼ NΓ−1

(
κξ + nȳ

κ + n
, κ+ n, α +

n

2
, β +

1

2

n∑

k=1

(yk − ȳ)2 +
nκ

n + κ

(ȳ2 − ξ)2

2

)

where ȳ = 1
n

∑n
k=1 yk. Also, the required expectations are analytically available:

E [1/Z2] = α/β, E [Z1/Z2] = ξα/β, E
[
Z2

1/Z2

]
= 1/κ+ ξ2α/β, E [logZ2] = log β −Ψ(α)

For the EM algorithm, we estimate the following functionals for m,m1, m2 = 1, . . . , R:

Sm1,k(x1:k, θi) =

ak∑

n:m̄n=m

1, Sm2,k(x1:k, θi) =

ak−1∑

n:m̄n=m

(ln − 1) + I{m}(mk) (dk − 1) ,

Sm1,m2

3,k (x1:k, θi) =

ak−1∑

n:m̄n=m1,m̄n+1=m2

1

Sm4,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi [ logZtn,2| ȳn, m] + I{m}(mk)Eθi [ logZk,2| yk−dk+1:k, m] ,

Sm5,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi [1/Ztn,2| ȳn, m] + I{m}(mk)Eθi [1/Ztn,2| yk−dk+1:k, m] ,

Sm6,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi [Ztn,1/Ztn,2| ȳn, m] + I{m}(mk)Eθi [Ztn,1/Ztn,2| yk−dk+1:k, m] ,

Sm7,k(x1:k, θi) =

ak−1∑

n:m̄n=m

Eθi

[
Z2
tn,1/Ztn,2

∣∣ ȳn, m
]
+ I{m}(mk)Eθi

[
Z2
tn,1/Ztn,2

∣∣ yk−dk+1:k, m
]
.
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The corresponding additive functions are

sm1,k(xk−1, xk, θi) = I{m}(mk)I{1}(dk) sm2,k(xk−1, xk, θi) = I{m}(mk)I{dk−1+1}(dk),

sm1,m2

3,k (xk−1, xk, θi) = I{1}(dk)I{m1}(mk−1)I{m2}(mk),

sm4,k(xk−1, xk, θi) = I{m}(mk)
{
I{1}(dk)Eθi [ logZk,2| yk, m]

+ I{dk−1+1}(dk) (Eθi [ logZk| yk−dk+1:k, m]− Eθi [ logZk,2| yk−dk+1:k−1, m])
}
,

sm5,k(xk−1, xk, θi) = I{m}(mk)
{
I{1}(dk)Eθi [1/Zk,2| yk, m]

+I{dk−1+1}(dk) (Eθi [1/Zk,2| yk−dk+1:k, m]− Eθi [1/Zk,2| yk−dk+1:k−1, m])
}
,

sm6,k(xk−1, xk, θi) = I{m}(mk)
{
I{1}(dk)Eθi [Zk,1/Zk,2| yk, m]

+I{dk−1+1}(dk) (Eθi [Zk,1/Zk,2| yk−dk+1:k, m]− Eθi [Zk,1/Zk,2| yk−dk+1:k−1, m])
}
,

sm7,k(xk−1, xk, θi) = I{m}(mk)
{
I{1}(dk)Eθi

[
Z2
k,1/Zk,2

∣∣ yk, m
]

+I{dk−1+1}(dk)
(
Eθi

[
Z2
k,1/Zk,2

∣∣ yk−dk+1:k, m
]
− Eθi

[
Z2
k,1/Zk,2

∣∣ yk−dk+1:k−1, m
])}

.

The maximisation step is as follows: Letting Ŝmj,n(θ) = Eθ

[
Smj,n(X1:n, θ)

∣∣ y1:n

]
,

α(i+1) = Ψ−1

(
log β(i)

∑R
m=1 Ŝ

m
1,n(θi) +

∑R
m=1 Ŝ

m
4,n(θi)∑R

m=1 Ŝ
m
1,n(θi)

)
, β(i+1) = α(i+1)

∑R
m=1 Ŝ

m
1,n(θi)∑R

m=1 Ŝ
m
5,n(θi)

ξ(i+1)
m = Ŝm6,n(θi)/Ŝ

m
5,n(θi), κ

(i+1)
m = Ŝm1,n(θi)/

(
Ŝm7,n(θi)− 2ξ(i+1)

m Ŝm6,n(θi) + ξ(i+1)2
m Ŝm5,n(θi)

)

λ(i+1)
m = Ŝm1,n(θi)/

(
Ŝm2,n(θi) + Ŝm1,n(θi)

)
, P (i+1)

m1,m2
= Ŝm1,m2

3,n (θi)/
R∑

m=1

Ŝm1,m
3,n (θi)

where Ψ(x) = d log Γ(x)/dx is the derivative of the log-gamma function.

4.A.3 Proof of Proposition 4.1

We will first establish a weaker form of backward forgetting for the infinite duration model

with the aid for the following lemma, whose proof is straightforward and is omitted.

Lemma 4.1. Let M(x, x′) be a Markov transition kernel (from x to x′) on X , c a constant

and m a probability measure on X . If c−1m(x′) ≤ M(x, x′) ≤ cm(x′) for all x ∈ A, where

A ⊆ X , then for any B ⊆ X and ϕ ∈ B(X ) such that osc(ϕ) ≤ 1,

oscA(M(ϕ)) ≤ (1− c−1)oscB(ϕ) + 2cm
(
B
)
,

Corollary 4.1. Assume {yi}i≥1 is given with p(y1:n) > 0 for all n. Let ϕn(xn) =

E [s(X1)|xn, y1:n−1]. For any L > 0, n − L > 0, osc(s) ≤ 1, A ⊆ supp(ηn), B ⊆
supp(ηn−L)

oscA(ϕn) ≤
(
1− cn−L,L(A)−1

)
oscB(ϕn−L) + 2cn−L,L(A)ηn−L(B). (4.27)
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Furthermore, let A = {1, . . . , L} × {1, . . . , R}. If there exist finite positive constants C,

γ ∈ (0, 1) and c(L) such that for all L

sup
i≥1

ηi(A) ≤ CγL and sup
i≥1

ci,L(A) ≤ c(L) (4.28)

then for all L large enough, for all n,

oscA∩supp(ηn)(ϕn) ≤ (1− c(L)−1)⌊n−1
L ⌋ + 2c(L)2CγL. (4.29)

Proof. Substituting l = L and k = n− L in (4.21), it can be shown that

cn−L,L(A)−1p (xn−L|y1:n−L−1) ≤ p (xn−L|xn, y1:n−1) ≤ cn−L,L(A)p (xn−L|y1:n−L−1)

for all xn ∈ A. The bound (4.27) now follows from Lemma 4.1 with c = cn−L,L(A),

m(xn−L) = p (xn−L|y1:n−L−1), M(xn, xn−L) = p(xn−L|y1:n−1, xn), and ϕ = ϕn−L. The

second bound (4.29) follows from (4.27) by iterating the backward kernels with B =

A ∩ supp(ηn−L), and using the tail behaviour of the minorization measure in (4.28).

The first condition in (4.28) is a uniform tightness condition on the probabilities ηi.

This bound for the tail probabilities can be loosened but only at the expense of a weaker

bound in Proposition 4.1. It is clear that (4.29) is weaker than backward forgetting at

geometric rate.

Corollary 4.1 presents a weaker form of backward forgetting for the infinite duration

model. The following lemma establishes that the finite duration models posses the ge-

ometric forward forgetting and geometric backward forgetting properties; both of which

are necessary in order to establish linear growth of the variance.

Lemma 4.2. For a finite duration changepoint model, let d̄m = min{d′ : λm(d) = 1, d ≥
d′} be the maximum duration length in model m and let Xf =

⋃R
m=1{(1, m), . . . , (d̄m, m)}.

Assume that the transition matrix {p(xk|xk−1) : xk, xk−1 ∈ Xf} is irreducible and ape-

riodic; and that for the given {yn}n≥1 there exist finite positive constants cn such that

c−1
n ≤ Gn ≤ cn for all n. (i) Then there exists a positive integer L such that ck,l defined

in (4.21) is finite for all l ≥ L, k ≥ 1. (ii) It now follows that for all l ≥ L, n ≥ k + l,

and xk+l ∈ Xf ,
p(xk+l|xk, y1:n) ≥ c−2

k,l p(xk+l|x′k, y1:n) (4.30)

and the inequality holds irrespective of (xk, x
′
k) provided both conditional probabilities are

well defined. (iii) Furthermore, the Markov chain on X with transition kernel p(xk+1|xk, y1:n),
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k = 1, . . . , n− 1, forgets its initialisation in the following sense: for all n ≥ m ≥ k ≥ 1,

|E [s(Xm)|xk, y1:n]− E [s(Xm)|x′k, y1:n]| ≤ osc(s)

⌊m−k
L ⌋∏

i=1

(1− c−2
k+(i−1)L,L) (4.31)

irrespective of (xk, x
′
k) provided both conditional expectations are well defined. If cn ≤ c <

∞ for all n, then (iv) ck,l ≤ c(l) <∞ for l ≥ L, k ≥ 1 and the rate in (4.31) is geometric,

and (v) letting ϕn(xn) = E [s(X1)|xn, y1:n−1], for all l ≥ L, for all n, all A ⊆ supp(ηn)

oscA(ϕn) ≤ osc(s)(1− c(l)−1)⌊n/l⌋. (4.32)

Proof. (Outline only) Property (i) is a consequence of some well known facts for finite

state Markov chains. We use the fact that, under the stated assumptions, the Markov

chain restricted to Xf has a stationary distribution, say ν(x), and we have ν(Xf ) = 1

and ν > 0 on Xf . This ensures the ratio p(xk+l|xk)/p(xk+l|x′k) is close to 1 uniformly

in its arguments and k, provided l is large enough. The result now follows from the the

fact that Gn is bounded from below and above. Property (ii) follows from (i) while the

forgetting property in (4.31) is a simple consequence of (4.30), e.g. see Del Moral [2004].

Property (iv) is proved similarly to (i) using instead the uniform bound on Gn. To verify

(v) use (iv) and (4.27), i.e. iterate the backward kernels starting with B = supp(ηn−l)

Finally, we will need the following lemma to prove Proposition 4.1

Lemma 4.3. Given {yn}n≥1, assume there exists a finite constant c such that c−1 ≤
Gn ≤ c for all n and that (4.19) holds then, for all n, 1 < k ≤ n,

sup
(xk,x

′

k)∈supp(ηk)

p(yk:n|xk, y1:k−1)

p(yk:n|x′k, y1:k−1)
<∞.

Proof. Using | log(b)− log(a)| ≤ |b−a|
min(a,b)

,

log
p(yk:n|xk, y1:k−1)

p(yk:n|x′k, y1:k−1)
=

n∑

i=k

log p(yi|xk, y1:i−1)− log p(yi|x′k, y1:i−1)

≤
n∑

i=k

|p(yi|xk, y1:i−1)− p(yi|x′k, y1:i−1)|
min(p(yi|xk, y1:i−1), p(yi|x′k, y1:i−1))

.

Since p(yi|xk, y1:i−1) = E [Gi(Xi)| xk, y1:i−1], each ratio can be bounded using (4.19) and

constant c, which then results in a geometric sum and gives the desired uniform bound.

We can now present the proof of Proposition 4.1.
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Proof. (Proposition 4.1): The asymptotic variance is

n∑

i=0

ηi
(
[Gi,n Di,n(Sn −Qn(Sn))]

2) . (4.33)

Consider the infinite duration model. Consider the ith term: For any A ⊆ X ,

ηi
(
[Gi,n Di,n(Sn −Qn(Sn))]

2) ≤ ‖Gi,n‖2supp(ηi)
ηi
(
[Di,n(Sn −Qn(Sn))]

2)

≤ ‖Gi,n‖3supp(ηi)

∫
ηi(dxi)ηi(dx

′
i)
(
[Di,n(Sn)(xi)−Di,n(Sn)(x

′
i)]

2
)

≤ ‖Gi,n‖3supp(ηi)

([
oscA∩supp(ηi)Di,n(Sn)

]2
+ 2n2ηi(A)

)

(4.34)

Now let A = {1, . . . , L} × {1, . . . , R}. It follows from (4.19) that for some integer L′,

sup
xi,x′i∈supp(ηi)

∣∣∣∣∣E
[

n∑

k=i

sk(Xk)

∣∣∣∣∣ xi, y1:n

]
− E

[
n∑

k=i

sk(Xk)

∣∣∣∣∣ x
′
i, y1:n

]∣∣∣∣∣ ≤ L′c(L′)2,

and from (4.29) that

sup
xi,x′i∈A∩supp(ηi)

∣∣∣∣∣E
[
i−1∑

k=1

sk(Xk)

∣∣∣∣∣ xi, y1:n−1

]
− E

[
i−1∑

k=1

sk(Xk)

∣∣∣∣∣x
′
i, y1:n−1

]∣∣∣∣∣ ≤ (i−1)2c(L)2CγLI[i≥L]+Lc(L).

Thus using Lemma 4.3 to uniformly bound ‖Gi,n‖supp(ηi)
and the fact that the bounds

in (4.28) are satisfied for all L large enough with c(L) < c′ < ∞, (4.33) can be upper

bounded by

C ′

n∑

i=1

(
(i− 1)2γ2LI[i≥L] + L2 + (L′)2 + n2ηi(A)

)

≤ C ′n3γ2L + C ′nL2 + C ′n(L′)2 + n3CγL

where C ′ is independent of L and n. Setting L = k log n for some fixed constant k we see

that (4.33) is upper bounded by a term O(n log2 n).

The proof for the finite duration model follows the same lines where Lemma 4.2 is

used instead of Corollary 4.1, hence it is omitted.
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4.A.3.1 Verification of Example 4.2 satisfying the conditions of Proposition

4.1

The first condition of Theorem 4.1 is satisfied since g(yk|zk) > 0 for all zk, yk. It follows

from (4.23) that

c−1 ≤
∫ ∏n

i=1 f(z′′i |z′′i−1)g(yi|z′′i ) dz′′1:n∫ ∏n
i=1 f(z′i|z′i−1)g(yi|z′i) dz′1:n

≤ c

for all n ≥ 1, y1:n, z
′
0 ,z′′0 . This, together with (4.20) implies

c−1 ≤ p(yk:n|xk, y1:k−1)

p(yk:n|x′k, y1:k−1)
≤ c (4.35)

for all (xk, x
′
k) ∈ supp(ηk), k ≤ n. (4.35) now implies the term ‖Gi,n‖supp(ηi)

in (4.34)

is also uniformly bounded by the constant c. (Note that the condition c−1 ≤ Gn ≤ c

for all n in Proposition 4.1 is used to verify the term ‖Gi,n‖supp(ηi)
in (4.34) is uniformly

bounded in n and is now no longer needed for this example as we have direct verification

via (4.35).)

Since

p(xk|xk−1, y1:n) ∝ p(yk:n|xk, xk−1, y1:k−1)p(xk|xk−1, y1:k−1)

= p(yk:n|xk, y1:k−1)p(xk|xk−1),

we have that

p(xk|xk−1, y1:n) ≥ c−1p(xk|xk−1) ≥ c−1λ δ1(xk) (4.36)

for all k ≤ n, and obviously for k > n too. To establish forward forgetting, it follows

from the minorization condition in (4.36) that

E [sk(Xk)|x1, y1:n]− E [sk(Xk)|x′1, y1:n] ≤ osc(sk)
(
1− c−1λ

)k−1
.

Let A = {1, . . . , L}. For xk+L ∈ A, xk ∈ supp(ηk) and x′k ∈ supp(ηk),

p(xk+L, yk:k+L−1|xk, y1:k−1)

p(xk+L, yk:k+L−1|x′k, y1:k−1)
=
p(yk:k+L−1|xk+L, xk, y1:k−1)

p(yk:k+L−1|xk+L, x′k, y1:k−1)

p(xk+L|xk)
p(xk+L|x′k)

.

By (4.35), the first ratio is bounded by c. The second ratio is 1. Thus ck,L(A) ≤ c. Using

(4.36), supi≥L+1 E [IA(Xi)| y1:i−1] ≤ γL where γ = 1− c−1λ. Hence the bounds in (4.22)

apply with constants independent of L and n.
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Chapter 5

Estimating the Static Parameters in

Linear Gaussian Multiple Target

Tracking Models

Summary: In this we work we propose both offline and online maximum likelihood esti-

mation (MLE) techniques for inferring the static parameters of a multiple target tracking

(MTT) model with linear Gaussian dynamics. We present the batch and online versions

of the expectation-maximisation (EM) algorithm for short and long data sets respectively,

and we show how Monte Carlo approximations of these methods can be implemented.

Performance is assessed in numerical examples using simulated data for various scenar-

ios.

The material in this chapter resembles my contribution in the extended work Yıldırım

et al. [2012b]. Also, an early version of this work is published in Yıldırım et al. [2012c].

I was introduced to the problem studied in this chapter by Dr. Sumeetpal S. Singh and

Dr. Thomas Dean.

5.1 Introduction

The multiple target tracking (MTT) problem concerns the analysis of data from multiple

moving objects which are partially observed in noise to extract highly reliable motion

trajectories. The MTT framework has been traditionally applied to solve surveillance

problems but more recently there has been a surge of interest in Biological Signal Pro-

cessing, e.g. see Yoon and Singh [2008].

The MTT framework is comprised of the following ingredients. A set of multiple

independent targets moving in the surveillance region in a Markov fashion. The number

of targets varies over time due to departure of existing targets (known as death) and the

arrival of new targets (known as birth). The initial number of targets are unknown and

the maximum number of targets present at any given time is unrestricted. At each time

each target may generate an observation which is a noisy record of its state. Targets

that do not generate observations are said to be undetected at that time. Additionally,

101
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there maybe spurious observations generated which are unrelated to targets (known as

clutter). The observation set at each time is the collection of all target generated and

false measurements recorded at that time, but without any information on the origin

or association of the measurements. False measurements, unknown origin of recorded

measurements, undetected targets and a time varying number of targets renders the task

of extracting the motion trajectory of the underlying targets from the observation record,

which is known as tracking in the literature, a highly challenging problem.

There is a large body of work on the development of algorithms for tracking multi-

ple moving targets. These algorithms can be categorised by how they handle the data

association (or unknown origin of recorded measurements) problem. Among the main

approaches are the Multiple Hypothesis Tracking (MHT) algorithm [Reid, 1979] and the

probabilistic MHT (PMHT) variant [Streit and Luginbuhi, 1995], the joint probabilistic

data association filter (JPDAF) [Bar-Shalom and Fortmann, 1988; Bar-Shalom and Li,

1995], and the probability hypothesis density (PHD) filter [Mahler, 2003; Singh et al.,

2009]. With the advancement of Monte Carlo methodology, sequential Monte Carlo

(SMC) (or particle filtering) and Markov chain Monte Carlo (MCMC) methods have

been applied to the MTT problem, e.g. SMC and MCMC implementations of JPDAF

[Hue et al., 2002; Vermaak et al., 2005], SMC implementations for MHT and PMHT [Ng

et al., 2005; Oh et al., 2009], and SMC implementations of the PHD filter [Vo et al., 2003,

2005; Whiteley et al., 2010], to mention a few.

Compared to the huge amount of work on developing tracking algorithms, the problem

of estimating the static parameters of the tracking model has been largely neglected,

although it is rarely the case that these parameters are known. Some exceptions include

the work of Storlie et al. [2009] where they extended the MHT algorithm to simultaneously

estimate the parameters of the MTT model. A full Bayesian approach for estimating the

model parameters using MCMC was presented in Yoon and Singh [2008]. Recently, Singh

et al. [2011] presented an approximated maximum likelihood method derived by using a

Poisson approximation for the posterior distribution of the hidden targets which is also

central to the derivation of PHD filter in Mahler [2003]. Additionally, versions of PHD

and Cardinalised PHD (CPHD) filters that can learn the clutter rate and detection profile

while filtering were proposed in Mahler et al. [2011].

In this chapter, we present maximum likelihood estimation (MLE) algorithms to infer

the static parameters of the MTT model when the individual targets move according to a

linear Gaussian state-space model and when the target generated observations are linear

functions of the target state corrupted with additive Gaussian noise; we will henceforth

call this a linear Gaussian MTT model. We maximise the likelihood function using

the expectation-maximisation (EM) algorithm and we present both online and batch

EM algorithms. Because we assume a linear Gaussian MTT model, we are able to
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present the exact recursions for updating static parameter estimate. We stress though

that these recursions are not obvious primarily because the MTT model allows for false

measurements, unknown origin of recorded measurements, undetected targets and a time

varying number of targets with unknown birth and death times. To the best of our

knowledge, this is a novel development in the target tracking field. To implement the

proposed EM algorithms, an estimate of the posterior distribution of the hidden targets

given the observations is required, and in the linear Gaussian setting, the continuous

values of the target states can be marginalised out. But, because the number of possible

association of observations to targets grows very quickly with time, we have to resort

to approximation schemes that focus the computation in the expectation(E)-step of the

EM algorithms on the most likely associations; that is, we approximate the E-step with

a Monte Carlo method. For this we employ both SMC which give rise to the following

different MLE algorithms:

• SMC-EM algorithm for offline estimation; and

• SMC online EM algorithm for online estimation.

We implement these two algorithms for simulated examples under various tracking sce-

narios and provided recommendations for practitioner on which one is to be preferred.

The EM algorithms we present in this chapter can be implemented with any Monte

Carlo scheme for inferring the target states in MTT and reducing the errors in the ap-

proximation of the E-step can only be beneficial to the EM parameter estimates. We

do not fully explore the use of the various Monte Carlo target tracking algorithms that

have been proposed in the literature and instead focus on the following. When using

SMC to approximate the E-step, we compute the L-best assignments [Murty, 1968] as

the sequential proposal scheme of the particle filter. This L-best assignments approached

has appeared previously in the literature in the context of tracking, e.g. see Cox and

Miller [1995]; Danchick and Newnam [2006]; Ng et al. [2005]. An alternative approach,

for example, could be to approximate the E-step by using the MCMC data association

(MCMC-DA) algorithm proposed for target tracking in Oh et al. [2009]. Also a full

Bayesian estimation approach has been proposed by Yoon and Singh [2008].

The remainder of the chapter is organised as follows. In Section 5.2, we describe

the MTT model and formulate the static parameter estimation problem. In Section 5.3,

we present the batch and online EM algorithms. Section 5.4 contains the numerical

examples and we conclude the chapter with a discussion of our findings in Section 5.5.

The Appendix contains further details on the derivation of the EM algorithms for MTT,

and details of the SMC algorithm we use in this chapter. We also make an attempt to

analyse the computational complexity of the EM algorithms in the Appendix.
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5.1.1 Notation

We introduce random variables (also sets and mappings) with capital letters such as

X, Y, Z,X, A and denote their realisations by corresponding small case letters x, y, z,x, a.

If a random variable X has a density ν(x), with all densities being defined w.r.t. the

Lebesgue measure (denoted by dx), we write X ∼ ν(·) to make explicit the law of X.

We use Eθ[·|·] for the (conditional) expectation operator; for random variables X, Y and

Z and a function (x, y) → f(x, y), Eθ[f(X,Z)|Y = y] is the expectation of the random

variable f(X,Z) w.r.t. the joint distribution of X,Z conditioned on Y = y. Eθ[f(X, z)|y]
is the expectation of the function x→ f(x, z) for a fixed z given Y = y.

5.2 Multiple target tracking model

Consider a single target tracking model where a moving object (or target) is observed

when it traverses in a surveillance region. We define the target state and the noisy

observation at time t to be the random variables Xt ∈ X ⊂ Rdx and Yt ∈ Y ⊂ Rdy

respectively. The statistical model most commonly used for the evolution of individual

targets {Xt, Yt}t≥1 is the hidden Markov model (HMM). In a HMM, it is assumed that

{Xt}t≥1 is a hidden Markov process with initial and transition probability densities µψ and

fψ, respectively, and {Yt}t≥1 is the observation process with the conditional observation

density gψ, i.e.

X1 ∼ µψ(·), Xt|(X1:t−1 = x1:t−1) ∼ fψ(·|xt−1)

Yt|
(
{Xi = xi}i≥1 , {Yi = yi}i6=t

)
∼ gψ(·|xt).

(5.1)

Here the densities µψ, fψ and gψ are parametrised by a real valued vector ψ ∈ Ψ ⊂ Rdψ .

In this work, we consider a specific type of HMM, the Gaussian linear state-space model

(GLSSM), which can be specified as

µψ(x) = N (x;µb,Σb), fψ(x
′|x) = N (x′;Fx,W ), gψ(y|x) = N (y;Gx, V ). (5.2)

where N (x;µ,Σ) denotes the probability density function for the multivariate normal dis-

tribution with mean µ and covariance Σ. In this case, ψ parametrizes (µb,Σb, F,G,W, V ).

In a MTT model, the state and the observation at each time (t ≥ 1) are random finite

sets, Xt =
{
Xt,1, Xt,2, . . . , Xt,Kx

t

}
and Yt =

{
Yt,1, Yt,2, . . . , Yt,Ky

t

}
. Here each element of

Xt is the state of an individual target and elements of Yt are the distinct measurements

of these targets at time t. The number of targets Kx
t under surveillance changes over

time due to targets entering and leaving the surveillance region X . Xt evolves to Xt+1

as follows: with probability ps each target Xt ‘survives’ and is displaced according to the
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state transition density fψ in (5.2), otherwise it dies. The random deletion and Markov

motion happens independently for all the elements of Xt. In addition to the surviving

targets, new targets are created. The number of new targets created per time follows

a Poisson distribution with mean λb and each of their states is initiated independently

according to the initial density µψ in (5.2). Now Xt+1 is defined to be the superposition of

the states of the surviving and evolved targets from time t and the newly born targets at

time t+ 1. The points of Xt are observed through the following model: with probability

pd, each point of Xt generates a noisy observation in the observation space Y through

the observation density gψ in (5.2). This happens independently for each point of Xt. In

addition to these target generated observations, false measurements are also generated.

The number of false measurements collected at each time follows a Poisson distribution

with mean λf and their values are uniform over Y . Yt is the superposition of observations

originating from the detected targets and these false measurements.

A series of random variables, which are essential for the statistical analysis to follow

are now defined. Let Cs
t be a Kx

t−1 × 1 vector of 1’s and 0’s where 1’s indicate survivals

and 0’s indicate deaths of targets at time t. More clearly, for i = 1, . . . , Kx
t−1,

Cs
t (i) =





1 i’th target at time t− 1 survives to time t

0 i’th target at time t− 1 does not survive to time t
.

The number of surviving targets at time t is Ks
t =

∑Kx
t−1

i=1 Cs
t (i). We also define the Ks

t ×1

vector Ist containing the indices of surviving targets at time t,

Ist (i) = min

{
k :

k∑

j=1

Cs
t (j) = i

}
, i = 1, . . . , Ks

t .

Note that Ist (i) denotes the ancestor of target i from time t − 1, i.e. Xt−1,Ist (i)
evolves

to Xt,i for i = 1, . . . , Ks
t . Denoting the number of ‘births’ at time n as Kb

t , we have

Kx
t = Ks

t + Kb
t . Note that according to these definitions, the surviving targets from

time t − 1 are re-labeled as Xt,1, . . . , Xt,Ks
t
, and the newly born targets are denoted as

Xt,Ks
t+1, . . . , Xt,Kx

t
. Next, given Kx

t targets we define Cd
t to be a Kx

t × 1 vector of 1’s and

0’s where 1’s indicate detections and 0’s indicate non-detections. For i = 1, . . . , Kx
t ,

Cd
t (i) =





1 i’th target at time t is detected at time t

0 i’th target at time t is not detected at time t
.

Therefore, the number of detected targets at time t is Kd
t =

∑Kx
t

i=1C
d
t (i). Similarly, we
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also define the Kd
t × 1 vector Idt showing the indices of the detected targets,

Idt (i) = min

{
k :

k∑

j=1

Cd
t (j) = i

}
, i = 1, . . . , Kd

t .

Idt (i) denotes the label of the i-th detected target at time t. So the detected targets at

time t are Xt,Idt (1), . . . , Xt,Idt (Kd
t ). Finally, defining the number of false measurements at

time t as Kf
t , we have Ky

t = Kd
t + Kf

t and the association from the detected targets to

the observations can be represented by a one-to-one mapping

At : {1, . . . , Kd
t } → {1, . . . , Ky

t }

where at time t the i’th detected target is target Idt (i) with state value Xt,Idt (i) and

generates Yt,At(i). We assume that At is uniform over the set of all Ky
t !/K

f
t ! possible one-

to-one mappings. To summarise, we give the list of the random variables in the MTT

model introduced in this section as well as a sample realisation of them in Figure 5.1.

The main difficulty in an MTT problem is that in general we do not know birth-death

times of targets, whether they are detected or not, and which observation point in Yt is

associated to which detected target in Xt. Let

Zt =
(
Cs
t , C

d
t , K

b
t , K

f
t , At

)

be the collection of the just mentioned unknown random variables at time t, and

θ = (ψ, ps, pd, λb, λf) ∈ Θ = Ψ× [0, 1]2 × [0,∞)2

be the vector of the MTT model parameters. We can write the joint likelihood of all the

random variables of the MTT model up to time n given θ as

pθ(z1:n,x1:n,y1:n) = pθ(z1:n)pθ(x1:n|z1:n)pθ(y1:n|x1:n, z1:n)

where

pθ(z1:n) =

n∏

t=1

(
pk

s
t
s (1− ps)k

x
t−1−k

s
tPO(kbt ;λb)p

kdt
d (1− pd)k

x
t−k

d
tPO(kft ;λf)

kft !

kyt !

)
(5.3)

pθ(x1:n|z1:n) =

n∏

t=1




kst∏

j=1

fψ(xt,j |xt−1,ist (j)
)

kxt∏

j=kst+1

µψ(xt,j)


 (5.4)

pθ(y1:n|x1:n, z1:n) =

n∏

t=1


|Y|−k

f
t

kdt∏

j=1

gψ(yt,at(j)|xt,idt (j))


 (5.5)
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The list of the variables in the MTT model

Xt,k, Yt,k: k’th target and k’th observation at time t.
Xt = {X1, . . . ,XKx

t
}, Yt = {Yt,1, . . . , Yt,Ky

t
}: Sets of targets and observations at time t.

Kb
t ,K

f
t : Numbers of newborn targets and false measurements at time t

Ks
t ,K

d
t : Numbers of targets survived from time t− 1 to time t and detected at time t.

Kx
t ,K

y
t : Numbers of alive targets, observations at time t. Kx

t = Ks
t + Kb

t , K
y
t = Kd

t + K
f
t .

Cs
t : Kx

t−1 × 1 vector of 0’s and 1’s indicating survivals from time t− 1 to time t.
Cd
t : Kx

t × 1 vector of 0’s and 1’s indicating detections at time t.
Ist : Ks

t × 1 vector of indices of surviving targets from time t− 1 to time t.
Idt : Kd

t × 1 vector of indices of detected targets at time t.
At : {1, . . . ,Kd

t } → {1, . . . ,Ky
t }: Association from detected targets to observations at time t.

Zt = (Cs
t , C

d
t ,K

b
t ,K

f
t , At)

X1,1 X2,1 X3,1 X4,1 X5,1

Y1,4 Y3,3 Y5,3

X1,2 X2,2 X3,2 X4,2 X5,2

Y1,1 Y2,1 Y3,5 Y4,1 Y5,2

X1,3 X2,3 X3,3 X4,3 X5,3

Y1,2 Y2,3 Y3,4 Y4,2 Y5,1

Y1,3 X2,4 Y3,1 X4,4 X5,4

Y1,5 Y2,2 Y3,2 Y4,3 Y5,4

Cs
1:5

= ([ ] , [1, 1, 1] , [1, 0, 1, 1] , [0, 1, 1] , [1, 1, 1, 1]); Is
1:5

= ([ ] , [1, 2, 3] , [1, 3, 4] , [2, 3] , [1, 2, 3, 4]);
Cd

1:5
= ([1, 1, 0] , [0, 1, 1, 1] , [1, 1, 1] , [0, 1, 1, 0] , [1, 1, 1, 1]); Id

1:5
= ([1, 2] , [2, 3, 4] , [1, 2, 3] , [2, 3] , [1, 2, 3, 4]);

Ks
t = (0, 3, 3, 2, 4); Kb

1:5
= (3, 1, 0, 2, 0); Kd

t = (2, 3, 3, 2, 4); K
f
1:5

= (3, 0, 2, 1, 0), A1:5 =
([4, 1] , [1, 3, 2] , [3, 5, 4] , [1, 2] , [3, 2, 1, 4]).

Figure 5.1: Top: The list of the random variables in the MTT model. Bottom: A
realisation for an MTT model: States of a targets are connected with arrows. Also,
observations generated from targets are connected to those targets with arrows. Mis-
detected targets are highlighted with shadows, and observations from false measurements
are coloured with grey.

Here PO(k;λ) denotes the probability mass function of the Poisson distribution with

mean λ, |Y| is the volume (w.r.t. the Lebesgue measure) of Y and the term kft !/k
y
t ! in

(5.3) corresponds to the law of At. The marginal likelihood of the observation sequence

y1:n is

pθ(y1:n) = Eθ [pθ(y1:n|X1:n, Z1:n)] . (5.6)

The main aim of this work is, given Y1:n = y1:n, to estimate the static parameter θ∗ where

we assume the data is generated by some true but unknown θ∗ ∈ Θ. Our main contribu-

tion is to present the EM algorithms, both batch and online versions, for computing the
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MLE of θ∗:

θML = arg max
θ∈Θ

pθ(y1:n).

5.3 EM algorithms for MTT

In this section we present the batch and online EM algorithms for linear Gaussian MTT

models. The notation is involved and we provide a list of some important variables used

in the derivation of the EM algorithms in Table 5.1 at the end of the section.

5.3.1 Batch EM for MTT

Given Y1:n = y1:n, the EM algorithm for maximising pθ(y1:n) in (5.6) is given by the

following iterative procedure: if θj is the estimate of the EM algorithm at the j’th iter-

ation, then at iteration j + 1 the estimate is updated by first calculating the following

intermediate optimisation criterion, which is known as the expectation (E) step,

Q(θj , θ) = Eθj [log pθ(X1:n, Z1:n,y1:n)|y1:n]

= Eθj [log pθ(Z1:n) + log pθ(X1:n,y1:n|Z1:n)|y1:n]

= Eθj

[
log pθ(Z1:n) + Eθj {log pθ(X1:n,y1:n|Z1:n)|y1:n, Z1:n} |y1:n

]
(5.7)

The updated estimate is then computed in the maximisation (M) step

θj+1 = arg max
θ∈Θ

Q(θj , θ).

This procedure is repeated until θj converges (or in practice ceases to change significantly).

From equations (5.2)-(5.5), it can be shown that the E-step at the j’th iteration reduces

to calculating the expectations of fifteen sufficient statistics of x1:n, z1:n and y1:n denoted

by S1,n, . . . , S15,n. (From now on, any dependency on y1:n in these sufficient statistics

and further variables arising from them will be omitted from the notation for simplicity.)

Sufficient statistics S1,n(x1:n, z1:n) to S7,n(x1:n, z1:n) are:

n∑

t=1

kdt∑

k=1

xt,idt (k)x
T
t,idt (k)

,
n∑

t=1

kdt∑

k=1

xt,idt (k)y
T
t,at(k),

n∑

t=2

kst∑

k=1

xt−1,ist (k)
xTt−1,ist (k)

,
n∑

t=2

kst∑

k=1

xt,kx
T
t,k,

n∑

t=2

kst∑

k=1

xt−1,ist (k)
xTt,k,

n∑

t=1

kxt∑

k=kst+1

xt,k,

n∑

t=1

kxt∑

k=kst+1

xt,kx
T
t,k. (5.8)

These sufficient statistics are related to those used for estimating the static parameter

of a linear Gaussian single target tracking model, and this relation will be made more

explicit later. The rest of the sufficient statistics S8,n(z1:n) to S15,n(z1:n) do not depend
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on x1:n.

[S8,n, . . . , S15,n] (z1:n) =

n∑

t=1




kdt∑

k=1

yt,at(k)y
T
t,at(k), k

d
t , k

x
t , k

s
tk

x
t−1, k

b
t , k

f
t , 1


 (5.9)

Let Sθm,n denote the expectation of the m’th sufficient statistic Sm,n w.r.t. the law of the

latent variables X1:n and Z1:n of the MTT model given the observation y1:n for a given

θ, i.e.

Sθm,n =





Eθ [Sm,n (X1:n, Z1:n)|y1:n] 1 ≤ m ≤ 7,

Eθ [Sm,n (Z1:n)|y1:n] 8 ≤ m ≤ 15.
(5.10)

Then the solution to the M-step is given by a known function Λ :
{(
Sθ1,n, . . . , S

θ
15,n

)}
→ Θ

such that at iteration j

θj+1 = arg max
θ
Q(θj , θ) = Λ

(
S
θj
1,n, . . . , S

θj
15,n

)
.

The explicit expression of Λ depends on the parametrisation of the MTT model, in par-

ticular on the parametrisation of the matrices F,G,W, V, µb,Σb. An example is provided

below.

Example 5.1. (The constant velocity model:) Each target has a position and velocity in

the xy-plane and the position of a target is restricted to the window [−κ, κ]2, hence

Xt = [Xt(1), Xt(2), Xt(3), Xt(4)]T ∈ X = R2 × [0,∞)2,

where Xt(1), Xt(2) are the x and y coordinates and Xt(3), Xt(4) are the velocities in x

and y directions. Only a noisy measurement of the position of the target is available

[Yt(1), Yt(2)] ∈ Y = [−κ, κ]2.

We assumed a bounded Y and regard observations that are not recorded due to being

outside this interval as also missed detection. With reference to (5.2), the state-space of
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the model are:

µb = [µbx, µby, 0, 0]T , Σb =

(
σ2
bpI2×2 02×2

02×2 σ2
bvI2×2

)

F =

(
I2×2 ∆I2×2

02×2 I2×2

)
, G =

(
I2×2 02×2

)

W =

(
σ2
xpI2×2 02×2

02×2 σ2
xvI2×2

)
, V = σ2

yI2×2

Therefore, the parameter vector of this MTT model is

θ =
(
λb, λf , pd, ps, µbp, µbv, σ

2
bp, σ

2
bv, σ

2
xp, σ

2
xv, σ

2
y

)
.

The update rule Λ for θ at the M-step of the EM algorithm is

µbx = Sθ6,n(1)/Sθ13,n, µby = Sθ6,n(2)/Sθ13,n,

σ2
bp =

1

2
Sθ13,ntr

((
Sθ7,n − 2Sθ6,nµ

T
b + Sθ13,nµbµ

T
b

)
MT

p Mp

)

σ2
bv =

1

2
Sθ13,ntr

((
Sθ7,n − 2Sθ6,nµ

T
b + Sθ13,nµbµ

T
b

)
MT

v Mv

)

σ2
xp = tr

(
Sθ4,nMpM

T
p − 2Sθ5,nMpFp + Sθ3,nF

T
p Fp

)
/2Sθ11,n,

σ2
xv = tr

(
Sθ4,nMvM

T
v − 2Sθ5,nMvFv + Sθ3,nF

T
v Fv

)
/2Sθ11,n,

σ2
y = tr

(
Sθ8,n − 2GSθ2,n +GSθ1,nG

)
/2Sθ9,n,

pd = Sθ9,n/S
θ
10,n, ps = Sθ11,n/S

θ
12,n,

λb = Sθ13,n/S
θ
15,n, λf = Sθ14,n/S

θ
15,n,

where Mp =
[
I2×2 02×2

]
,Mv =

[
02×2 I2×2

]
, and Fp and Fv are the upper and lower

halves of F , that is Fp(i, j) = F (i, j) and Fv(i, j) = F (2+i, j) for i = 1, 2 and j = 1, . . . , 4.

5.3.1.1 Estimation of sufficient statistics

It is easy to calculate the expectation of the sufficient statistics in (5.9) that do not

depend on x1:n. Noting that Zt is discrete, we simply calculate Sm,n(z1:n) for every z1:n

with a positive mass w.r.t. to the density pθ(z1:n|y1:n) and calculate the expectations as

Sθm,n =
∑

z1:n

Sm,n(z1:n)pθ(z1:n|y1:n).



5.3. EM ALGORITHMS FOR MTT 111

For those sufficient statistics in (5.8) that depend on x1:n, consider the last expression in

(5.7) with the following factorisation of the posterior

pθ(x1:n, z1:n|y1:n) = pθ(x1:n|z1:n,y1:n)pθ(z1:n|y1:n).

This factorisation suggests that we can write the required expectations as

Sθm,n = Eθ [Sm,n(X1:n, Z1:n)|y1:n]

= Eθ [Eθ [Sm,n(X1:n, Z1:n)|Z1:n,y1:n]|y1:n] . (5.11)

Let us define the integrand of the outer expectation in (5.11) which is the conditional

expectation

S̃θm,n(z1:n) = Eθ [Sm,n(X1:n, z1:n)| z1:n,y1:n] .

as a matrix-valued function with domain Zn. Then, we can obtain Sθm,n by calculating

S̃θm,n(z1:n) for every z1:n with a positive mass w.r.t. the density pθ(z1:n|y1:n) and then

calculate

Sθm,n =
∑

z1:n

S̃θm,n(z1:n)pθ(z1:n|y1:n).

The crucial point here is that it is possible to calculate S̃θm,n(z1:n) for any given z1:n. In

fact, the availability of this calculation is based on the following fact: conditional on

{Zt}t≥1, {Xt,Yt}t≥1 may be regarded as a collection of independent GLSSM’s (with dif-

ferent starting and ending times, possible missing observations) and observations which

are not relevant to any of these GLSSM’s. In the context of MTT, each GLSSM cor-

responds to a target and irrelevant observations correspond to false measurements. We

defer details on how S̃θm,n(z1:n) is calculated to Section 5.3.2.

5.3.1.2 Stochastic versions of EM

For exact calculation of the E-step of the EM algorithm we need pθ(z1:n|y1:n) which is

infeasible to calculate due to the huge cardinality of Zn. We thus resort to Monte Carlo

approximations of pθ(z1:n|y1:n) which we then use in the E-step; in literature this ap-

proach is known as a stochastic version of the EM algorithm [Celeux and Diebolt, 1985;

Delyon et al., 1999; Wei and Tanner, 1990]). We know from the previous sections that

given Z1:n = z1:n the posterior distribution pθ(x1:n|y1:n, z1:n) is Gaussian and conditional

expectations can be evaluated. Therefore, it is sufficient to have the Monte Carlo ap-

proximation for pθ(z1:n|y1:n) only, which is expressed as

p̂θ(z1:n|y1:n) =
N∑

i=1

w(i)
n δz(i)1:n

(z1:n),
N∑

i=1

w(i)
n = 1. (5.12)
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Then, the particle approximations for the expectations of the sufficient statistics are

Ŝθm,n =





∑N
i=1w

(i)
n S̃θm,n(z

(i)
1:n), 1 ≤ m ≤ 7,

∑N
i=1w

(i)
n Sm,n(z

(i)
1:n), 8 ≤ m ≤ 15.

When θ changes with each EM iteration, the appropriate update scheme at iteration

j involves a stochastic approximation procedure, where in the E-step one calculates a

weighted average of Ŝθ1m,n, . . . , Ŝ
θj
m,n; the resulting algorithm is known as the stochastic

approximation EM (SAEM) [Delyon et al., 1999]. Specifically, let γ = {γj}j≥1, called the

step-size sequence, be a positive decreasing sequence satisfying

∑

j

γj =∞,
∑

j

γ2
j <∞.

A common choice is γj = j−α for 0.5 < α ≤ 1. The SAEM algorithm is given in Algorithm

5.1.

Algorithm 5.1. The SAEM algorithm for the MTT model

Start with θ1 and Ŝ
(0)
γ,m,n = 0 for m = 1, . . . , 15. For j = 1, 2, . . .

• E-step: Calculate Ŝ
θj
m,n for each m, and calculate the weighted averages

Ŝ(j)
γ,m,n = (1− γj) Ŝ(j−1)

γ,m,n + γjŜ
θj
m,n. (5.13)

• M-step Update the parameter estimate using Λ(·) as before

θj+1 = Λ
(
Ŝ

(j)
γ,1,n, . . . , Ŝ

(j)
γ,15,n

)
.

In general, the Monte Carlo approximation p̂θj (z1:n|y1:n) in (5.13) is performed either

sampling N samples from pθj (z1:n|y1:n) using a SMC method with N particles or using

a MCMC method (e.g. the MCMC-DA algorithm of Oh et al. [2009]), in which case

weights w
(i)
n = 1/N , i = 1, . . . , N . In this work, we use the SMC method and we will

call the resulting SAEM algorithm SMC-EM. We use SMC to obtain the approximations

{p̂θ(z1:t|y1:t)}1≤t≤n sequentially as follows. Assume that we have the approximation at

time t− 1

p̂θ(z1:t−1|y1:t−1) =

N∑

i=1

w
(i)
t δz(i)1:t−1

(z1:t−1).

To avoid weight degeneracy, at each time one can resample from p̂θ(z1:t−1|y1:t−1) to obtain

a new collection of N particles, each with weight w̄
(i)
t−1 = 1/N , and then proceed to the

time t. Alternatively, this resampling operation can be done according to a criterion

which measures the weight degeneracy (e.g. see Doucet et al. [2000b]). We define the
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N × 1 random mapping

Πt : {1, . . . , N} → {1, . . . , N}

containing the indices of the resampled particles, i.e. Πt(i) = j if the i’th resampled

particle is z
(j)
1:t−1. (If no resampling is performed at the end of time t− 1, then Πt(i) = i,

and w̄
(i)
t−1 = w

(i)
t−1 for all i.) Then, given yt and Πt = πt, the particle z

(i)
t at time t is

sampled from a proposal distribution

qθ

(
zt

∣∣∣z(πt(i))
1:t−1 ,y1:t

)

for i = 1, . . . , N . Therefore, z
(i)
t is connected to z

(πt(i))
1:t−1 and the i’th path particle at time

t is z
(i)
1:t = (z

(i)
t , z

(πt(i))
1:t−1 ) and its new weight is

w
(i)
t ∝ w̄

(πt(i))
t−1 × pθ(z

(i)
t |z(πt(i))

t−1 )pθ(yt|y1:t−1, z
(i)
1:t)

qθ(z
(i)
t |z(πt(i))

1:t−1 ,y1:t)
. (5.14)

Note that we also need to implement SMC for the online EM algorithm in order to

obtain a Monte Carlo approximation of the E-step. Our SMC algorithm calculates the

L-best linear assignments [Murty, 1968] as the sequential proposal; see Appendix 5.A.2

for details.

5.3.2 Online EM for MTT

We showed in the previous section how to implement the batch EM algorithm for MTT

using Monte Carlo approximations. However, the batch EM algorithm is computationally

demanding when the data sequence y1:n is long since one iteration of the EM requires a

complete browse of the data. In these situations, the online version of the EM algorithm

which updates the parameter estimates as a new data record is received at each time

can be a cheaper alternative. In this section, we present a SMC online EM algorithm for

linear Gaussian MTT models.

An important observation at this point is that the sufficient statistics of interest for

the EM algorithm have a certain additive form such that the difference of Sm,n(x1:n, z1:n)

and Sm,n−1(x1:n−1, z1:n−1) only depends on (xn−1,xn,yn). This enables us to compute the

required expectations in the E-step of the EM algorithm effectively in an online manner.

We shall see in this section that, with a fixed amount of computation and memory per

time, it is possible to update from S̃θm,t−1(z1:t−1) to S̃θm,t(z1:t) given yt and zt at time t.

To show how to handle the sufficient statistics in (5.8) for the MTT model, we first start

with a single GLSSM and then extend the idea to the MTT case by showing the relation

between the sufficient statistics in a single GLSSM and in the MTT model.
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5.3.2.1 Online smoothing in a single GLSSM

Consider the HMM {Xt, Yt}t≥1 defined in (5.1). It is possible to evaluate expectations of

additive functionals of X1:n of the form

Sn(x1:n) = s(x1) +

n∑

t=2

s(xt−1, xt)

(with possible dependency on y1:n also allowed) w.r.t. the posterior density pθ(x1:n|y1:n)

in an online manner using only the filtering densities {pθ(xt|y1:t)}1≤t≤n. The technique is

based on the following recursion on the intermediate function [Cappé, 2011; Del Moral

et al., 2009]

T θt (xt) :=Eθ [St(X1:t)|Xt = xt, y1:t]

=Eθ

[
T θt−1(Xt−1) + s(Xt−1, xt)

∣∣ y1:t−1, xt
]

with the initial condition T θ1 (x1) = s(x1). Note that the expectation required for the

recursion is w.r.t. the backward transition density pθ(xt−1|y1:t−1, xt). The required ex-

pectation Eθ [Sn(X1:n)|y1:n] can then be calculated as the expectation of the intermediate

function T θn(xn) w.r.t. the filtering density pθ(xn|y1:n), that is,

Eθ [Sn(X1:n)| y1:n] = Eθ

[
T θn(Xn)

∣∣ y1:n

]
.

Consider now the GLSSM that is defined in (5.2), where, additionally, Yt is possibly

non-observable and Cd
t is the indicator of detection at time t. It is well known that,

given {(Yt, Cd
t ) = (yt, c

d
t )}t≥1, the prediction and filtering densities pθ(xt|y1:t−1, c

d
1:t−1) and

pθ(xt|y1:t, c
d
1:t) are Gaussians with means

(
µt|t−1, µt|t

)
and covariances

(
Σt|t−1,Σt|t

)
and

are updated sequentially as follows:

(µt|t−1,Σt|t−1) = Fµt−1|t−1, FΣt−1|t−1F
T +W, (5.15)

(µt|t,Σt|t)=





(
µt|t−1 + Σt|t−1G

TΓ−1
t ǫt,

Σt|t−1 − Σt|t−1G
TΓ−1

t GΣt|t−1

)
,
cdt = 1

(
µt|t−1,Σt|t−1

)
, cdt = 0.

(5.16)

where Γt = GΣt|t−1G
T + V and ǫt = yt − Gµt|t−1. Also, letting Bt = Σt|tF

T (FΣt|tF
T +

W )−1, bt = (Idx×dx − BtF )µt|t, and Σt|t+1 = (Idx×dx − BtF )Σt|t we can show that the

backward transition density required for the forward smoothing recursion is Gaussian as

well

pθ(xt−1|y1:t−1, c
d
1:t−1, xt) = N

(
xt−1;Bt−1xt + bt−1,Σt−1|t

)
.
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We define the matrix valued functions

S̄m,l : X l × {0, 1}l ×Y l → Rdx×dm ,

such that S̄m,l(x1:l, c
d
1:l, y1:l) for m = 1, . . . , 7 are in the following form:

l∑

t=1

cdtxtx
T
t ,

l∑

t=1

cdtxty
T
t ,

l∑

t=2

xt−1x
T
t−1,

l∑

t=2

xtx
T
t ,

l∑

t=2

xt−1x
T
t , x1, x1x

T
1 . (5.17)

(so, d2 = dy and d6 = 1, else dm = dx). These functions are actually the sufficient

statistics in the MTT model corresponding to a single target. Then it is possible to

define the incremental functions

s̄m :
(
X ∪ X 2

)
× {0, 1} × Y → Rdx×dm (5.18)

where s̄m’s are defined such that for m = 1, . . . , 7

S̄m,l(x1:l, c
d
1:l, y1:l) = s̄m(x1, c

d
1, y1) +

l∑

t=2

s̄m(xt−1, xt, c
d
t , yt).

For example, s̄1(x1, c
d
1, y1) = cd1x1x

T
1 , s̄3(x1, c

d
1, y1) = 0dx×dx , s̄3(xt−1, xt, c

d
t , yt) = xt−1x

T
t ,

s̄6(x1, c
d
1, y1) = cd1x1, s̄7(xt−1, xt, c

d
t , yt) = 0dx×dx , etc. We observe that each sufficient

statistic is a matrix valued quantity, hence its expectation can be calculated using forward

smoothing by treating each element of the matrix separately. For example, for

S̄1,n(x1:n, c
d
1:n, y1:n) =

n∑

t=1

cdtxtx
T
t ,

we perform forward smoothing for each

S̄1,n,ij(x1:n, c
d
1:n, y1:n) =

n∑

t=1

cdtxt(i)xt(j), i, j = 1, . . . , dx.

It was shown in Elliott and Krishnamurthy [1999] that, the intermediate function

T̄ θ1,t,ij(xt, c
d
1:t) := Eθ

[
S̄1,t,ij(X1:t, c

d
1:t, y1:t)

∣∣ cd1:t, xt, y1:t

]

for the i, j’th element is a quadratic in xt:

T̄ θ1,t,ij(xt, c
d
1:t) = xTt P̄1,t,ijxt + q̄T1,t,ijxt + r̄1,t,ij , (5.19)
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where P̄1,t,ij is a dx×dx matrix, q̄1,t,ij is a dx×1 vector, and r̄1,t,ij is a scalar. Online smooth-

ing is then performed via the following recursion over the variables P̄1,t,ij , q̄1,t,ij, r̄1,t,ij.

P̄1,t+1,ij = BT
t P̄1,t,ijBt + cdt+1eie

T
j ,

q̄1,t+1,ij = BT
t q̄1,t,ij + BT

t

(
P̄1,t,ij + P̄ T

1,t,ij

)
bt,

r̄1,t+1,ij = r̄1,t,ij + tr
(
P̄1,t,ijΣt|t+1

)
+ q̄T1,t,ijbt + bTt P̄1,t,ijbt,

where ei is the i’th column of the identity matrix of the size dx, and tr(A) is the trace of the

matrix A. For the initial value of T̄ θ1,1,ij(x1, c
d
1), P̄1,1,ij = cd1eie

T
j , q1,1,ij = 0dx×1, r̄1,1,ij = 0.

Therefore, the i, j’th element of the required expectation at time n can be calculated as

Eθ

[
T̄ θ1,n,ij(Xn, c

d
1:n)
∣∣ y1:n, c

d
1:n

]
= tr

(
P̄1,n,ij

(
Σn|n + µn|nµ

T
n|n

))
+ q̄T1,n,ijµn|n + r̄1,n,ij.

We can similarly obtain the recursions for the other sufficient statistics in terms of vari-

ables P̄m,t,ij , q̄m,t,ij, r̄m,t,ij for the m’th sufficient statistic (see Appendix 5.A.1) [Elliott and

Krishnamurthy, 1999].

Remark 5.1. Note that P̄1,t,ji = (P̄1,t,ij)
T (similarly for q̄1,t,ij) and therefore need only be

calculated for j ≥ i. Note that the variables µt|t,Σt|t,Γt, ǫt, Bt, bt,Σt|t+1, P̄m,t,ij , q̄m,t,ij, r̄m,t,ij

obviously depend on cd1:t, y1:t and θ, but we made this dependency implicit in our notation

for simplicity. We will carry on with this simplification in the rest of the chapter.

5.3.2.2 Application to MTT

We showed above how to calculate expectations of the required sufficient for a single

GLSSM. We can extend that idea to the scenario in the MTT case, where there may

be multiple GLSSM’s at a time, with different starting and ending times and possible

missing observations. Recall that at time t the targets which are alive are the kst surviving

targets from t − 1 and the kbt newly born targets at time t, so the number of targets is

kxt = kst + kbt . For each alive target, we can calculate the moments of the prediction

density pθ(xt,k|y1:t−1, z1:t) for the state

(µt|t−1,k,Σt|t−1,k) =





(
Fµt−1|t−1,ist (k)

, FΣt−1|t−1,ist (k)
F T +W

)
, k ≤ kst ,

(µb,Σb) , kst < k ≤ kxt

.

Recall that ist (k) appears above due to the relabelling of surviving targets from time

t − 1. Also, given the detection vector cdt and the association vector at, we calculate

the moments of the filtering density pθ(xt,k|y1:t, z1:t) for the targets using the prediction
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moments

(µt|t,k,Σt|t,k) =





(
µt|t−1,k + Σt|t−1,kG

TΓ−1
t,k ǫt,k,Σt|t−1,k − Σt|t−1,kG

TΓ−1
t,kGΣt|t−1,k

)
, cdt (k) = 1

(
µt|t−1,k,Σt|t−1,k

)
, cdt (k) = 0.

where Γt,k = GΣt|t−1,kG
T + V and ǫt,k = yt,at(i′t(k)) −Gµt|t−1,k, where i′t(k) =

∑k
j=1 c

d
t (j).

Note that if the k’th alive target at time t is detected, it will be the i′t(k)’th detected

target, which explains i′t(k) in ǫt,k. In a similar manner, we calculate Bt,k, bt,k, and Σt|t+1,k

using µt|t,k and Σt|t,k for k = 1, . . . , kxt in analogy with Bt, bt, and Σt|t+1.

In the following, we will present the rules for one-step update of the expectations

S̃θm,n(z1:n) = Eθ [Sm,n(X1:n, z1:n)|y1:n, z1:n]

of the sufficient statistics Sm,n(x1:n, z1:n) that are defined in (5.8). Observe that we can

write for 1 ≤ m ≤ 7,

Sm,n(x1:n, z1:n) = sm(x1, z1) +
n∑

t=2

sm(xt−1,xt, zt), (5.20)

where the functions sm can be written in terms of s̄m’s (5.18) as follows:

sm(x1, z1) =

kb1∑

k=1

s̄m(x1,k, c
d
1(k), y1,a1(i′1(k))),

sm(xt−1,xt, zt) =

kst∑

k=1

s̄m(xt−1,ist (k)
, xt,k, c

d
t (k), yt,at(i′t(k))) +

kxt∑

k=kst+1

s̄m(xt,k, c
d
t (k), yt,at(i′t(k))).

where, again, i′t(k) =
∑k

j=1 c
d
t (j). (Notice that if cdt (k) = 0 this i′t(k) can still be used as

a convention; since the choice of the observation point in yt is irrelevant as it will have

no contribution being multiplied by cdt (k).) Therefore, the forward smoothing recursion

for those sufficient statistics in (5.8) at time t

T θm,t(xt, z1:t) = Eθ

[
T θm,t−1(Xt−1, z1:t−1) + sm (Xt−1,xt, zt) |xt,y1:t−1, z1:t−1

]
(5.21)

can be handled once we have the forward smoothing recursion rules for the sufficient

statistics in (5.17). For k = 1, . . . , kxt , let T θm,t,k denote the forward smoothing recursion

function for the m’th sufficient statistic for k’th alive target at time t. For the surviving

targets, k’th target at time t is a continuation of the ist (k)’the target at time t − 1.
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Therefore, we have the recursion update for T θm,t,k for 1 ≤ k ≤ kst as

T θm,t,k(xt,k, z1:t) = Eθ

[
T θm,t−1,ist (k)

(Xt−1,ist (k)
, z1:t−1)

+ s̄m(Xt−1,ist (k)
, xt,k, c

d
t (k), yat(i′t(k)))|xt,k,y1:t−1, z1:t−1

]
.

For the targets born at time t (for kst +1 ≤ k ≤ kxt ), the recursion function is initiated

as T θm,t,k(xt,k, z1:t) = sm(xt,k, c
d
t (k)). Therefore, the (i, j)’th component of the recursion

function can be written as

T θm,t,k,ij(xt,k, z1:t) = xTt,kPm,t,k,ijxt,k + qm,t,k,ijxt,k + rm,t,k,ij

similarly to the single GLSSM case, where this time we have the additional subscript k.

For surviving targets the recursion variables Pm,t,k,ij, qm,t,k,ij, rm,t,k,ij for each m, i, j are

updated from Pm,t−1,ist (k),ij
, qm,t−1,ist (k),ij

, rm,t−1,ist (k),ij
, by using µt−1|t−1,ist (k)

, Σt−1|t−1,ist (k)
,

Bt−1,ist (k)
, bt−1,ist (k)

, Σt−1|t,ist (k)
, cdt (k) and, yt,at(i′t(k)) with i′t(k) =

∑k
j=1 c

d
t (j). For the targets

born at time t (for kst + 1 ≤ k ≤ kxt ), the variables are set to their initial values in the

same way as in Section 5.3.2.1 using cdt (k) and, if cdt (k) = 1, yt,at(i′t(k)). The conditional

expectations of sufficient statistics

S̃θm,t(z1:t) = Eθ

[
T θm,t (Xt, z1:t)

∣∣y1:t, z1:t
]

can then be calculated by using the forward recursion variables and the filtering moments.

Let

S̃θm,t,k(z1:t) = Eθ

[
T θm,t,k(Xt,k, z1:t)

∣∣y1:t, z1:t
]

denote the expectation of the m’th sufficient statistic for the k’th alive target at time t,

where its (i, j)’th component is

S̃θm,t,k,ij(z1:t) = tr
(
Pm,t,k,ij

(
µt|t,kµ

T
t|t,k + Σt|t,k

))
+ qTm,t,k,ijµt|t,k + rm,t,k,ij.

Then, the required conditional expectation for the m’th sufficient statistic can be written

as the sum of two quantities

S̃θm,t(z1:t) = S̃θalive,m,t(z1:t) + S̃θdead,m,t(z1:t). (5.22)

where the quantities are respectively the contributions of the alive targets at time t and



5.3. EM ALGORITHMS FOR MTT 119

dead targets up to time t to the conditional expectation S̃θm,t(z1:t)

S̃θalive,m,t(z1:t) =

kxt∑

k=1

S̃θm,t,k(z1:t),

S̃θdead,m,t(z1:t) =

t∑

j=1

kxj−1∑

k:csj(k)=0

S̃θm,j−1,k(z1:j−1) (5.23)

As (5.22) shows, we also need to calculate S̃θdead,m,t(z1:t) at each time and by (5.23) this

can easily be done by storing S̃θdead,m,t−1(z1:t−1) at time t− 1 and using the recursion

S̃θdead,m,t(z1:t)=S̃
θ
dead,m,t−1(z1:t−1) +

kxt−1∑

k:cst (k)=0

S̃θm,t−1,k(z1:t−1)

where the terms in the sum correspond to targets that terminate at time t− 1.

Finally, the sufficient statistics S8,n(z1:n), . . . , S15,n(z1:n) can be calculated online since

we can write for each m = 8, . . . , 15

Sm,n(z1:n) =
n∑

t=1

sm(zt)

for some suitable functions sm which can easily be constructed from (5.9). Hence they

can be updated online as

Sm,t(z1:t) = Sm,t−1(z1:t−1) + sm(zt). (5.24)

We now present Algorithm 5.2 to show how these one-step update rules for the suffi-

cient statistics in the MTT model can be implemented. For simplicity of the presentation,

we will use a short hand notation for representing the forward recursion variables in a

batch way. Let T θm,t(z1:t) = (T θm,t,k(z1:t), k = 1, . . . , kxt ) where

T θm,t,k(z1:t) = (Pm,t,k,ij, qm,t,k,ij, rm,t,k,ij : all i, j)

denote all the variables required for the forward smoothing recursion for the m’th suffi-

cient statistic for the k’th alive target at time t. We can now present the algorithm using

this notation.

Algorithm 5.2. One step update for sufficient statistics in the MTT model

We have T θm,t−1(z1:t−1), S̃
θ
dead,m,t−1(z1:t−1), m = 1, . . . , 7, Sθm′,t−1(z1:t−1), m

′ = 8, . . . , 15 at

time t− 1. Given zt and yt,

- Set ix = 0, id = 0, S̃θalive,m,t(z1:t) = 0 and Sθdead,m,t(z1:t) = Sθdead,m,t−1(z1:t−1) for m =
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1, . . . , 7.

- for i = 1, . . . , kxt−1 + kbt

• if i ≤ kxt−1 and cst (i) = 1, (the i’th target at time t − 1 survives), or if i > kxt−1, (a

new target is born), set ix = ix + 1.

– In case of survival, use µt−1|t−1,i and Σt−1|t−1,i to obtain the prediction moments

µt|t−1,ix and Σt|t−1,ix . In case of birth, set the prediction distribution µt|t−1,ix =

µb and Σt|t−1,i = Σb.

∗ If cdt (ix) = 1, ix’th target is detected: id = id +1. Use µt|t−1,ix and Σt|t−1,ix

and yt,at(id) to update the filtering moments µt|t,ix and Σt|t,ix .

∗ If cdt (ix) = 0, ix’th target is not detected: Set
(
µt|t,ix ,Σt|t,ix

)
=
(
µt|t−1,ix ,Σt|t−1,ix

)
.

– For m = 1, . . . , 7

∗ In case of survival, update the recursion variables T θm,t,ix(z1:t) using T θm,t−1,i(z1:t−1),

µt−1|t−1,i, Σt−1|t−1,i, bt−1,i, Bt−1,i, Σt−1|t,i, c
d
t (ix) and yt,at(id) if cdt (ix) = 1.

In case of birth, initiate T θm,t,ix(z1:t) using cdt (ix) and yt,at(id) if cdt (ix) = 1.

∗ (optional) Calculate S̃θm,t,ix(z1:t) using T θm,t,ix(z1:t), µt|t,ix and Σt|t,ix and

update S̃θalive,m,t(z1:t)← S̃θalive,m,t(z1:t) + S̃θm,t,ix(z1:t).

• if i ≤ kxt−1 and cst (i) = 0, the i’th target at time t− 1 is dead. For m = 1, . . . , 7,

– Calculate S̃θm,t−1,i(z1:t−1) from Tm,t−1,i(z1:t−1), µt−1|t−1,i and Σt−1|t−1,i.

– Update S̃θdead,m,t(z1:t)← S̃θdead,m,t(z1:t) + S̃θm,t−1,i(z1:t−1).

- (optional) Update S̃θm,t(z1:t) = S̃θalive,m,t(z1:t) + S̃θdead,m,t(z1:t) for m = 1, . . . , 7.

- Update Sm,t(z1:t) = Sm,t−1(z1:t−1) + sm(zt) for m = 8, . . . , 15.

Notice that the lines of the algorithm labeled as “optional” are not necessary for the

recursion and need not to be performed at every time step. For example, we can use

Algorithm 5.2 in a batch EM to save memory, in that case we perform these steps only

at the last time step n to obtain the required expectations. Notice also that we included

the update rule for the sufficient statistics in (5.9) for completeness.

5.3.2.3 Online EM implementation

In order to develop an online EM algorithm, we exploit the availability of calculating

S̃θ1,t, . . . , S̃
θ
7,t and S8,t, . . . , S15,t in an online manner as shown in Section 5.3.2.2. In online

EM, running averages of sufficient statistics are calculated and then used to update the

estimate of θ∗ at each time [Cappé, 2009, 2011; Elliott et al., 2002; Mongillo and Deneve,

2008]. Let θ1 be the initial guess of θ∗ before having made any observations and at time

t, let θ1:t be the sequence of parameter estimates of the online EM algorithm computed
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sequentially based on y1:t−1. When yt is received, we first update the posterior density

to have p̂θ1:t(z1:t|y1:t), and compute for 1 ≤ m ≤ 7

T θ1:tγ,m,t (xt, z1:t) = Eθ1:t

[
(1− γt)T θ1:t−1

γ,m,t−1 (Xt−1, z1:t−1) + γtsm (Xt−1,xt, zt)
∣∣∣xt,y1:t−1, z1:t−1

]

(5.25)

for the values z1:t = z
(i)
1:t for i = 1, . . . , N , where we have the same constraints on the

step-size sequence {γt}t≥1 as in the SAEM algorithm. This modification reflects on the

updates rules for the variables in T θm,t. To illustrate the change in the recursions with

an example, the recursion rules for the variables for S1,t(x1:t, c
d
1:t) for the simple GLSSM

case become (see Appendix 5.A.1)

P̄γ,1,t+1,ij = (1− γt+1)B
T
t P̄γ,1,t,ijBt + γt+1c

d
t+1eie

T
j

q̄γ,1,t+1,ij = (1− γt+1)
(
BT
t q̄γ,1,t,ij +BT

t

(
P̄γ,1,t,ij + P̄ T

γ,1,t,ij

)
bt
)

r̄γ,1,t+1,ij = (1− γt+1)
(
r̄γ,1,t,ij + tr

(
P̄γ,1,t,ijΣt|t+1

)
+ q̄Tγ,1,t,ijbt + bTt P̄γ,1,t,ijbt

)

So this time we have T θ1:tγ,m,t(z1:t) = (T θ1:tγ,m,t,k(z1:t), k = 1, . . . , kxt ) where

T θ1:tγ,m,t,k(z1:t) = (Pγ,m,t,k,ij, qγ,m,t,k,ij, rγ,m,t,k,ij : all i, j) .

and the conditional expectations

S̃θ1:tγ,m,t(z1:t) = S̃θ1:tγ,alive,m,t(z1:t) + S̃θ1:tγ,dead,m,t(z1:t)

can be calculated by using T θ1:tγ,m,t,k(z1:t) as in Section 5.3.2.2. Finally, regarding those Sm,t

in (5.9), we calculate 8 ≤ m ≤ 15.

Sγ,m,t (z1:t) = (1− γt)Sγ,m,t−1 (z1:t−1) + γtsm (zt) . (5.26)

for the values z1:t = z
(i)
1:t for i = 1, . . . , N . In the maximisation step, we update the

parameter estimate by θt+1 = Λ(Ŝθ1:tγ,1,t, . . . , Ŝ
θ1:t
γ,15,t) where the expectations are obtained

Ŝθ1:tγ,m,t =





∑N
i=1w

(i)
t S̃

θ1:t
γ,m,t(z

(i)
1:t), 1 ≤ m ≤ 7,

∑N
i=1w

(i)
t Sγ,m,t(z

(i)
1:t), 8 ≤ m ≤ 15.

In practice, the maximisation step is not executed until a burn-in time tb for added

stability of the estimators (e.g. see Cappé [2009]).

Notice that the SMC online EM algorithm can be implemented with the help of Algo-

rithm 5.2 the only changes are (5.25) and (5.26) instead of (5.21) and (5.24). Algorithm

5.3 describes the SMC online EM algorithm for the MTT model.
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Algorithm 5.3. The SMC online EM algorithm for the MTT model

• E-step: If t = 1, start with θ1, obtain p̂θ1(z1|y1) =
∑N

i=1w
(i)
1 δz(i)1

(z1), and for

i = 1, . . . , N initialise

T θ1γ,m,1(z(i)
1 ), S̃θ1γ,dead,m,1(z

(i)
1 ) for m = 1, . . . , 7 and Sγ,m′,1(z

(i)
1 ) for m′ = 8, . . . , 15,

If t ≥ 2,

Obtain p̂θ1:t(z1:t|y1:t) =
∑N

i=1w
(i)
t δz(i)1:t

(z1:t) from p̂θ1:t−1(z1:t−1|y1:t−1) along with πt.

For i = 1, . . . , N , set j = πt(i). Use Algorithm 5.2 with the stochastic approximation

to obtain

T θ1:tγ,m,t(z
(i)
1:t), S̃

θ1:t
γ,dead,m,t(z

(i)
1:t) for m = 1, . . . , 7 and Sγ,m′,t(z

(i)
1:t) for m′ = 8, . . . , 15 from

T θ1:t−1

γ,m,t−1(z
(j)
1:t−1), S̃

θ1:t−1

γ,dead,m,t−1(z
(j)
1:t−1) for m = 1, . . . , 7 and Sγ,m′,t−1(z

(j)
1:t−1) for m′ =

8, . . . , 15.

• M-step: If t < tb, θt+1 = θt. Else, for i = 1, . . . , N , m = 1, . . . , 7 calculate

S̃θ1:tγ,alive,m,t(z
(i)
1:t) and S̃θ1:tγ,m,t(z

(i)
1:t) = S̃θ1:tγ,alive,m,t(z

(i)
1:t) + S̃θ1:tγ,dead,m,t(z

(i)
1:t) (‘optional’ lines

in Algorithm 5.2). Calculate the expectations

[
Ŝθ1:tγ,1,t, . . . , Ŝ

θ1:t
γ,15,t

]
=

N∑

i=1

w(i)
n

[
S̃θγ,m,t, . . . , S̃

θ1:t
γ,7,t, Sγ,8,t, . . . , Sγ,15,t

] (
z

(i)
1:t

)
.

and update θt+1 = Λ
(
Ŝθ1:tγ,1,t, . . . , Ŝ

θ1:t
γ,15,t

)
.

Finally, before ending this section, we list in Table 5.1 some important variables used

to describe the EM algorithms throughout the section.

5.4 Experiments and results

We observe the performances of the parameter estimation methods described in Section

5.3 using the constant velocity model in Example 5.1, where the parameter vector is

θ =
(
λb, λf , pd, ps, µbp, µbv, σ

2
bp, σ

2
bv, σ

2
xp, σ

2
xv, σ

2
y

)
.

Note that the constant velocity model assumes the position noise variance σ2
xp = 0. All

other parameters are estimated.

5.4.1 Batch setting

We run two experiments using the model in the batch setting. In the first experiment,

we generate an observation sequence of length n = 100 by using the parameter value

θ∗ = (0.2, 10, 0.90, 0.95, 0, 0, 25, 4, 0, 0.0625, 4)
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Table 5.1: The list of the EM variables used in Section 5.3

Sections 5.3.1 and 5.3.1.1
Sm,n, m = 1 : 15, Sufficient statistics of the MTT model
Sθm,n, m = 1 : 15, Expectation of Sm,n conditional to y1:n

S̃θm,n, m = 1 : 7, Expectation of Sm,n conditional to y1:n and z1:n
Section 5.3.1.2

Ŝθm,n, Monte Carlo estimation of Sθm,n
Ŝ

(j)
γ,m,n, Weighted average of Ŝθ1m,n, . . . , Ŝ

θj
m,n for the SAEM algorithm

Section 5.3.2.1
S̄m,n, m = 1 : 7, Sufficient statistics of a single GLSSM
s̄m,t, m = 1 : 7, Incremental functions for S̄m,n
S̄m,n,ij, The (i, j)’th element of S̄m,n
s̄m,t,ij, The (i, j)’th element of s̄m,t
T̄m,t,ij, Forward smoothing recursion (FSR) function for S̄m,t,ij
P̄m,t,ij, q̄m,t,ij , r̄m,t,ij, Variables used to write T̄m,t,ij in closed-form
Section 5.3.2.2
sm,t, m = 1 : 15, Incremental functions for Sm,n
T θm,t, m = 1 : 7, FSR function for Sm,t
T θm,t,k, FSR function for m’th sufficient statistic of the k’th alive target

at time t
T θm,t,k,ij, The (i, j)th element of T θm,t,k
Pm,t,k,ij, qm,t,k,ij, rm,t,k,ij, Variables to write Tm,t,k,ij
S̃θm,t,k Expectation of the m’th sufficient statistic of the k’th alive target

at time t

S̃θm,t,k,ij, The (i, j)’th element of S̃θm,t,k
S̃θalive,m,t, Contributions of the alive targets at time t to S̃θm,t
S̃θdead,m,t, Contributions of the dead targets up to time t to S̃θm,t
Section 5.3.2.3

T θ1:tγ,m,t, Online estimation of T θm,t using θ1:t
Pγ,m,t,k,ij, qγ,m,t,k,ij, rγ,m,t,k,ij: Variables to write Tγ,m,t,k,ij
S̃θ1:tγ,alive,m,t, Online estimation of S̃θalive,m,t using θ1:t
S̃θ1:tγ,dead,m,t, Online estimation of S̃θdead,m,t using θ1:t
S̃θ1:tγ,m,t, Online estimation of S̃θm,t using θ1:t
Sγ,m,t, m = 8 : 15, Online calculation of Sm,n using θ1:t
Ŝθ1:tγ,m,t, Online estimation of Ŝθm,t using θ1:t
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and window size κ = 100. This particular value of θ∗ creates 1 target every 5 time steps

on average, and the average life of a target is 20; therefore we expect to see around 4

targets per time.

Using the generated data set, we implemented SAEM in Algorithm 5.1) using SMC-

EM for batch MLE estimation. We usedN = 200 particles to implement the SMC method

based on the L-best linear assignment to sample associations, where we set L = 10, the

details of the SMC method are in Appendix 5.A.2. Regarding the step-size sequence in

the SAEM algorithm, γj = j−0.8 is used as the sequence of step-sizes for all parameters

to be estimated, with the exception that γj = j−0.55 is used for estimating σ2
xv. That is

to say, in the SAEM algorithm, Ŝ
(j)
γ,3,n, Ŝ

(j)
γ,4,n, and Ŝ

(j)
γ,5,n are calculated using γj = j−0.55,

and Ŝ
(j)
γ,11,n is calculated twice by using γj = j−0.55 and γj = j−0.80 separately (since it

appears both in the estimation of σ2
xv and ps), and for the rest of Ŝ

(j)
γ,m,n γj = j−0.80 is

used.

Figure 5.2 shows the results obtained using SMC-EM after 2000. For comparison,

we also execute the EM algorithm with the true data association and the resulting θ∗

estimate will serve as the benchmark. Note that given the true association, the EM

can be executed without the need for any Monte Carlo approximation, and it gave the

estimate

θ∗,z = (0.18, 9.94, 0.92, 0.97,−1.98, 0.91, 17.18, 5.92, 0, 0.027, 4.01).

The z in the superscript is to indicate that this value of θ maximises the joint probability

density of y1:n and z1:n, i.e.

θ∗,z = arg max
θ∈Θ

log pθ(y1:n, z1:n)

which is different than θML. However, for a data size of 100, θ∗,z is expected to be closer

to θML than θ∗ is, hence it is useful for evaluating the performances of the stochastic EM

algorithms we present.

From Figure 5.2, we can see that almost all MLEs obtained using SMC-EM converge

to certain values around θ∗,z; except that σ2
xv has not converged within reasonable running

time and it is worth investigating the reason behind this slow convergence. Our hypothesis

is that the slow convergence of σ2
xv in SMC-EM is due to the fact that the algorithm

spends most of its time to update the estimates of sufficient statistics by running the

SMC algorithm for MTT going through all the observations. This may not be efficient

in the sense that the algorithm uses too many samples (i.e. too much computation time)

for estimating sufficient statistics for a fixed θj while θj is varying slowly over iterations.

Actually, we can speed up the estimation process by applying online SMC-EM on a
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Figure 5.2: Batch estimates obtained using the SMC-EM algorithm for MLE. θ∗,z is
shown as a cross.

sequence of repeated data. That is, we can concatenate the data as

[y1:n,y1:n, . . .],

and run SMC online EM in Algorithm 5.3 for the concatenated data. Figure 5.3 shows

both our previous SMC-EM estimates (vs number of iterations) in Figure 5.2 and the SMC

online EM estimates (vs number of passes over the original data y1:n) on the concatenated

data; and we note that that both algorithms are started with the same initial estimate of

θ∗. Noting that the computational cost of one iteration of the SMC-EM algorithm and the

computational cost of one pass of SMC online EM algorithm over the data are roughly the

same, we observe that σ2
xv does indeed converge much quicker in this way. Actually; not

only for σ2
xv but also for almost all parameters in θ SMC online EM on the concatenated

data forgets its initial values and settle around the values to which it converges in a much

quicker fashion. However, we cannot fully trust the results of SMC online EM algorithm

on the repeated data, since the discontinuity introduced by making y1 follow yn in the

concatenated data will induce bias in the estimates, see Figure 5.3. As also suggested

by the figure, we expect that this discontinuity will effect especially those parameters

governing the birth-death and detection-clutter dynamics of the model, i.e. ps, λb, pd, λf ,

however it will have little effect on the parameters µbx, µby, σ
2
bp, σ

2
bv, σ

2
xv, σ

2
y which govern

the dynamics of the HMM associated to a target. In conclusion, a recommended way
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Figure 5.3: Comparison of online SMC-EM estimates applied to the concatenated data
(thicker line) with batch SMC-EM.

to estimate θ∗ in a batch setting is first running SMC online EM on [y1:n,y1:n, . . .] until

convergence to get an estimator θ′ of θ∗, and then running the batch SMC-EM initialised

by θ′.

5.4.2 Online EM setting

We demonstrate the performance of the SMC online EM in Algorithm 5.3 in two settings.

5.4.2.1 Unknown fixed number of targets

In the first experiment for online estimation, we create a scenario where there are a

constant but unknown number of targets that never die and travel in the surveillance

region for a long time. That is, Kx
0 = K (which is unknown and to be estimated) and

λb = 0 and ps = 1. We also slightly modify our MTT model so that the target state is a

stationary process. The modified model assumes that the state transition matrix F is

F =

(
0.99I2×2 ∆I2×2

02×2 0.99I2×2

)
, (5.27)

and G,W and V are the same as the MTT model in Example 5.1. The change is to

the diagonals of matrix F which should be I2×2 for a constant velocity model. However,
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converged values.

0.99 I2×2 will lead to non-divergent targets, i.e. having a stationary distribution.

We create data of length n = 50000 with K = 10 targets which are initiated by

using µbx = 0, µby = 0, σ2
bx = 25, σ2

bv = 4. The other parameters to create the data are

pd = 0.9, λf = 10, σ2
xv = 0.01, σ2

y = 4, and the window size κ = 100.

Figure 5.4 shows the estimates for parameters pd, λf , σ
2
xv, σ

2
y using the SMC online EM

algorithm described in Algorithm 5.3, when K0
t = K = 10 is known. We used L = 10

and N = 100, and γt = t−0.8 is taken for all of the parameters except σ2
xv, where we

used γt = t−0.55. The burn-in time, until when the M-step is not executed, is tb = 10.

We can observe the estimates for the parameters quickly settle around the true values.

Note that µx, µy, σ
2
bp, σ

2
bv are not estimated here because they are the parameters of the

initial distribution of targets which have no effect on the stationary distribution of a MTT

model with fixed number of targets, and thus they are not identifiable by an online EM

algorithm [Douc et al., 2004]. In practice, these parameters can be estimated by running

a batch EM algorithm for the sequence of the first few observations, such as y1:50, fixing

all other parameters to the values obtained by SMC online EM. This approximate MLE

procedure is based on the fact that the parameters of the initial distribution will have

will have negligible effect on the likelihood of observations yt for large t.

The particle filter in Algorithm 5.3, which we used to produce the results in Figure

5.3, has all its particles having the same number of targets, which is the true K. However,

K can be estimated by running several SMC online EM algorithms with different possible

K’s, and comparing the estimated likelihoods pθ1:t(y1:t|K) versus t. Figure 5.5 shows how

the estimates of pθ1:t(y1:t|K) for values K = 6, . . . , 15 compare with time. Both the left

and right figures suggest that pθ1:t(y1:t|K) favours K = 10 starting from t = 100 and the
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Figure 5.5: Left: estimates of pθ1:t(y1:t|K) (normalised by t) for values t = 100 . . . , t = 500
and for K = 6, . . . , K = 15. Right: Estimates of pθ1:t(y1:t|K) normalised by t for values
K = 6, . . . , K = 15, K = 10 is stressed with a bold plot.

decision on the number of targets can be safely made after about 200 time steps. We

have also checked this comparison with different initial values for θ and found out that

the comparison is robust to the initial estimate θ0.

5.4.2.2 Unknown time varying number of targets

In the second experiment with online estimation, we consider the constant velocity model

in Example 5.1 with a time-varying number of targets, i.e. λb > 0 and ps < 1. We

generated a set of data of length n = 105 using parameters

θ∗ = (0.2, 10, 0.90, 0.95, 0, 0, 25, 4, 0, 0.0625, 4)

and we estimated all of them (except σ2
xp = 0). Again, we used L = 10 and N = 200,

and γt = t−0.8 is taken for all of the parameters except σ2
xv for which we used γt = t−0.55.

The online estimates for those parameters are given in Figure 5.6 (solid lines). The

initial values are taken to be θ0 = (0.8, 0.5, 0.6, 13,−1,−1, 1, 1, 16, 0, 0.25, 25) which is

not shown in the figure in order to zoom in around θ∗. We observe that the estimates

have quickly left their initial values and settle around θ∗. Also, the parameter estimates

for the initial distribution of newborn targets have the largest oscillations around their

true values which is in agreement with the results in the batch setting.

Another important observation inferred from Figure 5.6 is the bias in the estimates

of some of the parameters. This bias arises from the Monte Carlo approximation. To

provide a clearer illustration of this Monte Carlo bias, we compared the SMC online EM

estimates with the online EM estimates we would have if we were given the true data
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Figure 5.6: Estimates of online SMC-EM algorithm (Algorithm 5.3) for an MTT model
with time varying number of targets, compared with online EM estimates when the true
data association {Zt}t≥1 is known. For the estimates in case of known true association,
θ1000,2000,...,100000 are shown only. True values are indicated with a horizontal line.

association, i.e. {Zt}t≥1. The dashed lines in Figure 5.6 show the results obtained when

the true association is known; for illustrative purposes we plot every 1000’th estimate

only, hence the sequence θ1000,2000,...,100000. It is interesting to observe from the plots that

the trends of estimates over time are similar for most of the parameters; however for some

of the parameters of (namely pd, λf , σ
2
bv, σ

2
xv, σ

2
y) online SMC-EM have a bias.

In search of the source of the bias in our results, we ran the SMC online EM algorithm

for the same data sequence, but this time by feeding the algorithm with the birth-death

information, i.e. {Kb
t , C

s
t }t≥0. Figure 5.7 shows that when {Kb

t , C
s
t }t≥0 is provided to

the algorithm, the bias will disappear. This indicates two things at the same time: (i)

the bias is due to the poor tracking of birth time and death time of our SMC tracking

algorithm for MTT; and (ii) the L-best approach for tracking the target-to-observation

assignment, that is {Cd
t , K

f
t , At}t≥1, is doing fine. Therefore, the bottle neck of the SMC

tracking algorithm is birth-death tracking and, generally speaking, a better SMC scheme

for the birth-death tracking may reduce the bias. At this point we would like to note that

when the number of births per time is limited by a finite integer, all the variables of Zt

i.e. {Kb
t , K

f
t , C

s
t , C

d
t , At} can be tracked within the L-best assignment framework, and we

expect in this case the bias to be significantly smaller. However, since in our MTT model

the number of births per time is unlimited (being a Poisson random variable), we cannot

include birth-death tracking in the L-best assignment framework. For our discussion
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Figure 5.7: SMC online EM estimates when birth-death known (solid line) compared to
the original results in Figure 5.6 (dashed lines). For illustrative purposes, every 1000th
estimate is shown

on this issue to become clearer, we recommend the reader to see the SMC algorithm in

Appendix 5.A.2.

5.5 Conclusion and Discussion

We have presented MLE algorithms for inferring the static parameters in the linear Gaus-

sian MTT model. Based on our experiments on the offline and online EM implementa-

tions, our recommendations to the practitioner are: if batch estimation is permissible for

the application then it should always be preferred. Moreover, online SMC-EM on con-

catenated data should be used to provide a good initial estimate for the batch SMC-EM.

For very long data sets (in terms of time) and when there is a computational budget,

online SMC-EM seems the most appropriate since the it is easier to control computa-

tional demands by restricting the number of particles. We have seen that there will be

bias in some of the parameter estimates caused by the failure to track the birth-death

dynamics accurately. We have not considered other tracking algorithms that work well in

such scenarios such as those based on the PHD filter [Vo and Ma, 2006; Whiteley et al.,

2010] which could be used provided track estimates can be extracted.

The linear Gaussian MTT model can be extended while still retaining EM based MLE.

For example, split-merge scenarios for targets can be considered. Moreover, the number of
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newborn targets per time need not be a Poisson random variable; for example the model

may allow no births or at most one birth at a time determined by a Bernoulli random

variable. Furthermore, false measurements need not be uniform, e.g. their distribution

may be a Gaussian (or a Gaussian mixture) distribution. Also, we assumed that targets

are born close to the centre of the surveillance region; however, different types of initiation

for targets may be preferable in some applications.

For non-linear non-Gaussian MTT models, Monte Carlo type batch and online EM

algorithms may still be applied by sampling from the hidden states Xt’s provided that

the sufficient statistics for the EM are available in the required additive form [Del Moral

et al., 2009]. In those MTT models where sufficient statistics for EM are not available,

other methods such as gradient based MLE methods can be useful (e.g. Poyiadjis et al.

[2011]).

5.A Appendix

5.A.1 Recursive updates for sufficient statistics in a single GLSSM

Referring to the variables in Section 5.3.2.1, the intermediate functions for the sufficient

statistics in (5.17) can be written as

Tm,t,ij(xt, c
d
1:t) = xTt P̄m,t,ijxt + q̄Tm,t,ijxt + r̄m,t,ij

where i, j = 1, . . . , dx for m = 1, 3, 4, 5, 7; i = 1, . . . , dx, j = 1, . . . , dy for m = 2; and

i = 1, . . . , dx, j = 1 form = 6. All P̄m,t,ij’s, q̄m,t,ij’s and r̄m,t,ij ’s are dx×dx matrices, dx×1

vectors and scalars, respectively. Forward smoothing is then performed via recursions over

these variables. Start at time 1 with the initial conditions P̄m,1,ij = 0dx×dx , q̄m,1,ij = 0dx×1,

and r̄m,1,ij = 0 for all m except P̄1,1,ij = cd1eie
T
j , P̄7,1,ij = eie

T
j , q̄2,1,ij = cd1y1(j)ei, and

q̄6,1,i1 = ei. At time t+ 1, update

P̄1,t+1,ij = BT
t P̄1,t,ijBt + cdt+1eie

T
j

q̄1,t+1,ij = BT
t q̄1,t,ij +BT

t

(
P̄1,t,ij + P̄ θ,T

1,t,ij

)
bt

r̄1,t+1,ij = r̄1,t,ij + tr
(
P̄1,t,ijΣt|t+1

)
+ q̄T1,t,ijbt + bTt P̄1,t,ijbt

P̄2,t+1,ij = 0dx×dx

q̄2,t+1,ij = BT
t q̄2,t,ij + cdt+1yt+1(j)ei

r̄2,t+1,ij = r̄2,t,ij + q̄T2,t+1,ijbt
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P̄3,t+1,ij = BT
t

(
P̄3,t,ij + eie

T
j

)
Bt

q̄3,t+1,ij = BT
t q̄3,t,ij +BT

t

(
P̄3,t,ij + P̄ T

3,t,ij + eie
T
j + eje

T
i

)
bt

r̄3,t+1,ij = r̄3,t,ij + tr
((
P̄3,t,ij + eie

T
j

)
Σt|t+1

)
+ q̄T3,t,ijbt

+ bTt
(
P̄3,t,ij + eie

T
j

)
bt

P̄4,t+1,ij = BT
t P̄4,t,ijBt + eie

T
j

q̄4,t+1,ij = BT
t q̄4,t,ij +BT

t

(
P̄4,t,ij + P̄ T

4,t,ij

)
bt

r̄4,t+1,ij = r̄4,t,ij + tr
(
P̄4,t,ijΣt|t+1

)
+ q̄T4,t,ijbt + bTt P̄4,t,ijbt

P̄5,t+1,ij = BT
t P̄5,t,ijBt + eie

T
j Bt

q̄5,t+1,ij = BT
t q̄5,t,ij +BT

t

(
P̄5,t,ij + P̄ T

5,t,ij

)
bt + ejb

T
k ei

r̄5,t+1,ij = r̄5,t,ij + tr
(
P̄5,t,ijΣt|t+1

)
+ q̄T5,t,ijbt + bTt P̄5,t,ijbt

P̄6,t+1,i1 = 0dx×dx

q̄6,t+1,i1 = BT
t q̄6,t,i1

r̄6,t+1,i1 = r̄6,t,i1 + q̄T6,t+1,i1bt

P̄7,t+1,ij = BT
t

(
P̄7,t,ij

)
Bt

q̄7,t+1,ij = BT
t q̄7,t,ij +BT

t

(
P̄7,t,ij + P̄ T

7,t,ij

)
bt

r̄7,t+1,ij = r̄7,t,ij + tr
(
P̄7,t,ijΣt|t+1

)
+ q̄T7,t,ijbt + bTt P̄7,t,ijbt

For the online EM algorithm, we simply modify the update rules by multiplying the

terms on the right hand side containing et or Idx×dx by γt+1 and multiplying the rest of

the terms by (1− γt+1).

5.A.2 SMC algorithm for MTT

An SMC algorithm is mainly characterised by its proposal distribution. Hence, in this

section we present the proposal distribution qθ(zt|z1:t−1,y1:t), where we exclude the su-

perscripts for particle numbers from the notation for simplicity. Assume that z1:t−1 is the

ancestor of the particle of interest with weight wt−1. We sample zt =
(
kbt , c

s
t , c

d
t , k

f
t , at

)

and calculate its weight by performing the following steps:

• Birth-death move: Sample kbt ∼ PO(·;λb) and cst (j) ∼ BE(·; ps) for j = 1, . . . , kxt−1.

Set kst =
∑kxt−1

j=1 c
s
t and construct the kst × 1 vector ist from cst . Set kxt = kst + kbt and

calculate the prediction moments for the state. For j = 1, . . . , kxt ,

– if j ≤ kst , set µt|t−1,j = Fµt−1|t−1,ist (j)
and Σt|t−1,j = FΣt−1|t−1,ist (j)

F T +W .

– if j > kst , set µt|t−1,j = µb and Σt|t−1,j = Σb.

Also, calculate the moments of the conditional observation likelihood: For j =

1, . . . , kxt , µ
y
t,j = Gµt|t−1,j and Σy

t,j = GΣt|t−1,jG
T + V .
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• Detection and association Define the kxt × (kyt + kxt ) matrix Dt as

Dt(i, j) =





log(pdN (yt,i;µ
y
t,j,Σ

y
t,j)) if j ≤ kyt ,

log
(1−pd)λf

|Y|
if i = j − kyt ,

−∞ otherwise.

and an assignment is a one-to-one mapping αt : {1, . . . , kxt } → {1, . . . , kyt + kxt }.
The cost of the assignment, up to an identical additive constant for each αt is

d(Dt, αt) =

kdt∑

j=1

Dt(j, αt(j)).

Find the set AL = {αt,1, . . . , αt,L} of L assignments producing the highest as-

signment scores. The set AL can be found using the Murty’s assignment ranking

algorithm [Murty, 1968] with a computational cost of O((kxt + kyt )
3 L) in the worst

case. Finally, sample αt = αt,j with probability

κ(αt,j) =
exp(d(Dt, αt,j))∑L
j′=1 exp(d(Dt, αt,j′))

, j = 1, . . . , L

Given αt, one can infer cdt (hence idt ), k
d
t , k

f
t and the association at as follows:

cdt (k) =





1 if αt(k) ≤ kyt ,

0 if αt(k) > kyt .

Then kdt =
∑kxt

j=1 c
d
t (k), k

f
t = kyt − kdt , idt is constructed from cdt , and finally

at(k) = αt(i
d
t (k)), k = 1, . . . , kdt .

• Reweighting: After we sample zt =
(
kbt , c

s
t , c

d
t , k

f
t , at

)
from qθ(zt|z1:t−1,yt), we calcu-

late the weight of the particle as in (5.14), which becomes for this sampling scheme

as

wt ∝ wt−1
e−λf

N !

(
λf
|Y|

)kyt−kxt L∑

j=1

exp(d(Dt, αt,j)).
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5.A.3 Computational complexity of EM algorithms

5.A.3.1 Computational complexity of SMC filtering

For simplicity, assume the true parameter value is θ. The computational cost of SMC

filtering with θ and N particles, at time t, is

CSMC(θ, t, N) = c1N︸︷︷︸
resampling

+
N∑

i=1



(
c2K

x(i)
t−1 + c3

)

︸ ︷︷ ︸
birth-death sampling

+ d3
x (c4K

x
t + c5K

x
t K

y
t )︸ ︷︷ ︸

moments and assignments

+ c6L
(
K
x(i)
t +Ky

t

)3

︸ ︷︷ ︸
Murty (worst case)




where c1 to c6 are constants and c3 is for sampling from the Poisson distribution. If we

assume that SMC tracks number of births and deaths well in average (which it indeed

does), then we can simplify the term above

CSMC(θ, t, N) ≈ N
[
c1 + c3 + c2K

x
t−1 + d3

x (c4K
x
t + c5K

x
t K

y
t ) + c6L (Kx

t +Ky
t )

3
]

The process {Kx
t }t≥1 is a Markov and its stationary distribution is P(λx) where λx =

λb
1−ps

. Also Ky
t = Kd

t + Kf
t and for simplicity we write Kd

t ≈ pdK
x
t . Therefore the

stationary distribution for {Kx
t +Ky

t }t≥1 ≈ {(1+pd)K
x
t +Kf

t }t≥1 is approximately P(λy)

where λy = λx(1 + pd) + λf . Therefore, assuming stationarity at time t and substituting

EP(λ)(X
3) = λ3 + 3λ2 + λ, the expected cost will be

Eθ [CSMC(θ, t, N)] ≈ N
[
c1 + c3 +

(
c2 + d3

x [c4 + c5 (pd + λf)]
)
λx + c5pdλ

2
x + c6L

(
λ3
y + 3λ2

y + λy
)]

It is worth emphasising that the computational cost of the SMC depends on θ unlike

many time series models.

5.A.3.2 SMC-EM for the batch setting

The SMC-EM algorithm for the batch setting which is optimised with respect to com-

putation time first runs a SMC filter by storing all its path trajectories i.e. {Z(i)
1:n}1≤i≤N

and then calculates the estimates of required sufficient statistics for each Z
(i)
1:n by using a

forward filtering backward smoothing (FFBS) technique. Therefore, the overall expected

cost of an optimised SMC-EM applied to a data of size n is

CSMC-EM = CFFBS(θ, n,N) +
n∑

t=1

CSMC(θ, t, N) + c7

where c7 is the cost of the M-step, i.e. Λ. Let us denote the total number of targets up

to time n is M and let L1, . . . , LM be their life lengths. The computational cost of FFBS

to calculate the smoothed estimates of sufficient statistics for a target of life length L is
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O(d3
xL). Therefore,

CFFBS(θ, n,N) =
N∑

i=1

M (i)∑

m=1

c8d
3
xL

(i)
m

Assume the particle filter tracks well and M (i) and L
(i)
m , m = 1, . . . ,M (i) for particles

i = 1, . . . , N are close enough to the true values M and Lm for m = 1, . . . ,M . Then, we

have

CFFBS(θ, n,N) ≈
N∑

i=1

M∑

m=1

c8d
3
xLm.

for some constant c8. The expected values of Lm and M are 1/(1−ps), nλb, respectively.

Also, assume stationarity at all times so that the expectations of the terms CSMC(θ, t, N)

are the same and we have

Eθ [CFFBS(θ, n,N)] ≈ c8Nnd
3
xλx.

As a result, given a data set of n time points, the overall expected cost of an optimised

SMC-EM for the batch setting per iteration is

Eθ [CSMC-EM] ≈ Eθ [CFFBS(θ, n,N)] + nEθ [CSMC(θ, t, N)] + c7

5.A.3.3 SMC online EM

The overall cost of an SMC online EM for a data set of n time points is

CSMC online EM ≈
n∑

t=1

[CFSR(θ, t, N) + CSMC(θ, t, N) + c7] .

The forward smoothing recursion and maximisation used in the SMC online EM requires

CFSR(θ, t, N) =

N∑

i=1

c9K
x(i)
t d5

x

calculations at time t for a constant c9, whose expectation is c9Nλxd
5
x at stationarity.

The overall expected cost of an SMC online EM for a data of n time steps, assuming

stationarity, is

Eθ [CSMC online EM(θ, n,N)] ≈ n (Eθ [CFSR(θ, t, N)] + Eθ [CSMC(θ, t, N)] + c7)
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Chapter 6

Approximate Bayesian Computation

for Maximum Likelihood Estimation

in Hidden Markov Models

Summary: In this chapter, we present methodology for implementing maximum likeli-

hood estimation (MLE) in hidden Markov models (HMM) with intractable likelihoods in

the context of approximate Bayesian computation (ABC). We show how both batch and

online versions of gradient ascent MLE and expectation maximisation (EM) algorithms

can be used for those HMMs using the ABC approach to confront the intractability. We

demonstrate the performance of our methods first with examples on estimating the param-

eters of two intractable distributions, which are the α-stable and g-and-k distributions, and

then with an example on estimating the parameters of the stochastic volatility model with

α-stable returns.

6.1 Introduction

6.1.1 Hidden Markov models

Hidden Markov models (HMM) are important statistical models in many fields including

Bioinformatics (e.g. Durbin et al. [1998]), Econometrics (e.g. Kim et al. [1998]) and

Population genetics (e.g. Felsenstein and Churchill [1996]); see also Cappé et al. [2005]

for a recent overview. An HMM can be defined as a model comprised of the processes

{Rk}k≥1 and {Yk}k≥1. The latent process {Rk ∈ R ⊆ Rdr}k≥1 is a Markov chain with an

initial density νθ and the transition density fθ, i.e.,

R1 ∼ νθ(r1)dr1, Rk|(R1:k−1 = r1:k−1) ∼ fθ(rk|rk−1)drk, k ≥ 2. (6.1)

It is assumed that νθ(r) and fθ(r|r′) are densities on R with respect to (w.r.t.) a suitable

dominating measure denoted generically as dr. Next, {Yk ∈ Y ⊆ Rdy}k≥1 is the obser-

vation process where Yk is conditionally independent of all other random variables given

137
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Rk = rk and it has the conditional observation density gθ(·|rk) on Y w.r.t. dy, i.e.

Yk| ({Ri}i≥1 = {ri}i≥1, {Yi}i≥1,i6=k = {yi}i≥1,i6=k) ∼ gθ(yk|rk)dyk, k ≥ 1. (6.2)

Finally, the law of the HMM is parametrised by θ taking values in some compact subset

Θ of the Euclidean space Rdθ .

6.1.2 Parameter estimation

A problem that often arises when choosing which HMM to fit to a particular data set

is that of parameter estimation. Typically, the problem is formulated as choosing a

particular HMM among the range of HMMs with transitional laws in (6.1) and (6.2)

which are parametrised by θ ∈ Θ. We will denote the observed random variables of

the HMM, i.e. data, up to time n as Ŷ1:n, which are independent copies of the random

variables Y1:n. Then, given a sequence of observations Ŷ1:n the objective is to find the

parameter vector θ∗ ∈ Θ that corresponds to the particular HMM from which the data

were generated.

A common approach to estimating θ∗ is maximum likelihood estimation (MLE). In

the MLE approach, the parameter estimate given the observations Ŷ1:n, denoted θML, is

obtained by the following maximisation procedure:

θML = arg max
θ∈Θ

pθ(Ŷ1:n),

where pθ(Ŷ1:n) is the probability density, or the likelihood, of the observations Ŷ1:n, defined

by

pθ(y1:n) =

∫

Rn

νθ(r1)gθ(y1|r1)
[

n∏

k=2

fθ(rk|rk−1)gθ(yk|rk)
]
dr1:n, ∀y1:n ∈ Yn. (6.3)

Unless the model is simple, e.g. linear Gaussian or when R is a finite set, one can seldom

evaluate the likelihood in (6.3) analytically. There are a variety of techniques, for example

sequential Monte Carlo (SMC), for numerically estimating or maximising the likelihood

using Monte Carlo; see Kantas et al. [2009] for a recent comprehensive and comparative

review and discussion of SMC methods for parameter estimation in HMMs.

6.1.3 Approximate Bayesian computation for parameter esti-

mation

In a wide range of applications the standard Monte Carlo methods cannot be used for

parameter estimation, for example when the probability density gθ(·|r) of the observed
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state of the HMM given the hidden state Rk = r is intractable for any r ∈ R. By

intractability, we mean either that this density cannot be evaluated analytically and has

no unbiased Monte Carlo estimator or that it is computationally prohibitive to calculate.

Despite the intractability, one is often still able to generate samples from the observation

process for any value of the parameter θ; e.g. see Jasra et al. [2012] for an example in the

HMM context. Specifically, one can usually sample from gθ(·|r) by first sampling U ∈ U
from a straightforward distribution with density µθ(u|r) on U w.r.t. to the dominating

measure du, and then applying a certain transformation tθ : U ×R → Y such that

tθ(U, r) ∼ gθ(·|r).

If gθ (·|r) is an intractable density which cannot be evaluated analytically, then typically

it is the case that the function tθ is a highly non-linear mapping (see Section 6.4.1 for an

example), as observed in a different context in Guyader et al. [2011]. If gθ (·|r) is available

in analytical form but prohibitive to calculate, then U often consists of the latent variables

of a hierarchical model which generates the observation and tθ is in rather simple form.

The ability to sample from a distribution with an intractable probability density has

led to the development of approximate Bayesian computational (ABC) methods, in which

the basic idea is to circumvent the intractability of a distribution by generating samples

from it. ABC has been a highly popular method for confronting intractability, one can

see e.g. Pritchard et al. [1999], Beaumont et al. [2002], Marjoram et al. [2003] for its first

examples and Marin et al. [2011] for a recent review.

As the name approximate Bayesian computation reveals, classical ABC methods treat

the problem of estimating θ∗ in a Bayesian framework where one assigns a prior distri-

bution to θ. Numerous Monte Carlo schemes based on rejection sampling [Pritchard

et al., 1999], Markov chain Monte Carlo (MCMC) [Marjoram et al., 2003], SMC samplers

[Del Moral et al., 2012], etc. have been proposed in this context with success. However,

when they deal with very large data sets, numerical Bayesian methods for static param-

eter estimation are known to suffer either from computational complexity (when MCMC

is used) or from particle path degeneracy (when SMC is used); see Andrieu et al. [2005];

Olsson et al. [2008] for a discussion of this issue on a general basis.

As an alternative to Bayesian estimation, in Dean et al. [2011] the use of ABC was

investigated in the MLE context, where θ∗ is estimated by taking the value of θ which

maximises some principled ABC approximation of the likelihood, which is itself estimated

using Monte Carlo simulation. We will refer to the procedure of maximising this ABC

approximation of the likelihood for the purpose MLE as ABC MLE from now on. How-

ever, the authors in Dean et al. [2011] do not propose a methodology for implementing

the ABC MLE approaches presented in their work.
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6.1.4 Outline of the chapter

In this chapter, we present both batch and online methods to implement ABC MLE for

HMMs with intractable observation densities. In particular, we will demonstrate how

gradient ascent and expectation-maximisation (EM) algorithms can be implemented in

batch and online settings. We show how to apply the idea of noisy ABC [Dean et al.,

2011; Fearnhead and Prangle, 2012; Wilkinson, 2008] within these methods in order to

get rid of any asymptotic bias introduced by ABC approximations. The methods we

provide are always equipped with a Monte Carlo technique which is SMC based in its

most general form. The SMC scheme for ABC that we propose in this work is based on

a slight but crucial modification of the SMC scheme for ABC that is proposed in Jasra

et al. [2012] for SMC filtering. In fact, it is that modification which makes the MLE

methods implementable.

The organisation of the rest of the chapter is as follows: First, we will review the ABC

MLE approaches for HMMs with intractable likelihoods in Section 6.2. Then, in Section

6.3 we will present the methodology to implement the approaches covered in Section

6.2. We will demonstrate the performance of the developed methods with three different

examples in Section 6.4. The first two examples are on estimating the parameters of α-

stable and g-and-k distributions given a sequence of i.i.d. random variables, noting that

the i.i.d. case corresponds to a special kind of HMM. The final example we will show

is on online estimation of the static parameters of the stochastic volatility model with

α-stable returns. The last section will contain a discussion on the methods developed

and the results obtained.

6.2 ABC MLE approaches for HMM

6.2.1 Standard ABC MLE

Given data Ŷ1:n generated from a general statistical model parametrised by θ, one popular

method for approximating the likelihood pθ(Ŷ1:n) is ABC. In the standard ABC approach,

one approximates the likelihood pθ(Ŷ1:n) via the probability of the form

Pθ

(
ρds(n)

[
sn(Y1:n); sn(Ŷ1:n)

]
≤ ǫ
∣∣∣ Ŷ1:n

)
. (6.4)

In (6.4), Y1:n denotes the observed random variables of the statistical model, sn : Yn →
Rds(n) is a statistic associated to n data points, ρd(·; ·) is some suitable metric on Rd, and

ǫ > 0 is a constant which reflects the accuracy of the approximation. One expects that

the approximation gets better as ǫ goes towards zero. In practice the probability in (6.4)

is itself estimated using Monte Carlo techniques. The intuitive justification for the ABC
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approximation is that, if the statistic sn is sufficient for θ, for sufficiently small ǫ

Pθ

(
ρds(n)

[
sn(Y1:n); sn(Ŷ1:n)

]
≤ ǫ
∣∣∣ Ŷ1:n

)

V ǫ,κ

Ŷ1:n

≈ pθ(Ŷ1:n)

where V ǫ,κ

Ŷ1:n
denotes the volume of the ρds(n)-ball of radius ǫ around the point sn(Ŷ1:n).

Thus the probabilities in (6.4) will provide a good approximation to the likelihood, up to

the value of some normalising factor which is independent of θ and hence can be ignored.

In Dean et al. [2011], the authors considered performing ABC parameter estima-

tion for HMMs using a specialisation, proposed in Jasra et al. [2012], of the standard

ABC likelihood approximation (6.4) for when the observations are generated by a HMM.

Specifically, given a sequence of observations Ŷ1:n from the HMM defined in (6.1) and

(6.2), they approximate the corresponding likelihood function pθ(Ŷ1:n) in (6.3) (up to a

proportionality) with the probability

Pθ

(
Y1 ∈ Bǫ

Ŷ1
, . . . , Yn ∈ Bǫ

Ŷn

∣∣∣ Ŷ1:n

)

=

∫

Rn×Yn
νθ(r1)gθ(y1|r1)IBǫ

Ŷ1

(y1)

[
n∏

k=2

fθ(rk|rk−1)gθ(yk|rk)IBǫ
Ŷk

(yk)

]
dr1:ndy1:n, (6.5)

where Bǫ
y denotes the ball of radius ǫ centred around the point y for all y ∈ Rdy . In the

same work, it was observed that the ABC approximate likelihood obtained by normalising

the probability in (6.5) is equal to the likelihood of the data Ŷ1:n under the law of the

perturbed HMM {Rk, Y
ǫ
k }k≥1 defined such that observed states {Y ǫ

k }k≥1 admit

Y ǫ
k = Yk + ǫZk, Zk ∼i.i.d. UnifB1

0
, k ≥ 1. (6.6)

This observation can be verified as follows. While the initial and transition densities for

the hidden states of the perturbed HMM {Rk, Y
ǫ
k }k≥1 are still νθ and fθ, the components

of the observation process {Y ǫ
k }k≥1 has the ‘perturbed’ observation density

gǫθ(y|r) =
1

|Bǫ
y|

∫

Y

gθ(y
′|r)IBǫy(y′)dy′.

We will denote the likelihood of data Ŷ1:n under the law of the perturbed HMM as pǫθ(Ŷ1:n),

where pǫθ is defined as

pǫθ(y1:n) =

∫

Rn

νθ(r1)g
ǫ
θ(y1|r1)

n∏

k=2

fθ(rk|rk−1)g
ǫ
θ(yk|rk)dr1:n, ∀y1:n ∈ Yn. (6.7)
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It can be seen from (6.5) and (6.7) that

Pθ

(
Y1 ∈ Bǫ

Ŷ1
, . . . , Yn ∈ Bǫ

Ŷn

∣∣∣ Ŷ1:n

)
= pǫθ(Ŷ1:n)

n∏

k=1

|Bǫ
Ŷk
|

Therefore, the proportionality between the density pǫθ(Ŷ1:n) and the probability Pθ(Y1 ∈
Bǫ
Ŷ1
, . . . , Yn ∈ Bǫ

Ŷn
|Ŷ1:n) clearly does not depend on the value of θ. This observation

leads to a very useful fact: In order to find the value of θ that maximises the principled

approximation of the likelihood in (6.5), one could in theory implement MLE for the

perturbed HMMs {Rk, Y
ǫ
k }k≥1 using the observations Ŷ1:n for Y ǫ

1:n. The benefit of this

approach is that it retains the Markovian structure of the model which facilitates both

the mathematical analysis and computational implementation of the method. Note that

equation (6.5) is also a formalisation of the basic idea behind ABC MLE; all the other

ABC MLE approaches reviewed in the subsequent sections can be regarded to be based

on modifications of (6.5).

6.2.2 Noisy ABC MLE

It was shown in Dean et al. [2011] that the standard ABC MLE, if implemented exactly,

leads to an asymptotically biased estimate of the parameter vector θ∗ in the sense that

as n → ∞ the corresponding ABC MLE estimate will converge to some point θ∗,ǫ 6= θ∗

in the parameter space Θ, although this bias can be made arbitrarily small by choosing

a sufficiently small value of ǫ. This bias is due to the fact that in standard ABC MLE

one approximates the likelihood of the data generated by the HMM {Rk, Yk}k≥0 with the

likelihood of the same data under the law of the perturbed HMM {Rk, Y
ǫ
k }k≥1. Thus in

effect standard ABC MLE is equivalent to performing MLE with a misspecified collection

of models which in general leads to biased parameter estimates [White, 1982]. A related

observation was also made in Wilkinson [2008], it was shown that the standard ABC

would be ‘calibrated’ under the assumption of model error, which corresponds to the

mismatch between the original HMM {Rk, Yk}k≥1 and the perturbed HMM {Rk, Y
ǫ
k }k≥1

here in this context.

The asymptotic bias in the standard ABC MLE approach can be removed by modify-

ing the data Ŷ1:n so that the law corresponding to the process that generated the modified

data is equal to the law of the perturbed HMM {Rk, Y
ǫ
k }k≥1 defined above. In practice

this can be done by simply adding independent uniform noise to each of the observations

Ŷ1, . . . , Ŷn to get noisy observations

Ŷ ǫ
k = Ŷk + ǫZk, Zk ∼i.i.d. UnifB1

0
, 1 ≤ k ≤ n. (6.8)

One can then perform the same ABC MLE approach described in Section 6.2.1 using
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the noisy observations in place of the original ones. The resulting method is known as

the noisy ABC MLE [Dean et al., 2011] and it produces an unbiased estimator of the

parameter vector θ∗ as n→∞. The intuitive reason for the unbiasedness is easy to see;

the probability density of the noisy data Ŷ ǫ
1:n is precisely pǫθ(Ŷ

ǫ
1:n), which is the likelihood

function of the perturbed HMM {Rk, Y
ǫ
k }k≥1 given Y ǫ

1:n = Ŷ ǫ
1:n. The term “noisy ABC”

was also used in Fearnhead and Prangle [2012] in a Bayesian framework with the same

idea of adding noise to the (statistics of) data for the purpose of “calibrating the model”

instead of “removing the bias”.

6.2.3 Smoothed ABC MLE

When the standard and the noisy ABC MLE approaches described above are subject to a

SMC implementation of an iterative MLE method, it may be necessary to have sufficiently

accurate particle approximation of certain quantities, such as gradients of some densities,

at least locally in a neighbourhood of the current parameter estimate. However it is

well known that Monte Carlo estimates of gradients of densities can be poor, especially

when the densities themselves contain discontinuities. This can present problems due

to the presence of the kernel of the uniform density in the ABC approximation of the

likelihood in (6.7). The fundamental problem is that the ABC approximation of the

likelihoods essentially involves convolving the true observation density gθ with the density

of a uniform distribution. The sharp discontinuities of this distribution mean that Monte

Carlo estimates of expectations w.r.t. it are very poor at capturing the variations of these

expected values w.r.t. any underlying parameters.

The way to resolve this situation is to implement ABC with an approximation of

the likelihoods that involves convolving the gθ with the density of a smooth centred

distribution denoted by κ. In particular, this can be done by using the smoothed ABC

MLE (S-ABC MLE) approach described in Dean et al. [2011]. In this approach one

approximates the true likelihood pθ(Ŷ1:n) of the data Ŷ1:n with the likelihood of the data

under the law of the perturbed HMM {Rk, Y
ǫ,κ
k }k≥0 which is this time defined such that

the observed states {Y ǫ,κ
k }k≥1 admit

Y ǫ,κ
k = Yk + ǫZk, Zk ∼i.i.d. κ, k ≥ 1,

Therefore, pθ(Ŷ1:n) is approximated by pǫ,κθ (Ŷ1:n) where pǫ,κθ is defined as

pǫ,κθ (y1:n) =

∫

Rn

νθ(r1)g
ǫ,κ
θ (y1|r1)

[
n∏

k=2

fθ(rk|rk−1)g
ǫ,κ
θ (yk|rk)

]
dr1:n, ∀y1:n ∈ Y (6.9)

where this time the perturbed observation density gǫ,κθ is obtained by convolving gθ with
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κ i.e.

gǫ,κθ (y|r) =

∫

Y

gθ(y
′|r)1

ǫ
κ

(
y − y′
ǫ

)
dy′.

In practice the random variables Zk are often chosen to be standard normal random

variables.

Finally, we note that the S-ABC MLE suffers from the same problems with asymptotic

bias as does the standard ABC MLE. However, the notion of noisy ABC MLE has a

natural extension to the smoothed case which again results in an unbiased estimate of

the parameter values. That is, instead of using Ŷ1:n, one can use new observations Ŷ ǫ,κ
1:n

obtained by

Ŷ ǫ,κ
k = Ŷk + ǫZk, Zk ∼i.i.d. κ, 1 ≤ k ≤ n. (6.10)

The resulting approach will be called smoothed noisy ABC MLE (SN-ABC MLE) in this

chapter.

6.2.4 Summary

In Table 6.1, we summarise the ABC MLE approaches we have covered in this section. In

Section 6.3, in order to avoid unnecessary repeatings, we will present our methodology for

implementing ABC MLE for HMMs mainly based on the SN-ABC MLE approach only.

We have chosen SN-ABC MLE for its desirable properties, namely unbiasedness and its

broader applicability; although we do dot have any loss of generality by having done

so. The gradient ascent and EM algorithms explained in Sections 6.3.1 and 6.3.2 can be

modified for the other ABC MLE approaches (if applicable) with obvious modifications

such as removing the noise or using the uniform distribution rather than κ. Finally,

note that these algorithms involve SMC approximations in practice, and indeed choosing

an appropriate SMC scheme is of great essence in order to be able to implement the

algorithms.

Table 6.1: A comparison of ABC MLE approaches.

MLE method output bias applicability

ideal MLE arg maxθ∈Θ pθ(Ŷ1:n) unbiased impossible

standard ABC MLE arg maxθ∈Θ p
ǫ
θ(Ŷ1:n) biased restricted

noisy ABC MLE arg maxθ∈Θ p
ǫ
θ(Ŷ

ǫ
1:n) unbiased restricted

S-ABC MLE arg maxθ∈Θ p
ǫ,κ
θ (Ŷ1:n) biased generally applicable

SN-ABC MLE arg maxθ∈Θ p
ǫ,κ
θ (Ŷ ǫ,κ

1:n ) unbiased generally applicable
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6.3 Implementing ABC MLE

Although it was shown in Jasra et al. [2012] that the ABC approximate likelihoods (6.5)

can themselves be estimated using SMC methods, there was no investigation as to how

these SMC based estimates can be used in practice to find the parameter value that

maximises the ABC approximate likelihood. The purpose of this section is to show that

due to the underlying mathematical structure of ABC one can efficiently and accurately

implement the ABC MLE procedure via the standard MLE algorithms. We discuss in

detail how this can be done in Sections 6.3.1 and 6.3.2. However, here we give the basic

idea behind the algorithms described in those sections.

Consider the SN-ABC MLE approach where the true likelihood pθ(Ŷ1:n) in (6.3) is

approximated with pǫ,κθ (Ŷ ǫ,κ
1:n ) where pǫ,κθ (·) is the S-ABC MLE likelihood defined in (6.9)

and Ŷ ǫ,κ
1:n are observations with added smooth noise defined in (6.10). Recall that pǫ,κθ (Ŷ ǫ,κ

1:n )

is the likelihood of Ŷ ǫ,κ
1:n under the law of the perturbed HMM {Rk, Y

ǫ,κ
k }k≥1; so one would

obtain the SN-ABC MLE estimate of θ∗ if they could implement MLE for {Rk, Y
ǫ,κ
k }k≥1

given Y ǫ,κ
1:n = Ŷ ǫ,κ

1:n . However, MLE for {Rk, Y
ǫ,κ
k }k≥1 is as hard as MLE for the original

HMM {Rk, Yk}k≥1, which we already know to be impossible due to the intractability

of gθ(·|r). The reason is similar; this time the perturbed observation density gǫ,κθ (·|r)
is intractable. Therefore, we cannot use the HMM {Rk, Y

ǫ,κ
k }k≥1 directly to implement

SN-ABC MLE.

The crucial point here is that one can construct an equivalent HMM to {Rk, Y
ǫ,κ
k }k≥1

which is tractable in terms of its densities. Recall that one can usually sample from gθ(·|r)
by first sampling U ∈ U from µθ(·|r) and applying the transformation tθ(U, r). From this

it follows that pǫ,κθ (·) is also the likelihood function corresponding to the expanded HMMs

{(Rk, Uk), Y
ǫ,κ
k }k≥1

where {Rk}k≥1 is equal to the hidden state of the original HMM, Uk ∼ µθ(·|Rk) for all k

and

Y ǫ,κ
k = tθ(Uk, Rk) + ǫZk, Zk ∼i.i.d. κ, k ≥ 1.

For this particular HMM, we have {Xk := (Rk, Uk)}k≥1 to be the latent process taking

values from X = R×U and {Y ǫ,κ
k }k≥1 is the observation process. The initial and transition

densities πθ(x) and qθ(x|x′) for {Xk}k≥1 w.r.t. the dominating measure dx = drdu and

the observation density hǫ,κθ (y|x) for {Yk}k≥1 w.r.t. dy are as follows:

πθ(x) = ν(r)µθ(u|r), qθ(x
′|x) = fθ(r

′|r)µθ(u′|r′), hǫ,κθ (y|x) =
1

ǫ
κ

(
y − tθ(x)

ǫ

)
.

(6.11)
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where x = (r, u) and x′ = (r′, u′). Depending on whether we choose to use the S-ABC

MLE or SN-ABC MLE, we take Y ǫ,κ
1:n = Ŷ1:n or Y ǫ,κ

1:n = Ŷ ǫ,κ
1:n , respectively. Again, to avoid

repeating ourselves, from now on we will carry on with the SN-ABC MLE approach and

as a result we are given a particular realisation Y ǫ,κ
1:n = Ŷ ǫ,κ

1:n . SN-ABC MLE reduces to

searching for

θǫ,κML = arg max
θ∈Θ

pǫ,κθ (Ŷ ǫ,κ
1:n ),

where pǫ,κθ is defined in (6.9) and it can be rewritten in terms of the densities in (6.11) as

pǫ,κθ (y1:n) =

∫

Xn

πθ(x1)h
ǫ,κ
θ (y1|x1)

[
n∏

k=2

qθ(xk|xk−1)h
ǫ,κ
θ (yk|xk)

]
dx1:n, ∀y1:n ∈ Yn. (6.12)

Thus, in practice one can find the SN-ABC MLE estimate by applying standard MLE

algorithms to the expanded HMMs {Xk, Y
ǫ,κ
k }k≥1 using the noisy observations Ŷ ǫ,κ

1:n .

Finally, we note that there is a published remark [Andrieu et al., 2012] which also

mentions (independently) the idea of making use of the intermediate random variable U

in the ABC context in a Bayesian framework; however the idea is not developed further

and finalised with an implementable method.

6.3.0.1 SMC algorithm for the expanded HMM

In Sections 6.3.1 and 6.3.2, we describe two possible SMC based MLE methods for HMM

in the ABC context by exploiting the availability of this expanded HMM {Xk, Y
ǫ,κ
k }k≥1.

Before going into the details of these methods, we present our SMC filtering scheme for

{Xk, Y
ǫ,κ
k }k≥1 in the algorithm below.

Algorithm 6.1. SMC filtering for the expanded HMM {Xk, Y
ǫ,κ
k }k≥1

For k = 1; for i = 1, . . . , N sample R
(i)
1 ∼ νθ, U

(i)
1 ∼ µθ(·|R(i)

1 ), and set X
(i)
1 = (R

(i)
1 , U

(i)
1 )

and calculate

W
(i)
1 ∝ hǫ,κθ (Y ǫ,κ

1 |X(i)
1 ),

N∑

i=1

W
(i)
1 = 1.

For k = 2, 3, . . .

• Resample {X(i)
0:k−1}1≤i≤N according to the weights {W (i)

k−1}1≤i≤N to get resampled

particles {X̃(i)
0:k−1}1≤i≤N .

• For i = 1, . . . , N , sample R
(i)
k ∼ fθ(·|R̃(i)

k−1) and U
(i)
k ∼ µθ(·|R(i)

k ); set X
(i)
k =

(R
(i)
k , U

(i)
k ) and X

(i)
1:k = (X̃

(i)
1:k−1, X

(i)
k ). Calculate

W
(i)
k ∝ hǫ,κθ (Y ǫ,κ

k |X
(i)
k ),

N∑

i=1

W
(i)
k = 1.
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Algorithm 6.1 provides the SMC estimates for the posterior distributions such as

pǫ,κθ (x1:n|Y ǫ,κ
1:n ), pǫ,κθ (xn|Y ǫ,κ

1:n ) and pǫ,κθ (xn|Y ǫ,κ
1:n−1). In this work, we will consider the last

one in particular, whose SMC approximation is provided by Algorithm 6.1 as

pǫ,κ,Nθ (dxn|Y ǫ,κ
1:n−1) =

1

N

N∑

i=1

δ
X

(i)
n

(dxn) (6.13)

The implementation in Algorithm 6.1 is based on the bootstrap particle implementation

of Gordon et al. [1993]. Note that any SMC implementation may be used, e.g. the

auxiliary SMC method of Pitt and Shephard [1999], bootstrap with optimal proposal

Doucet et al. [2001]; see e.g. Del Moral [2004]; Doucet et al. [2001] for more examples.

In Jasra et al. [2012], the authors propose an SMC filtering algorithm using another

expanded HMM, namely

{(Rk, Yk), Y
ǫ
k }k≥1.

In this HMM, the hidden state at time k is (Rk, Yk) i.e. the components of the original

HMM and Y ǫ
k is defined in (6.6). It is indeed possible to sample from the hidden states

(Rk, Yk) by sampling from their transition density

fθ(rk|rk−1)gθ(yk|rk)

and the SMC filter only needs to calculate the density of a uniform distribution cen-

tred at the value of Y ǫ
k on order to weight the sampled particles. For any given θ and

y1:n, this SMC filtering algorithm also provides an unbiased SMC estimate of the ABC

probability in (6.5), hence of the ABC likelihood pǫθ(y1:n) in (6.7) for any given θ and

y1:n up to a proportionality. Moreover, the algorithm for {(Rk, Yk), Y
ǫ
k } can be modified

for {(Rk, Yk), Y
ǫ,κ
k } with a straightforward manner, namely the uniform distribution is

replaced with a smooth distribution centred at Y ǫ,κ
k . The resulting SMC filtering algo-

rithm would be equivalent to Algorithm 6.1 in terms of filtering for the hidden process

{Rk}k≥1 of the original HMM; also we can have an unbiased SMC estimate of pǫ,κθ (y1:n)

for any given θ and y1:n. The problem, however, is that it is in general required to be

able to compute the transition density of hidden states of a HMM (or its gradient) in

order to implement MLE methods for it. Obviously neither fθ(rk|rk−1)gθ(yk|rk) nor its

gradient can be computed; therefore {(Rk, Yk), Y
ǫ
k }k≥1 is not practical for implementing

MLE. As a result, although both HMMs are equivalent in the SMC filtering context,

{(Rk, Uk), Y
ǫ
k }k≥1 should be preferred over {(Rk, Yk), Y

ǫ
k }k≥1 in the MLE context.
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6.3.1 Gradient ascent ABC MLE

We show in this section that it is possible to devise batch and online gradient ascent

algorithms for HMMs with intractable observation densities in order to implement the

SN-ABC MLE approach. Specifically, we apply the gradient ascent MLE algorithm to

{Xk, Y
ǫ,κ
k = tθ(Xk) + ǫZk}k≥1 where {Zk}k≥1 are taken as i.i.d. standard normal random

variables i.e.

hǫ,κθ (y|x) = N (y; tθ(x), ǫ
2).

Also, for simplicity we fix Ŷ ǫ,κ
1:n = y1:n.

6.3.1.1 Batch gradient ascent

The batch gradient ascent algorithm is an iterative procedure implemented as follows:

We begin with θ(0) and assume that we have the estimate θ(j−1) at the end of the the

(j − 1)’th iteration. At the j’th iteration we update the parameter

θ(j) = θ(j−1) + γj∇θ log pǫ,κθ (y1:n)
∣∣
θ=θ(j−1).

Here {γj}j≥1 is the sequence of step sizes satisfying
∑

j γj =∞ and
∑

j γ
2
j <∞, ensuring

convergence of the algorithm when it is used with the Monte Carlo approximations of the

gradients ∇θ log pǫ,κθ (y1:n). It was shown in Poyiadjis et al. [2011] and Del Moral et al.

[2011] that a stable SMC approximation of ∇θ log pǫ,κθ (y1:n), which we briefly outline in

the following, is available for HMMs. First, the gradient term can be written as

∇θ log pǫ,κθ (y1:n) =

∫

Xn

[Sθ,n(x1:n) +∇θ log hǫ,κθ (yn|xn)] pǫ,κθ (x1:n|y1:n)dx1:n (6.14)

where the additive functional Sθ,n : X n → Rdθ is defined from additional functions as

follows:

Sθ,n(x1:n) =
n∑

k=1

sθ,k(xk−1, xk), (6.15)

sθ,k(xk−1, xk) = ∇θ log hǫ,κθ (yk−1|xk−1) +∇θ log qθ(xk|xk−1), 2 ≤ k ≤ n,

sθ,1(x0, x1) := sθ,1(x1) = ∇θ log πθ(x1).

Notice that we have omitted the dependency on y1:n−1 from the definition of Sθ,n for

notational simplicity. The integral in (6.14) is simply the expectation of sum of the

additive function Sθ,n and ∇θ log hǫ,κθ (yn|·) under the posterior distribution of X1:n given

y1:n, and it can be evaluated in a forward manner as follows: Define the function T θn :
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X → Rdθ

T θn(xn) :=

∫

Xn−1

Sθ,n(x1:n)p
ǫ,κ
θ (x1:n−1|y1:n−1, xn)dx1:n−1

=

∫

X

[
T θn−1(xn−1) + sθ(xn−1, xn)

]
pǫ,κθ (xn−1|y1:n−1, xn)dxn−1. (6.16)

The recursion in (6.16) is a forward-only version of forward filtering backward smoothing

and it is called the forward smoothing recursion in Del Moral et al. [2009]. Forward

smoothing recursion is available for all additive functionals that have the form in (6.15);

and it is particularly helpful in a sequential setting since one can perform the recursion

using only the densities {pǫ,κθ (xk|y1:k−1)}k≥1, where we will call pǫ,κθ (xk|y1:k−1) the filter at

time k. For simplicity, define

ηθ,k(dxk) := pǫ,κθ (xk|y1:k−1)dxk, k ≥ 1,

and let ν(ϕ) =
∫
ϕ(x)ν(dx) for any measure ν on the σ-algebra generated by X and any

bounded Borel measurable function ϕ defined on X . Then, we can write

pǫ,κθ (xn−1|y1:n−1, xn)dxn−1 =
ηθ,n−1(dxn−1)h

ǫ,κ
θ (yn−1|xn−1)qθ(xn|xn−1)

ηθ,n−1 [hǫ,κθ (yn−1|·)qθ(xn|·)]
.

Once we have T θn from T θn−1 using the forward smoothing recursion, it is possible to

evaluate ∇θ log pǫ,κθ (y1:n) using again the filtering densities only:

∇θ log pǫ,κθ (y1:n) =
ηθ,n

[
T θnh

ǫ,κ
θ (yn|·)

]
+ ηθ,n [∇θh

ǫ,κ
θ (yn|·)]

ηθ,n [hǫ,κθ (yn|·)]

Exact calculation of the filtering densities ηθ,n and hence ∇θ log pǫ,κθ (y1:n) is not possible,

therefore Monte Carlo approximations are needed. We have already shown by equation

(6.13) in Section 6.3.0.1 Using Algorithm 6.1 with N particles, it is possible to recursively

compute particle approximations ηNθ,n of ηθ,n

ηNθ (dxn) =
1

N

N∑

i=1

δ
X

(i)
n

(dxn),

where X
(i)
n , i = 1, . . . , N , are called particles and δx is the Dirac measure concentrated

at x. Also, a stable SMC approximation to ∇θ log pǫ,κθ (y1:n) is available by computing the

recursion in (6.16) using the following O(N2) particle approximation to the backward

transition distribution pǫ,κθ (dxn−1|xn, y1:n−1)

pǫ,κ,Nθ (dxn−1|xn, y1:n−1) =
ηNθ,n−1(dxn−1)h

ǫ,κ
θ (yn−1|xn−1)qθ(xn|xn−1)

ηNθ,n−1 [hǫ,κθ (yn−1|·)qθ(xn|·)]
.
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6.3.1.2 Online gradient ascent

The batch gradient ascent algorithm may be inefficient when n is large since each iteration

requires a complete browse over the data sequence. An alternative to the batch algorithm

is its online version, called the online gradient ascent MLE algorithm. An online gradient

ascent algorithm can be implemented as follows [Del Moral et al., 2011; Poyiadjis et al.,

2011]: Given y1:n−1, assume we have the estimate θn−1. When yn is received, we update

the parameter

θn = θn−1 + γn∇θ log pǫ,κθ (yn|y1:n−1)
∣∣
θ=θn−1

.

The gradient ∇θ log pǫ,κθ (yn|y1:n−1) can be calculated making use of the filter derivative:

∇θ log pǫ,κθ (yn|y1:n−1) =
ηθ,n [∇θh

ǫ,κ
θ (yn|·)] + ζθ,n [hǫ,κθ (yn|·)]
ηθ,n [hǫ,κθ (yn|·)]

where ζθ,n(dxn) is the derivative of the filter ηθ,n and is defined as

ζθ,n(dxn) = ηθ,n(dxn)
[
T θn(xn)− ηθ,n

(
T θn
)]

Therefore, using an SMC algorithm, it is possible to recursively compute particle

approximations ζNθ,n of ζθ,n by using the same O(N2) particle approximation to the for-

ward smoothing recursion (i.e. T θn ’s) as in the batch gradient ascent case to compute

∇θ log pǫ,κθ (y1:n). The resulting approximation of ∇θ log pǫ,κθ (yn|y1:n−1), which is

∇N
θ log pǫ,κθ (yn|y1:n−1) =

ηNθ,n [∇θh
ǫ,κ
θ (yn|·)] + ζNθ,n [hǫ,κθ (yn|·)]
ηNθ,n [hǫ,κθ (yn|·)]

,

was numerically shown to be stable in Poyiadjis et al. [2011] and this was proved in

Del Moral et al. [2011]. Without going into further details, we refer the reader to these

works for the implementation details (e.g. see Algorithms 1 and 2 in Del Moral et al.

[2011]) as well as proven stability results.

6.3.1.3 Controlling the stability

If the functions sθ,k and hence the additive functionals Sθ,n have very high or infinite vari-

ances; we expect failure of the gradient ascent MLE algorithm. In particular, assuming

κ = N (0, 1), the gradient term

∇θ log hǫ,κθ (Y ǫ,κ
k |Xk) =

1

ǫ2
[Y ǫ,κ
k − tθ(Xk)]∇θtθ(Xk)

can be problematic in this sense. We may circumvent the instability problem by trans-

forming each of the observations Ŷ1, . . . , Ŷn to a subset Ys ⊆ Y by using a one-to-one func-
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tion ψ : Y → Ys. Then, we can implement SN-ABC MLE for the HMM {Xk, Y
ǫ,κ,ψ
k }k≥1,

where this time

Y ǫ,κ,ψ
k = ψ(Yk) + ǫZk, Zk ∼i.i.d. N (0, 1), k ≥ 1.

In this case, the observation density of the HMM {Xk, Y
ǫ,κ,ψ
k }k≥1 becomes

hǫ,κ,ψθ (y|x) = N (y;ψ[tθ(x)], ǫ
2).

Finally, the likelihood function of {Xk, Y
ǫ,κ,ψ
k }k≥1 is pǫ,κθ in (6.12) with hǫ,κθ is replaced by

hǫ,κ,ψθ i.e.

pǫ,κ,ψθ (y1:n) =

∫

Xn

πθ(x1)h
ǫ,κ,ψ
θ (y1|x1)

[
n∏

k=2

qθ(xk|xk−1)h
ǫ,κ,ψ
θ (yk|xk)

]
dx1:n, ∀y1:n ∈ Yn.

We choose ψ such that the gradient of the logarithm of the new observation density

∇θ log hǫ,κ,ψθ (Y ǫ,κ,ψ
k |Xk) =

1

ǫ2
(
Y ǫ,κ,ψ − ψ[tθ(Xk)]

)
∇θψ[tθ(Xk)]

has smaller variance than it would have if no transformation were used. Note that in the

case of a transformation function applied, we obtain the noisy data by first transforming

the real data and then adding the noise, that is,

Ŷ ǫ,κ,ψ
k = ψ(Ŷk) + ǫZk, Zk ∼i.i.d. N (0, 1), 1 ≤ k ≤ n.

6.3.1.4 Special case: i.i.d. random variables with an intractable density

An i.i.d. process {Yk}k≥1 can be seen as a special type of HMM. Specifically, {Yk}k≥1

are i.i.d. w.r.t. a distribution with an intractable probability density gθ. The objective

is to perform MLE given a data sequence Ŷ1:n generated from the i.i.d. process. Again,

we have the assumption that gθ is intractable but we can sample from gθ by generating

U ∈ U from µθ, and by applying a certain transformation function tθ : U → Y so that

tθ(U) ∼ gθ.

Let us consider again the SN-ABC MLE approach where we want to maximise the

likelihood of the noisy observations Ŷ ǫ,κ
1:n = y1:n under the law of the HMM {Uk, Y ǫ,κ

k }k≥1.

The observation density for this HMM is modified as

hǫ,κθ (y|u) =
1

ǫ
κ

(
y − tθ(u)

ǫ

)
.

Since we have pǫ,κθ (yn|y1:n−1) = pǫ,κθ (yn) and hence log pǫ,κθ (y1:n) =
∑n

i=1 log pǫ,κθ (yn); the
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batch and online gradient ascent MLE update rules algorithms reduce to

θ(j) = θ(j−1) + γj

n∑

k=1

∇θ log pǫ,κθ (yk)
∣∣
θ=θ(j−1), θn = θn−1 + γn∇θ log pǫ,κθ (yn)

∣∣
θ=θn−1

.

Therefore, both batch and online gradient ascent algorithms involve independent Monte

Carlo approximations to ∇θ log pǫ,κθ (yn). Noting that

∇θ log pǫ,κθ (y) =

∫

Y

[∇θ log µθ(u) +∇θ log hǫ,κθ (y|u)]pǫ,κθ (u|y)du, (6.17)

the Monte Carlo approximation of ∇θ log pǫ,κθ (y) involves a Monte Carlo approximation

to the posterior distribution pǫ,κθ (u|y) of U given y. We can use standard MCMC or

importance sampling methods to obtain an approximation of pǫ,κθ (u|y) withN ≥ 1 samples

as

pǫ,κ,Nθ (du|y) =

N∑

i=1

W (i)δU (i)(du),

N∑

i=1

W (i) = 1.

If a MCMC is used to generate samples from pǫ,κ,Nθ (u|y), we simply have W (i) = 1/N . If

self normalised importance sampling is used with a proposal density ξθ(u|y) then

W (i) ∝ µθ(U
(i))hǫ,κθ (y|U (i))

ξθ(U (i)|y) .

Therefore, the Monte Carlo approximation of (6.17) becomes

∇N
θ log pǫ,κθ (y) =

N∑

i=1

W (i)
[
∇θ log µθ(U

(i)) +∇θ log hǫ,κθ (y|U (i))
]
.

One important point to note about the i.i.d. case is that the original O(N2) algorithm

mentioned above reduces to an O(N) algorithm, so for a fixed computational source

one can implement the gradient ascent algorithms with much more particles. Secondly,

because of reduced computational complexity, we have more freedom to choose a sophis-

ticated method for the Monte Carlo approximation, such as SMC samplers [Del Moral

et al., 2006] (even though these methods are applicable also within the SMC algorithm

for general HMMs with additional computational costs).

6.3.2 Expectation-maximisation

Although not as general as the gradient ascent MLE algorithm, the EM algorithm may

be available in some models in the ABC context, at least for a part of the parameters in
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θ. Consider the expanded HMM {Xk, Y
ǫ,κ
k }k≥1 and assume that that the quantity

Q(θ′, θ) =

∫

Xn

log pǫ,κθ (x1:n, y1:n)p
ǫ,κ
θ′ (x1:n|y1:n)dx1:n

can be maximised w.r.t. θ. Then the EM algorithm at the j’th iteration calculates

Q(θ(j−1), θ) (E-step) sets θ(j) to be the maximiser of Q(θ(j−1), θ) (M-step) i.e.

θ(j) = arg max
θ∈Θ

Q(θ(j−1), θ)

Moreover, if the joint density pǫ,κθ (x1:n, y1:n) of observations as well as latent variables

belongs to the exponential family w.r.t. θ, then the E-step reduces to calculating the

expectations of some additive sufficient statistics Sn : X n → Rm (for some m > 0)

defined similarly to (6.15) as

Sn(x1:n) = s1(x1) +
n∑

k=2

s(xk−1, xk) (6.18)

w.r.t. the posterior distribution pθ(j−1)(x1:n|y1:n) of X1:n conditioned on Y ǫ,κ
1:n = y1:n at

θ = θ(j−1). The M-step, then, can be characterised as a mapping Λ : Rm → Θ such that

θ(j) = Λ(Sθ
(j−1)

n ) = arg max
θ∈Θ

Q(θ(j−1); θ).

where, for θ ∈ Θ, Sθn denotes the expectation of Sn w.r.t. pǫ,κθ (x1:n|y1:n) i.e.

Sθn =

∫

Xn

Sn(x1:n)p
ǫ,κ
θ (x1:n|y1:n)dx1:n.

Calculation of Sθn follows similar steps as calculating∇θ log pǫ,κθ (y1:n) in the gradient ascent

algorithm in the sense that we can use the forward smoothing recursion described in

Section 6.3.1.1 to calculate Sθn since the sufficient statistics Sn are in the additive form

[Del Moral et al., 2009]. Note that to emphasise the analogy between (6.15) and (6.18)

we use the same letter S for those additive sufficient statistics.

Similar to the online gradient ascent algorithm, the availability of the recursive calcu-

lation of Sθn enables us to develop the online version of the EM algorithm [Cappé, 2009,

2011; Elliott et al., 2002; Mongillo and Deneve, 2008]. This can be done by modifying

the forward smoothing recursion by borrowing ideas from stochastic approximation. Let

θ0:n−1 denote the parameter estimates obtained sequentially by the online EM algorithm
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given the data y1:n−1. When yn is received, we calculate

Tγ,n(xn) =

∫

X

[(1− γn)Tγ,n−1(xn) + γnsn(xn−1, xn)] p
ǫ,κ
θ0:n−1

(xn−1|xn, y1:n−1)dxn−1

Sγ,n =

∫

X

Tγ,n(xn)p
ǫ,κ
θ0:n−1

(xn|y1:n)dxn

=
ηθ0:n−1,n

[
Tγ,nh

ǫ,κ
θn−1

(yn|·)
]

ηθ0:n−1,n

[
hǫ,κθn−1

(yn|·)
]

and update θn = Λ(Sγ,n). The subscript θ0:n−1 indicates that the estimations up to time

n have contributions to the filtering densities (hence to Tγ,n and Sγ,n).
There are bothO(N) and O(N2) SMC methods available for approximation to Sθn and

Sγ,n for the batch and online cases, respectively. Actually, theO(N2) method is analogous

to the O(N2) method described in Section 6.3.1. Whereas, the O(N) method is directly

based on the path space approximation of pǫ,κθ (x1:n|y1:n) obtained by the SMC filter in

Algorithm 6.1. One can see Cappé [2009] for an O(N) implementation. Although the

O(N) method is computationally less demanding, its estimates have larger Monte Carlo

variance compared to those of the O(N2) method. Finally, both methods produce stable

estimates for θ∗ when used in an EM algorithm unlike the gradient ascent algorithm

which strictly requires the O(N2) method for stability [Poyiadjis et al., 2011].

In the case of i.i.d. processes the EM algorithms simplify in a similar way as in

the gradient ascent algorithms, and it will not be detailed here again. The important

points are worth emphasising, though: we have {Xk = Uk} the SMC implementation

to calculate the expectations of sufficient statistics Sn(U1:n) =
∑n

k=1 sk(Uk) breaks into

independent Monte Carlo approximations of {pǫ,κθ (uk|yk)}k≥1 and the O(N2) algorithm

can be implemented with O(N) calculations. Finally, if needed, the same one-to-one

transformation approach explained in Section 6.3.1.3 could be used for the EM algorithm

in order to stabilise the sufficient statistics (or their estimates) required for the algorithm.

6.4 Numerical examples

In this section we demonstrate the performance of the methods described in Section 6.3

with several numerical examples. The models we study are sequences of i.i.d. random

variables from α-stable and g-and-k distributions and the stochastic volatility model with

α-stable returns. The experiments focus on different aspects of the methods.
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6.4.1 MLE for α-stable distribution

We first consider the problem of estimating the parameter values of a sequence of i.i.d.

α-stable random variables. We denote A(α, β, µ, σ) to be the α-stable distribution. The

parameters of the distribution,

θ = (α, β, µ, σ) ∈ Θ = (0, 2]× [−1, 1]× R× [0,∞),

are the shape, skewness, location, and scale parameters, respectively. Several methods

for estimating parameter values for stable distributions have been proposed, including a

Bayesian approach based on ABC, see Peters et al. [2011]. In this example we consider

estimating these parameters using SN-ABC MLE implemented with the online gradient

ascent algorithm.

One can generate a random sample from A(α, β, µ, σ) by generating U = (U1, U2),

where U1 ∼ Unif(−π/2,π/2) and U2 ∼ Exp(1) independently, and setting

Y := tθ(U) := σtα,β(U) + µ.

The transformation function tα,β is defined as [Chambers et al., 1976]

tα,β(U) =




Sα,β

sin[α(U1+Bα,β)]
[cos(U1)]1/α

(
cos[U1−α(U1+Bα,β)]

U2

)(1−α)/α

, α 6= 1

X = 2
π

[(
π
2

+ βU1

)
tanU1 − β log

(
U2 cosU1
π
2
+βU1

)]
, α = 1.

where

Bα,β =
tan−1

(
β tan πα

2

)

α
Sα,β =

(
1 + β2 tan2 πα

2

)1/2α

Since the only discontinuity in the transformation function is at α = 1, we can safely use

the gradient ascent method for estimating θ∗ with the restriction α ∈ (0, 1) or α ∈ (1, 2].

As the variance of the α-stable distribution does not exist unless α = 2, Monte

Carlo estimates of the gradient ∇θ log pǫ,κθ (Y ǫ,κ
k ) are expected to have very high or infinite

variance. Instead, we propose using the HMM {Uk, Y ǫ,κ,ψ
k }k≥1 with

Y ǫ,κ,ψ
k = tan−1(Yk) + ǫZk, Zk ∼ N (0, 1), k ≥ 1,

to make the gradient ascent algorithm stable. For this HMM we have

hǫ,κ,ψθ (y|u) = N
(
y; tan−1 [tθ(u)] , ǫ

2
)
,

∇θ log hǫ,κ,ψθ (y|u) =
1

ǫ2
(
y − tan−1 [tθ(u)]

) ∇θtθ(u)

1 + tθ(u)2
.
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Since tan−1(·) squeezes the data to a finite interval the variance of Y ǫ,κ,ψ is obviously

bounded. The variance of ∇θ log hǫ,κ,ψθ (Y ǫ,κ,ψ|U) is not straightforward to evaluate ana-

lytically due to the highly non-linear factors from tθ involved in the expression. However,

in order to check whether the transformation stabilises gradients, we can look at the

empirical distribution of ∇N
θ log pǫ,κ,ψθ (Y ǫ,κ,ψ) when tan−1(·) is used. For this purpose,

we generated 105 samples Ŷi ∼ A(1.5, 0.5, 0, 0.5) and Zi ∼ N (0, 1), i = 1, . . . , 105, and

for each sample we estimated ∇N
θ log pǫ,κ,ψθ (Ŷ ǫ,κ,ψ

i ) using N = 1000 samples for when

Ŷ ǫ,κ,ψ
i = tan−1(Ŷi) + ǫZk, with ǫ = 0.1. Figure 6.1 shows the histograms of

{
∇N
θ log pǫ,κ,ψθ (Ŷ ǫ,κ,ψ

i )
}

1≤i≤105

as a numerical approximation to the distribution of ∇N
θ log pǫ,κ,ψθ (Y ǫ,κ,ψ). From the figure,

one can observe that transformation does stabilise the gradients, which is quite important

for securing the well behaving of the gradient ascent algorithm.
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Figure 6.1: Histograms of Monte Carlo estimates of gradients of log pǫ,κ,ψθ (Y ǫ,κ,ψ) w.r.t.
the parameters of the α-stable distribution with tan−1(·) being used. 105 samples were
used for generating the histograms.

We implemented the SN-ABC MLE approach with ǫ = 0.1 using the online gradient

ascent algorithm to avoid any asymptotic bias in the parameter estimates. Self normalised

importance sampling is used in the Monte Carlo approximation part with the proposal

density being µ to sample N = 1000 particles at each time step. Figure 6.2 shows the

online estimation results for θ given a sequence of 105 i.i.d. α-stable random variables

and stability results for the gradients that are estimated during the algorithm.

In the next experiment we aimed demonstrate how bias is removed from the gradient

ascent algorithm by adding noise to data. For this aim we implemented the SN-ABC

MLE and S-ABC MLE approaches with ǫ = 0.1 on the same data set of 105 samples

generated from A(1.5, 0.5, 0, 0.5) (and transformed with tan−1(·)) . The results in Figure

6.3 are the online estimates averaged over 50 runs for both algorithms. For the SN-ABC

MLE algorithm, in each of the 50 runs we added i.i.d. Gaussian noise to the true data set

transformed with tan−1(·), independently from other runs. Figure 6.3 reveals that S-ABC
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Figure 6.2: On the top: Online estimation of α-stable parameters from a sequence of
i.i.d. random variables using online gradient ascent MLE. True parameters (α, β, µ, σ) =
(1.5, 0.2, 0, 0.5) are indicated with a horizontal line. At the bottom: Gradient of incre-
mental likelihood for the α-stable parameters

MLE introduces biases mainly in the shape and skewness parameters α and β; whereas

these biases are removed SN-ABC MLE. As for the scale and location parameters, both

algorithms have almost identical mean estimates, which are unbiased.

6.4.2 MLE for g-and-k distribution

The g-and-k distribution is determined by variables (A,B, g, k, c) and is defined by its

quantile function Qθ, which is the inverse of the cumulative distribution function Fθ

Qθ(u) = F−1
θ (u) = A+B

[
1 + c

1− e−gφ(u)

1 + e−gφ(u)

] (
1 + φ(u)2

)k
φ(u), u ∈ (0, 1). (6.19)

where φ(u) is the u’th standard normal quantile. The parameters of the distribution

θ = (g, k, A,B) ∈ Θ = R× (−0.5,∞)× R× [0,∞)

are the skewness, kurtosis, location, and scale parameters, and c is usually fixed to 0.8.

Therefore, one can generate from the g-and-k distribution by first sampling U ∼ Unif(0,1)

and then returning tθ(u) = Qθ(u) given U = u (see e.g. Rayner and MacGillivray [2002]

for details).

Bayesian parameter estimation for the g-and-k distribution using ABC is recently

performed in Fearnhead and Prangle [2012], we consider MLE for θ using SN-ABC MLE.
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Figure 6.3: S-ABC MLE and SN-ABC MLE estimates of the parameters of the α-stable
distribution (averaged over 50 runs) using the online gradient ascent algorithm for the
same data set. For SN-ABC MLE, a different noisy data sequence obtained from the
original data set is used in each run. True parameters (α, β, µ, σ) = (1.5, 0.2, 0, 0.5) are
indicated with a horizontal line.

Note thatQθ in (6.19) is differentiable w.r.t. θ, so the gradient ascent algorithms are appli-

cable. To avoid gradients with very high variances resulting from the factor (1 + φ(u)2)
k

in Qθ, similar to the case of α-stable distribution, we use ψ(·) = tan−1(·) to transform

Ŷk and added noise to tan−1(Ŷk) with ǫ = 0.1 to implement SN-ABC MLE with gradient

ascent algorithm. Also, during our experiments, we observed that MLE performs better

for those distributions whose location parameter A is closer to 0, which must be a result

of the non-linear behaviour of the transformation function tan−1(·). Therefore, whenever

possible, it is suggested to estimate the location parameter using a heuristic way (such

as looking at the histogram or finding the mean of a first few samples) as a preprocessing

step, subtract the heuristically estimated value Â of A from the samples, perform MLE

on the (approximately) centred data, and add back Â to the estimated location obtained

by the MLE algorithm. Figure 6.4 shows the mean and the (log-)variance of SN-ABC

MLE estimates of θ = (2, 0.5, 10, 2) in time which are obtained from 50 runs on the

same noisy data sequence. Therefore, the accuracy of the mean and the amount of vari-

ance correspond to the performance of the Monte Carlo approximation of the gradients

∇N
θ log pǫ,κ,ψθ (y). Self normalised importance sampling is used with N = 1000 samples

generated from µ. From the results shown in the figure, one can deduce that the bias

introduced by the finite number of particles is negligible for N = 1000 and the variance

of the algorithm reduces in time resulting in the convergence of the estimates to the true

parameter values.

The next experiment shows how the gradient ascent algorithm can be used in a batch
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Figure 6.4: Mean and the variance (over 50 runs) of SN-ABC MLE estimates using the
online gradient ascent algorithm. Same noisy data sequence is used in each run. True
parameters (g, k, A,B) = (2, 0.5, 10, 2) are indicated with a horizontal line.

setting when the data set is too small for the online algorithm to converge. We imple-

mented the batch gradient ascent SN-ABC MLE algorithm on data sets of n = 1000 i.i.d.

samples from the same g-and-k distribution, that is, for θ = (2, 0.5, 10, 2). A detailed

study of the MLE for g-and-k distribution can be found in Rayner and MacGillivray

[2002] where the MLE methods based on numerical approximation of the likelihood it-

self are investigated; here we present the results of an alternative numerical method to

compute the MLE which is not included in their work. We generated 500 data sets of

size n = 1000 and performed batch gradient ascent algorithm for SN-ABC MLE with

ǫ = 0.1 for each data set. Again, the same self normalised importance sampling proce-

dure is used with N = 1000 samples. The upper half of Figure 6.5 shows the estimation

results versus number of iterations on a single data set. It can be seen that 1000 iter-

ations are sufficient for the convergence of the gradient ascent algorithm. Note that for

short data sets such as those with size 1000, MLE may have a considerable variance as

the estimates out of the single data set reveal. The lower half of Figure 6.5 shows the

(approximate) distributions (histograms over 20 bins) of the MLE estimate for θ. The

mean and variance of the MLE estimates for (g, k, A,B) are (2.004, 0.503, 9.995, 1.996)

and (0.0151, 0.0021, 0.0052, 0.0213) respectively. These moments of the MLE for this par-

ticular θ and same data size n are also obtained in Rayner and MacGillivray [2002] (see

Table 3); the results are comparable. Also, note that this is not the limit of our algorithm;

the contribution of the Monte Carlo approximation to bias and variance can be reduced

further by increasing the number of particles N , or the Monte Carlo bias can even be

removed, such as by using MCMC instead of self normalised importance sampling.
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Figure 6.5: Top: SN-ABC MLE estimates of g-and-k parameters from a sequence of
i.i.d. random variables using the batch gradient ascent algorithm. True parameters
(g, k, A,B) = (2, 0.5, 10, 2) are indicated with a horizontal line. Bottom: Approximate
distributions (histograms over 20 bins) of the estimates

6.4.3 The stochastic volatility model with symmetric α-stable

returns

The stochastic volatility model with α-stable returns (SVαSR) is a model used in analysing

economical data. The hidden process {Rk ∈ R}k≥1 represents the log-volatility in time

whereas the observation process {Yk ∈ R}k≥1 shows the return values. The model for

{Rk, Yk}k≥1 is:

R1 ∼ N
(
0, σ2

x/(1− φ2)
)
, Rk = φRk−1 + σxVk, Vk,∼ N (0, 1), k ≥ 2,

Yk ∼ eRk/2A(α, 0, 0, 1), k ≥ 1. (6.20)

The model is an alternative of the stochastic volatility model with Gaussian returns as

observed series tend to be heavy-tailed and display discontinuities. For more discussion

on the model as well as a review of methods for estimating the static parameters of such

models, see Lombardi and Calzolari [2009] and the references therein. Those existing

methods for parameter estimation in SVαSR, however, are batch and suitable for only

short data sequences. We test our online algorithms implementing SN-ABC MLE for
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Figure 6.6: Online estimation of SVαR parameters using online gradient ascent algo-
rithm to implement SN-ABC MLE. True parameter values (α, φ, σ2

x) = (1.9, 0.9, 0.1) are
indicated with a horizontal line.

this model in a scenario where a very long data sequence is given (or is being received

sequentially).

Since the likelihood involves the α-stable distribution, for stability of the gradi-

ent ascent algorithm we add noise to the tan−1(·) of Ŷk to have Ŷ ǫ,κ,ψ
k = tan−1(Ŷk) +

ǫZk, Zk ∼ N (0, 1). The densities πθ, qθ, and hǫ,κ,ψθ corresponding to the HMM {Xk =

(Rk, Uk), Y
ǫ,κ,ψ
k }k≥1 with Uk = (Uk,1, Uk,2) are as follows:

πθ(x) = N
(
r; 0, σ2

x/(1− φ2)
) 1

π
I[−π/2,π/2](u1)I[0,∞)(v)e

−u2,

qθ(x
′|x) = N (r′;φr, σ2

x)
1

π
I[−π/2,π/2](u

′
1)I[0,∞)(u

′
2)e

−u′2,

hǫ,κ,ψθ (y|x) = N
(
y; tan−1

[
er/2tα,0(u)

]
, ǫ2
)
,

where x = (r, u) and x′ = (r′, u′) and u = (u1, u2).

Estimates of θ = (α, φ, σ2
x) obtained with the online gradient ascent implementation

of the SN-ABC MLE described in Section 6.3.1 using N = 500 particles for a data

sequence of 2 × 106 samples is shown in Figure 6.6. θ∗ = (1.9, 0.9, 0.1) was used for

generating the data. The estimates seem to converge after around 5 × 105 samples.

We also implemented the online EM algorithm to perform noisy smoothed ABC MLE

on the same data. Note that the maximisation step for α is not feasible, that is why the

EM algorithm is restricted to estimate only the hidden state parameters, assuming α is

known. The sufficient statistics needed to estimate σ2
x and φ are provided in Del Moral

et al. [2009]. The online EM results for the model are shown in Figure 6.7.
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6.5 Discussion

In this chapter, we presented a novel methodology for implementing MLE in HMMs with

intractable likelihoods in the context of ABC. We showed how both batch and online

versions of gradient ascent and EM algorithms can be used for those HMMs by using the

ABC approach to confront the intractability. We also demonstrated how to implement

noisy ABC ideas to get rid of an asymptotic (in size of data) ABC bias in our estimates. As

also suggested by the examples that we cover, the gradient ascent algorithm is applicable

to more cases than the EM. This is not surprising, though; since intractability mostly

arises from the non-linear characteristics of tθ, and in general we do not expect to be able

to find sufficient statistics for the parameters involved in tθ.

Note that gradient ascent and EM are not the only possible methods to implement

ABC MLE, although we only covered them due to their similarity and popularity for

the practitioner. Once, we can construct the expanded HMM with tractable transitional

laws, we can use potentially any other MLE method that works for HMMs. One such

example is the iterated filtering algorithm [Ionides et al., 2011] which can be useful for

HMMs having non-linear state space dynamics.



Chapter 7

An Online

Expectation-Maximisation

Algorithm for Nonnegative Matrix

Factorisation Models

Summary: In this chapter we formulate the nonnegative matrix factorisation (NMF)

problem as a maximum likelihood estimation problem for hidden Markov models and pro-

pose online expectation-maximisation (EM) algorithms to estimate the NMF and the other

unknown static parameters. We also propose a sequential Monte Carlo approximation of

our online EM algorithm. We show the performance of the proposed method with two

numerical examples.

The work done in this chapter is published in Yıldırım et al. [2012a]. This idea for

this chapter was initiated during a discussion between Dr. Taylan Cemgil and myself.

7.1 Introduction

With the advancement of sensor and storage technologies, and with the cost of data

acquisition dropping significantly, we are able to collect and record vast amounts of

raw data. Arguably, the grand challenge facing computation in the 21st century is the

effective handling of such large data sets to extract meaningful information for scientific,

financial, political or technological purposes [Donoho, 2000]. Unfortunately, classical

batch processing methods are unable to deal with very large data sets due to memory

restrictions and slow computational time.

One key approach for the analysis of large datasets is based on the matrix and tensor

factorisation paradigm. Given an observed dataset Y , where Y is a matrix of a certain

dimension and each element of it corresponds to an observed data point, the matrix

factorisation problem is the computation of matrix factors B and X such that Y is

163
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approximated by the matrix product BX, i.e.,

Y ≈ BX.

(Later we will make our notation and inferential goals more precise.) Indeed, many

standard statistical methods such as clustering, independent components analysis, non-

negative matrix factorisation (NMF), latent semantic indexing, collaborative filtering can

be expressed and understood as matrix factorisation problems [Koren et al., 2009; Lee

and Seung, 1999; Singh and Gordon, 2008].

Matrix factorisation models also have well understood probabilistic/statistical inter-

pretations as probabilistic generative models and many standard algorithms mentioned

above can also be derived as maximum likelihood or maximum a-posteriori parameter es-

timation procedures [Cemgil, 2009; Févotte and Cemgil, 2009; Salakhutdinov and Mnih,

2008]. The advantage of this interpretation is that it enables one to incorporate domain

specific prior knowledge in a principled and consistent way. This can be achieved by

building hierarchical statistical models to fit the specifics of the application at hand.

Moreover, the probabilistic/statistical approach also provides a natural framework for

sequential processing which is desirable for developing online algorithms that pass over

each data point only once. While the development of effective online algorithms for ma-

trix factorisation are of interest on their own, the algorithmic ideas can be generalised to

more structured models such as tensor factorisations (e.g. see Kolda and Bader [2009]).

In this work our primary interest is estimation of B (rather than B and X), which

often is the main objective in NMF problems. We formulate the NMF problem as a

maximum likelihood estimation (MLE) problem for hidden Markov models (HMMs).

The advantage of doing so is that the asymptotic properties of MLE for HMM’s has

been studied in the past by many authors and these results may be adapted to the NMF

framework. We propose a sequential Monte Carlo (SMC) based online EM algorithm

[Cappé, 2009; Del Moral et al., 2009] for the NMF problem. SMC introduces a layer of

bias which decreases as the number of particles in the SMC approximation is increased.

In the literature, several online algorithms have been proposed for online computation

of matrix factorisations. Mairal et al. [2010] propose an online optimisation algorithm,

based on stochastic approximations, which scales up gracefully to large data sets with

millions of training samples. A proof of convergence is presented for the Gaussian case.

There are similar formulations applied to other matrix factorisation formulations, notably

NMF [Lefevre et al., 2011] and Latent Dirichlet Allocation [Hoffman et al., 2010], as

well as alternative views for NMF which are based on incremental subspace learning

[Bucak and Gunsel, 2009]. Although the empirical results of these methods suggest good

performance, their asymptotic properties have not been established.
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7.1.1 Notation

Let A be a M × N matrix. The (m,n)’th element of A is A(m,n). If M (or N)

is 1, then A(i) = A(1, i) (or A(i, 1)). The m’th row of A is A(m, ·). If A and B

are both M × N matrices, C = A ⊙ B denotes element-by-element multiplication, i.e.,

C(m,n) = A(m,n)B(m,n); A
B

(or A/B) means element-by-element division, in a similar

way. 1M×N (0M×N) is a M × N matrix of 1’s (0’s), where 1M×1 is abbreviated to 1M .

N = {0, 1, 2, . . .} and R+ = [0,∞) are the sets of nonnegative integers and real numbers.

Random variables will be defined by using capital letters, such as X, Y, Z, etc., and their

realisations will be corresponding small case letters (x, y, z, etc.). The indicator function

Iα(x) = 1 if x = α, otherwise it is 0; also, for a set A, IA(x) = 1 if x ∈ A, otherwise it is

0.

7.2 The Statistical Model for NMF

Consider the following HMM comprised of the latent processes {Xt, Zt}t≥1 and the ob-

servation process {Yt}t≥1. The process
{
Xt ∈ RK

+

}
t≥1

is a Markov process of K × 1 non-

negative vectors with an initial density µψ and the transition density fψ for t = 2, 3, . . .

X1 ∼ µψ(x), Xt| (Xt−1 = xt−1) ∼ fψ(xt|xt−1), (7.1)

where ψ ∈ Ψ is a finite dimensional parameter which parametrizes the law of the Markov

process. Zt ∈ NM×K is a M × K matrix of nonnegative integers, and its elements are

independent conditioned on Xt as follows:

Zt| (Xt = xt) ∼
M∏

m=1

K∏

k=1

PO(zt(m, k);B(m, k)xt(k))

where B ∈ RM×K
+ is an M ×K nonnegative matrix. Here PO(v;λ) denotes the Poisson

distribution on N with intensity parameter λ ≥ 0

PO(v;λ) = exp (v log λ− λ− log v!) ,

The M × 1 observation vector Yt is conditioned on Zt in a deterministic way

Yt(m) =
K∑

k=1

Zt(m, k), m = 1, . . . ,M.
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This results in the conditional density of Yt given Xt = xt, denoted by gB, being a product

of Poisson densities

Yt| (Xt = xt) ∼ gB(yt|xt) =

M∏

m=1

PO (yt(m);B(m, ·)xt) . (7.2)

Hence the likelihood of yt given xt can analytically be evaluated. Moreover, the condi-

tional posterior distribution πB(zt|yt, xt) of Zt given yt and xt has a factorized closed form

expression:

Zt| (Yt = yt, Xt = xt) ∼ πB(zt|yt, xt)

=
M∏

m=1

M (zt(m, ·); yt(m), ρt,m) (7.3)

where ρt,m(k) = B(m, k)xt(k)/B(m, ·)xt and M denotes a multinomial distribution de-

fined by

M(v;α, ρ) = Iα

(
K∑

k=1

vk

)
α!

K∏

k=1

ρvkk
vk!

,

where v = [v1 . . . vK ] is a realisation of the vector valued random variable V = [V1 . . . VK ],

ρ = (ρ1, . . . , ρK), and
∑K

k=1 ρk = 1. It is a standard result that the marginal mean of the

k’th component is Eα,ρ [Vk] = αρk.

Let θ = (ψ,B) ∈ Θ = Ψ × RM×K
+ denote all the parameters of the HMM. We can

write the joint density of (X1:t, Z1:t, Y1:t) given θ as

pθ(x1:t, z1:t, y1:t) = µψ(x1)gB(y1|x1)πB(z1|y1, x1)

t∏

i=2

fψ(xi|xi−1)gB(yi|xi)πB(zi|xi, yi).

(7.4)

From (7.4), we observe that the joint density of (X1:t, Y1:t)

pθ(x1:t, y1:t) = µψ(x1)gB(y1|x1)

t∏

i=2

fψ(xi|xi−1)gB(yi|xi)

defines the law of another HMM {Xt, Yt}t≥1 comprised of the latent process {Xt}t≥1, with

initial and transitional densities µψ and fψ, and the observation process {Yt}t≥1 with the

observation density gB. Finally, the likelihood of data is given by

pθ(y1:T ) = Eψ

[
T∏

t=1

gB(yt|Xt)

]
. (7.5)



7.2. THE STATISTICAL MODEL FOR NMF 167

In this work, we treat θ as unknown and seek for the MLE solution θ∗ for it, which

satisfies

θ∗ = arg max
θ∈Θ

pθ(y1:T ). (7.6)

7.2.1 Relation to the classical NMF

In the classical NMF formulation [Lee and Seung, 1999, 2000], given a M×T nonnegative

matrix Y = [y1 . . . yT ], we want to factorize it toM×K andK×T nonnegative matrices B

and X = [X1 . . .XT ] such that the difference between Y and BX is minimised according

to a divergence

(B∗, X∗) = arg min
B,X

D(Y ||BX). (7.7)

One particular choice for D is the generalised Kullback-Leibler (KL) divergence which is

written as

D(Y ||U) =
M∑

m=1

T∑

t=1

Y (m, t) log
Y (m, t)

U(m, t)
− Y (m, t) + U(m, t)

Noticing the similarity between the generalised KL divergence and the Poisson distribu-

tion, [Lee and Seung, 1999] showed that the minimisation problem can be formulated in

a MLE sense. More explicitly, the solution to

(B∗, X∗) = arg maxB,X ℓ(y1, . . . , yT |B,X),

ℓ(y1, . . . , yT |B,X) =
∏T

t=1 gB (yt|Xt) (7.8)

is the same as the solution to (7.7). In our formulation of the NMF problem, X =

[X1 . . .XT ] is not a static parameter but it is a random matrix whose columns constitute

a Markov process. Therefore, the formulation for MLE in our case changes to maximising

the expected value of the likelihood in (7.8) over the parameter θ = (B,ψ) with respect

to (w.r.t.) the law of X

(B∗, ψ∗) = arg max
(B,ψ)∈Θ

Eψ [ℓ(y1, . . . , yT |B,X)] . (7.9)

It is obvious that (7.6) and (7.9) are equivalent. We will see in Section 7.3 that the

introduction of the additional process {Zt}t≥1 is necessary to perform MLE using the

EM algorithm (see Lee and Seung [2000] for its first use for the problem stated in (7.7)).
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7.3 EM algorithms for NMF

Our objective is to estimate the unknown θ given Y1:T = y1:T . The EM algorithm can be

used to find the MLE for θ. We first introduce the batch EM algorithm and then explain

how an online EM version can be obtained.

7.3.1 Batch EM

With the EM algorithm, given the observation sequence y1:T we increase the likelihood

pθ(y1:T ) in (7.5) iteratively until we reach a maximal point on the surface of the likelihood.

The algorithm is as follows:

Choose θ(0) for initialisation. At iteration j = 0, 1, . . .

• E-step: Calculate the intermediate function which is the expectation of the log

joint distribution of (X1:T , Z1:T , Y1:T ) with respect to the law of (X1:T , Z1:T ) given

Y1:T = y1:T .

Q(θ(j); θ) = Eθ(j) [ log pθ(X1:T , Z1:T , Y1:T )|Y1:T = y1:T )]

• M-step: The new estimate is the maximiser of the intermediate function

θ(j+1) = arg max
θ
Q(θ(j); θ)

With a slight modification of the update rules found in Cemgil [2009, Section 2], one can

show that for NMF models the update rule for B reduces to calculating the expectations

Ŝ1,T = Eθ(j)

[
T∑

t=1

Xt

∣∣∣∣∣Y1:T = y1:T

]
, Ŝ2,T = Eθ(j)

[
T∑

t=1

Zt

∣∣∣∣∣Y1:T = y1:T

]

and updating the parameter estimate for B as

B(j+1) = Ŝ2,T/

(
1M

[
Ŝ1,T

]T)
.

Moreover, if the transition density fψ belongs to an exponential family, the update rule

for ψ becomes calculating the expectation of a J × 1 vector valued function

Ŝ3,T = Eθ(j)

[
T∑

t=1

s3,t(Xt−1, Xt)

∣∣∣∣∣Y1:T = y1:T

]
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and updating the estimate for ψ using a maximisation rule

Λ : RJ → Ψ, ψ(j+1) = Λ
(
Ŝ3,T

)
.

Note that s3,t and Λ depend on the NMF model, particularly to the probability laws

in (7.1) defining the Markov chain for {Xt}t≥1. Therefore, we have to find the mean

estimates of the following sufficient statistics at time t.

S1,t(x1:t) =
t∑

i=1

xi, S2,t(z1:t) =
t∑

i=1

zi, S3,t(x1:t) =
t∑

i=1

s3,t(xt−1, xt). (7.10)

Writing the sufficient statistics in additive forms as in (7.10) enables us to use a forward

recursion to find the expectations of the sufficient statistics in an online manner. This

leads to an online version of the EM algorithm as we shall see in the following section.

7.3.2 Online EM

To explain the methodology in a general sense, assume that we want to calculate the

expectations Ŝt = Eθ [St(X1:t, Z1:t)|Y1:t = y1:t] of sufficient statistics of the additive form

St(x1:t, z1:t) =

t∑

i=1

si(xi−1, zi−1, xi, zi) (7.11)

w.r.t. the posterior density pθ(x1:t, z1:t|y1:t) for a given parameter value B. Letting ut =

(xt, zt) for simplicity, we define the intermediate function

Tt(ut) =

∫
St(u1:t)pθ(u1:t−1|y1:t−1, ut)du1:t−1.

One can show that we have the forward recursion [Cappé, 2011; Del Moral et al., 2009]

Tt(ut) =

∫
[Tt−1(ut−1) + st(ut−1, ut)] pθ(ut−1|y1:t−1, ut)dut−1 (7.12)

with the convention T0(u) = 0. Hence, Tt can be computed online, so are the estimates

Ŝt =

∫
Tt(ut)pθ(ut|y1:t)dut.
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We can decompose the backward transition density pθ(ut−1|y1:t−1, ut) and the filtering

density pθ(ut|y1:t) as

pθ(xt−1, zt−1|y1:t−1, xt, zt) = πB(zt−1|xt−1, yt−1)pθ(xt−1|xt, y1:t−1), (7.13)

pθ(xt, zt|y1:t) = πB(zt|xt, yt)pθ(xt|y1:t) (7.14)

where πB is defined in (7.3). From (7.10) we know that the required sufficient statistics

are additive in the required form; therefore, the recursion in (7.12) is possible for the

NMF model. The recursion for S3,t depends on the choice of the transition density fψ;

however the recursions for S1,t and S2,t are the same for any model regardless of the choice

of fψ. For this reason, we shall have a detailed look at (7.12) for the first two sufficient

statistics S1,t and S2,t.

For S1,t, notice from (7.13) that, pθ(xt−1, zt−1|y1:t−1, xt, zt) does not depend on zt.

Moreover, the sufficient statistic S1,t is not a function of z1:t. Therefore, zt−1 in (7.12)

integrates out, and T1,t is a function of xt only. Hence we will write it as T1,t(xt). To sum

up, we have the recursion

T1,t(xt) = xt +

∫
T1,t−1(xt−1)pθ(xt−1|xt, y1:t−1)dxt−1.

For S2,t, we claim that T2,t(xt, zt) = zt + Ct(xt) where Ct(xt) is a nonnegative M ×
K matrix valued function depending on xt but not zt, and the recursion for Ct(xt) is

expressed as

Ct(xt) =

∫ [
Ct−1(xt−1) +

B ⊙
(
yt−1x

T
t−1

)

(Bxt−1) 1TK

]
pθ(xt−1|xt, y1:t−1)dxt−1

This claim can be verified by induction. Start with t = 1. Since T2,0 = 0M×K , we

immediately see that T2,t(x1, z1) = z1 = z1 + C1(x1) where C1(x1) = 0M×K . For general

t > 1, assume that T2,t−1(xt−1, zt−1) = zt−1 + Ct−1(xt−1). Using (7.13),

T2,t(xt, zt) = zt +

∫
[zt−1 + Ct−1(xt−1)]πB(zt−1|xt−1, yt−1)pθ(xt−1|xt, y1:t−1)dxt−1dzt−1

Now, observe that the (m, k)’th element of the integral
∫
zt−1πB(zt−1|xt−1, yt−1)dzt−1 is

B(m,k)yt−1(m)xt−1(k)
B(m,·)xt−1

. So, we can write the integral as

∫
zt−1πB(zt−1|xt−1, yt−1)dzt−1 =

B ⊙
(
yt−1x

T
t−1

)

(Bxt−1)1TK

So we are done. Using a similar derivation and substituting (7.14) into (7.13), we can
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show that

Ŝ2,t =

∫ (
Ct(xt) +

B ⊙
(
ytx

T
t

)

(Bxt) 1TK

)
pθ(xt|y1:t)dxt.

The online EM algorithm is a variation over the batch EM where the parameter is

re-estimated each time a new observation is received. In this approach running averages

of the sufficient statistics are computed [Cappé, 2009, 2011; Elliott et al., 2002; Mongillo

and Deneve, 2008], [Kantas et al., 2009, Section 3.2.]. Specifically, let γ = {γt}t≥1, called

the step-size sequence, be a positive decreasing sequence satisfying
∑

t≥1 γt = ∞ and
∑

t≥1 γ
2
t < ∞. A common choice is γt = t−a for 0.5 < a ≤ 1. Let θ1 be the initial

guess of θ∗ before having made any observations and at time t, let θ1:t be the sequence of

parameter estimates of the online EM algorithm computed sequentially based on y1:t−1.

Letting ut = (xt, zt) again to show for the general case, when yt is received, online EM

computes

Tγ,t(ut) =

∫
[(1− γt)Tγ,t−1(ut−1) + γtst(ut−1, ut)] pθ1:t(ut−1|y1:t−1, ut)dut−1, (7.15)

St =

∫
Tγ,t(ut)pθ1:t(ut|y1:t)dut (7.16)

and then applies the maximisation rule using the estimates St. The subscript θ1:t on the

densities pθ1:t(ut−1|y1:t−1, ut) and pθ1:t(ut|y1:t) indicates that these laws are being computed

sequentially using the parameter θk at time k, k ≤ t. (See Algorithm 7.1 for details.) In

practice, the maximisation step is not executed until a burn-in time tb for added stability

of the estimators as discussed in Cappé [2009].

The online EM algorithm can be implemented exactly for a linear Gaussian state-space

model [Elliott et al., 2002] and for finite state-space HMM’s. [Cappé, 2011; Mongillo and

Deneve, 2008]. An exact implementation is not possible for NMF models in general,

therefore we now investigate SMC implementations of the online EM algorithm.

7.3.3 SMC implementation of the online EM algorithm

Recall that {Xt, Yt}t≥1 is also a HMM with the initial and transition densities µψ and fψ in

(7.1), and the observation density gB in (7.2). Since the conditional density πB(zt|xt, yt)
has a close form expression, it is sufficient to have a particle approximation to only

pθ(x1:t|y1:t). This approximation can be performed in an online manner using a SMC

approach. Suppose that we have the particle approximation to pθ(x1:t|y1:t) at time t with
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N particles

pNθ (dx1:t|y1:t) =

N∑

i=1

w
(i)
t δx(i)

1:t
(dx1:t),

N∑

i=1

w
(i)
t = 1, (7.17)

where x
(i)
1:t = (x

(i)
1 , . . . , x

(i)
t ) is the n’th path particle with weight w

(i)
t and δx is the dirac

measure concentrated at x. The particle approximation of the filter at time t can be

obtained from pNθ (dx1:t|y1:t) by marginalization

pNθ (dxt|y1:t) =
N∑

i=1

w
(i)
t δx(i)

t
(dxt).

At time t+1, for each n we draw x
(i)
t+1 from a proposal density qθ(xt+1|x(i)

t ) with a possible

implicit dependency on yt+1. We then update the weights according to the recursive rule:

w
(i)
t+1 ∝

w
(i)
t fψ(x

(i)
t+1|x(i)

t )gB(yt+1|x(i)
t+1)

qθ(x
(i)
t+1|x(i)

t )
.

To avoid weight degeneracy, at each time one can resample from (7.17) to obtain a

new collection of particles x
(i)
t with weights w

(i)
t = 1/N , and then proceed to the time

t+1. Alternatively, this resampling operation can be done according to a criterion which

measures the weight degeneracy [Doucet et al., 2000b]. The SMC online EM algorithm for

NMF models executing (7.15) and (7.16) based on the SMC approximation of pθ(x1:t|y1:t)

in (7.17) is presented Algorithm 7.1.

Algorithm 7.1. SMC online EM algorithm for NMF models

• E-step: If t = 1, initialise θ1; sample x̃
(i)
1 ∼ qθ1(·), and set w

(i)
1 =

µψ1
(ex

(i)
1 )gB1

(y1|ex
(i)
1 )

qθ1 (ex
(i)
1 )

,

T̃
(i)
1,1 = x̃

(i)
1 , C̃

(i)
1 = 0, T̃

(i)
3,1 = s3,1(x̃

(i)
1 ), i = 1, . . . , N . If t > 1,

– For i = 1, . . . , N , sample x̃
(i)
t ∼ qθt(·|x(i)

t−1) and compute

T̃
(i)
1,t = (1− γt)T (i)

1,t−1 + γtx̃
(i)
t ,

T̃
(i)
3,t = (1− γt)T (i)

3,t−1 + γts3,t(x
(i)
t−1, x̃

(i)
t )

C̃
(i)
t = (1− γt)C(i)

t−1 + (1− γt)γt−1

Bt ⊙
(
yt−1x

(i)T
t−1

)

(
Btx

(i)
t−1

)
1TK

,

w̃
(i)
t ∝

w
(i)
t−1fψt(x̃

(i)
t |x(i)

t−1)gBt(yt|x̃(i)
t )

qθt(x̃
(i)
t |x(i)

t−1)
.
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– Resample from particles {(x̃t, T̃1,t, C̃t, T̃3,t)
(i)} for i = 1, . . . , N according to the

weights {w̃(i)
t }i=1,...,N to get {(xt, T1,t, Ct, T3,t)

(i)} for i = 1, . . . , N each with

weight w
(i)
t = 1/N .

• M-step: If t < tb, set Bt+1 = Bt. Else, calculate using the particles before resam-

pling

S1,t =

N∑

i=1

T̃
1(i)
t w̃

(i)
t ,

S2,t =
N∑

i=1


C̃(i)

t + γt
Bt ⊙

(
ytx̃

(i)T
t

)

(
Btx̃

(i)
t

)
1TK


 w̃

(i)
t

S3,t =

N∑

i=1

T̃
3(i)
t w̃

(i)
t ,

update the parameter θt+1 = (Bt+1, ψt+1), Bt+1 =
S2,t

1M [S1,t]
T , ψt+1 = Λ(S3,t).

Algorithm 7.1 is a special application of the SMC online EM algorithm proposed in

Cappé [2009] for a general state-space HMM, and it only requires O(N) computations

per time step. Alternatively, one can implement an O(N2) SMC approximation to the

online EM algorithm, see Del Moral et al. [2009] for its merits and demerits over the

current O(N) implementation. The O(N2) is made possible by plugging the following

SMC approximation to pθ(xt−1|xt, y1:t−1) into (7.12)

pNθ (dxt−1|xt, y1:t−1) =
pNθ (dxt−1|y1:t−1)fψ(xt|xt−1)∫
pNθ (dxt−1|y1:t−1)fψ(xt|xt−1)

.

7.4 Numerical examples

7.4.1 Multiple basis selection model

In this simple basis selection model, Xt ∈ {0, 1}K determines which columns of B are

selected to contribute to the intensity of the Poisson distribution for observations. For

k = 1, . . . , K,

X1(k) ∼ µ(·), Prob(Xt(k) = i|Xt−1(k) = j) = P (j, i),
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where µ0 is a distribution over X and P is such that P (1, 1) = p and P (2, 2) = q.

Estimation of ψ = (p, q) can be done by calculating

Ŝ3,T = Eθ

[
T∑

i=1

s3,i(Xi−1, Xi)

∣∣∣∣∣Y1:T = y1:T

]
, s3,t(xt, xt−1) =

K∑

k=1




I(0,0)(xt−1(k), xt(k))

I0(xt(k))

I(1,1)(xt−1(k), xt(k))

I1(xt(k))




and applying the maximisation rule (p(j+1), q(j+1)) = Λ(Ŝ
(j)
3,t ) where Λ(·) for this model is

defined as

Λ
(
Ŝ3,t

)
=
(
Ŝ3,t(1)/Ŝ3,t(2), Ŝ3,t(3)/Ŝ3,t(4)

)
.

Figure 7.4.1 shows the estimation results of the exact implementation of online EM (with

γt = t−0.8 and tb = 100) for the 8 × 5 matrix B (assuming (p, q) known) given the

8× 100000 matrix Y which is simulated p = 0.8571, q = 0.6926.

7.4.2 A relaxation of the multiple basis selection model

In this model, the process {Xt ∈ (0, 1)}t≥1 is not a discrete one, but it is a Markov process

on the unit interval (0, 1). The law of the Markov chain for {Xt}t≥1 is as follows: for

k = 1, . . . , K, X1(k) ∼ U(0, 1), and

Xt+1(k)|(Xt(k) = x) ∼ ρ(x)U(0, x) + (1− ρ(x))U(x, 1),

ρ(x) =




α, if x ≤ 0.5

1− α, if x > 0.5.

When α is close to 1, the process will spend most of its time around 0 and 1 with a

strong correlation. (Figure 7.4.2 shows a realisation of {Xt(1)}t≥1 for 500 time steps

when α = 0.95.) For estimation of α, one needs to calculate

Ŝ3,T = Eθ

[
T∑

i=1

s3,i(Xi−1, Xi)

∣∣∣∣∣Y1:T = y1:T

]
,

s3,t(xt−1, xt) =

[
IAxt−1(k)

(xt−1(k), xt(k))

I(0,1)×(0,1)/Axt−1(k)
(xt−1(k), xt(k))

]

where, for u ∈ (0, 1), we define the set

Au = ((0, 0.5]× (0, u]) ∪ ((0.5, 1)× (u, 1)) .
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Figure 7.1: Online estimation of B in the NMF model in Section 7.4.1 using exact im-
plementation of online EM for NMF. The (i, j)’th subfigure shows the estimation result
for the B(i, j) (horizontal lines).
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Figure 7.2: A realisation of {Xt(1)}t≥1 for α = 0.95.

The maximisation step for α is characterised as

Λ
(
Ŝ3,t

)
= Ŝ3,t(1)/

(
Ŝ3,t(1) + Ŝ3,t(2)

)
.

We generated a 8 × 50000 observation matrix Y by using a 8 × 5 matrix B and

α = 0.95. We used the SMC EM algorithm described in Algorithm 7.1 to estimate B

(assuming α known), with N = 1000 particles, qθ(xt|xt−1) = fϕ(xt|xt−1), γt = t−0.8, and

tb = 100. Figure 7.4.2 shows the estimation results.

7.5 Discussion

In this chapter, we presented and online EM algorithm for NMF models with Poisson

observations. We demonstrated an exact implementation and the SMC implementation of

the online EM method on two separate NMF models. However, the method is applicable

to any NMF model where the columns of the matrix X can be represented as a stationary

Markov process, e.g. the log-Gaussian process.

The results in Section 7.4 do not reflect on the generality of the method, i.e., only B

is estimated but the parameter ϕ is assumed to be known, although we formulated the

estimation rules for all of the parameters in θ. Also, we perform experiments where the

dimension of the B matrix may be too small for realistic scenarios. Note that in Algorithm

7.1 we used the bootstrap particle filter, which is the simplest SMC implementation.

The SMC implementation may be improved devising sophisticated particle filters, (e.g.

those involving better proposal densities that learn from the current observation, SMC

samplers, etc.), and we believe that only with that improvement the method can handle

more complete problems with higher dimensions.
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Figure 7.3: Online estimation of B in the NMF model in Section 7.4.2 using Algorithm
7.1. The (i, j)’th subfigure shows the estimation result for B(i, j) (horizontal lines).
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Chapter 8

Conclusions

Summary: In this thesis, we developed batch and online SMC methods for maximum

likelihood parameter estimation in several time series models. In the following, we sum-

marise our contributions and suggest possible future directions of our work.

8.1 Contributions

In Chapter 4, we presented a novel SMC online EM algorithm for the changepoint model

and studied the stability of the associated SMC estimates. The computational cost of the

developed algorithm is linear with the number of particles, unlike its counterpart online

EM algorithms in the general state-space case.

In Chapter 5, we presented MLE algorithms for inferring the static parameters of

the linear Gaussian MTT model, a problem which has largely been left untouched by

researchers in the area. We analysed both the computational and statistical aspects

of the algorithms via several numerical examples. Our developed algorithm is applicable

(with slight modifications) to many extensions of the specific MTT model that we studied,

as long as linear Gaussian dynamics of the MTT model are preserved by those extensions.

In Chapter 6, we presented a novel methodology for implementing MLE in HMMs

with intractable observation densities. We demonstrated how both batch and online ver-

sions of gradient ascent and EM algorithms can be used for those HMMs by using the

ABC approach to address the intractability. The idea of maximum likelihood parameter

estimation in the context of ABC is out of the mainstream of the ABC literature. How-

ever, we think that its implementation is particularly useful for the case of long data sets

where Bayesian approaches, when implemented with Monte Carlo, tend to fail because

of particle degeneracy. Our algorithms are based on noisy ABC ideas and hence their

estimators for the static parameter do not contain any asymptotic (in size of data) ABC

bias.

In Chapter 7, we formulated the NMF problem as an MLE problem for HMMs and

adapted the online SMC EM algorithm for general HMMs to estimate the matrix factors

and the other unknown static parameters of the NMF model. We believe that formulating

the NMF model as an HMM is a useful approach that enables the practitioner to solve

179
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the NMF problem with more ease. Our statistical approach to NMF provides a natural

framework for sequential processing which can be of significant importance in the areas

of signal processing.

8.2 Future directions

In Chapter 4, one limitation of the proposed online EM algorithm for changepoint models

is that it is applicable only when the constituent laws of the changepoint model given be-

long to the exponential family and the latent variables of each regime of the changepoint

model can be integrated out analytically. In cases where this is not the case, gradient

based MLE algorithms can be used, see e.g. Caron et al. [2011]. Another limitation

was the assumption that the observations across segments are conditionally independent.

However, there are changepoint models where observations across segments are condition-

ally dependent (e.g. see Barbu and Limnios [2008, Chapter 6]). Therefore, it would be a

useful extension if our method could be generalised to the case where this dependency is

allowed.

One obvious extension of our work for the linear Gaussian MTT model in Chapter 5 is

to consider batch and online MLE algorithms in non-linear non-Gaussian MTT models.

Note that for non-linear non-Gaussian models, Monte Carlo type batch and online EM

algorithms may still be applied provided that the sufficient statistics for the EM are

available in the required additive form [Del Moral et al., 2009]. When this condition on

the sufficient statistics is not met, other methods such as gradient based MLE methods

can be useful (e.g. Poyiadjis et al. [2011]).

Although we have made an initial step towards MLE in HMMs with intractable densi-

ties in Chapter 6, we have not solved all the issues regarding intractability. For example,

there are cases when we cannot use gradient ascent MLE, such as when the non-linear

transformation function used to generate observations has discontinuities with respect

to the unknown parameter. Another case that is out of the reach of our algorithm is

when the state transition law for the latent process has an intractable density. These

challenging problems motivate the need to extend the algorithms developed in this thesis

to cover these cases. Also note that more sophisticated SMC algorithms, at a cost of

more computations, can be proposed to improve precision of the proposed algorithms.

For example, at each step of the SMC filtering algorithm, an SMC sampler can be applied

for targeting a sequence of ABC approximations with decreasing ABC error term ǫ [Dean

et al., 2012].

The SMC online EM for NMF in Chapter 7 uses the simplest SMC implementation,

namely the bootstrap particle filter. Real-life NMF problems exist in high dimensions

where bootstrap would be most probably inefficient. The SMC implementation may be
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improved by using more sophisticated particle filters, e.g. those involving better proposal

densities that learn from the current observation, SMC samplers, etc. We believe that

only with such improvements could the method handle the more practicle problems with

higher dimensions. Moreover, the EM algorithm may not be applicable to more general

statistical NMF models due to the lack of sufficient statistics, in those cases the online

gradient MLE algorithm may be useful.

Our final comments contain a general concern: In parallel to increasing amount of

research on online methods, the need for a comprehensive comparison of those methods

in terms of their statistical and computational performances is increasing. Therefore,

both numerical and theoretical analysis of state of the art online parameter estimation

methods would be helpful in order to clarify the merits of different approaches proposed

so far. Although such an attempt has been made recently for general SMC parameter

estimation methods by Kantas et al. [2009]; an extensive work on online parameter esti-

mation methods only would be an important contribution to the literature. The analysis

and comparison of those methods would include investigation of their rate of convergence,

accuracy, statistical efficiency, and computational complexity in both time and number

of particles.
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