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Abstract: The paper presents parameter identification for the
model of human glucose metabolism on the basis of interval arith-
metic. The model parameters to be identified are uncertain and
represented by intervals. The process of identification considers
uncertain parameters using the RDM method (Relative Distance
Measure arithmetic), which uses a new representation of inter-
vals. General characteristics of the RDM method are described
and the outline of decision analysis is presented, including its ori-
entation and model for the inflow of glucose into the blood. The
paper determines the influence of each uncertain parameter on
the variation of the overall biomedical model output and shows
the applicability of the RDM method.

1. Introduction

Decision-making under uncertainty is of perennial interest because of its direct rele-
vance to modeling of real-world processes including finance (Bandemer, 2005), econ-
omy (Machina, 1987), mechanics and medicine (Karni, 2009). Solving problems with
uncertain variables or parameters requires appropriate, subtle and multi-dimensional
methods. Among these methods the interval arithmetic can be mentioned. It was
introduced by Moore (1966) and has been developed by many scientists till now. The
main focus in the interval arithmetic is on the simplest way to calculate upper and
lower endpoints for the range of values of a function in one or more variables. One
of the new representations of interval arithmetic is the RDM method introduced by
Piegat and Landowski (2013a), described in next section and applied as a method
for the improvement of parameter identification for biomedical models. Modeling of
biomedical systems turns out to be a non-trivial problem since the models are usually
rather complex, nonlinear and characterized by many parameters which have to be
identified for each single patient. Diabetes, which has been of interest in recent years,
is a good example of a complex biomedical problem considered in the paper. The
diabetics have many difficulties starting from regular medication with injections up
to being imperiled by bad risk of heart attacks. In order to improve therapy and to
develop optimal medication for diabetes, the main characteristics of human glucose
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metabolism need to be studied. The first step of this analysis is to find appropri-
ate mathematical models and make simulations. There are some practical models
for the human glucose metabolism, which are described in many papers and books.
Among them the models of Cobelli et al. (1982); Glockle (1983); Puckett (1992) can
be mentioned. Some scientists have tried to make simulations of these models using
different methods, for example fuzzy arithmetic or transformation method (Hanss and
Nehls, 2000). However, considering the fact that biomedical models are exceedingly
subjected to uncertainties, the new methods still have to be tested to facilitate the
process of analysis and assist treatment. These methods have to take into account
that the parameters of the models exhibit a large range of imprecision and variability.
What affects the parameters is for example the individual physique of the patient, as
well as the duration of the disease.

What is more, some of the initial values of the models, such as the nutritional
content of the ingested food, can only be quantified with a high degree of uncertainty.
To overcome these limitations the RDM-method is applied to the human glucose
metabolism problem.

2. Interval arithmetic – the RDM-method

In many decision problems some variables are uncertain and the only knowledge is
the maximum and minimum possible value of the variable. On the basis of this infor-
mation, interval arithmetic is often used. Unfortunately, the arithmetic on intervals
introduced by R.E. Moore has many faults. Some of them concern the width effect
problem or the dependency problem, which is described in many papers (Dymova,
2011; Piegat and Tomaszewska, 2013). To eliminate these defects and use intervals
in complex mathematical equations, a new approach to interval arithmetic was in-
troduced. It is called Relative Distance Measure method, but its abbreviation, the
RDM-method, is used more often. The method gives a new representation of an in-
terval, where an information granule given as a variable x can be described with the
formula (Piegat and Landowski, 2013b):

x ∈ [x, x] : x = x+ αx (x− x) , αx ∈ [0, 1] (1)

where x is the lower limit and x is the upper limit of the interval and αx is the relative
distance measure.

Formula (1) gives the possibility to make different operations on many intervals
easily. To illustrate it, let us consider the addition and subtraction of two intervals:

[a, a] +
[
b, b

]
= [x, x]

a+ αa (a− a) + b+ αb
(
b− b

)
= x, αa ∈ [0, 1] αb ∈ [0, 1] (2)

[a, a]−
[
b, b

]
= [x, x]

a+ αa (a− a)− b− αb
(
b− b

)
= x, αa ∈ [0, 1] αb ∈ [0, 1] (3)

Depending on the values of variables αa and αb the resulting variable x assumes
various values. It should be noted that the operations on the two intervals are 3-
dimensional: the result depends on two variables αa and αb. Tab. 1 shows values of
x for border values of RDM-variables αa and αb.
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Tab. 1. The resulting values for formula (2) and (3) for border values of the RDM-
variables.

αa, αb 0, 0 0, 1 1, 0 1, 1

addition (a+ b)
(
a+ b

)
(a+ b)

(
a+ b

)
subtraction (a− b)

(
a− b

)
(a− b)

(
a− b

)

The RDM- method can be used to all arithmetic operations and for more than
two uncertain variables, but it makes the problem more multidimensional. It is worth
mentioning that the RDM-method can also produce distributions of possibility and
distributions of probability density, which can have a great meaning in the case of
complex problems and can be used in probabilistic arithmetic (Piegat and Landowski,
2013b).

3. Model for the inflow of glucose into the blood

The problem described in this paper concerns human glucose metabolism. Cells
inside the human body mostly need glucose for proper functioning. By metabolizing
glucose, the body is technically able to supply the cells with the much-needed fuel.
Glucose is usually derived from carbohydrates. Many food products which are rich
in carbohydrates have high starch and sugar content. After meals, carbohydrate
metabolism takes place in the digestive tract where carbohydrates are converted into
glucose. Then glucose is absorbed in the blood and distributed by the bloodstream
to all cells in the body. The disease that affects body’s ability to use glucose is
diabetes. Diabetes is classified into three types: Type 1, Type 2 and gestational
diabetes (Dorner and Pinget, 1977). In this paper Type 1 is considered. Diabetics
with Type 1 have an abnormal glucose tolerance and little or no insulin in their blood.
The lack of insulin or insulin resistance directly causes high blood-glucose levels during
fasting and after a meal (reduced glucose tolerance). High levels of glucose present
in the blood over a sustained period of time end up damaging the blood vessels and
causing other complications. The full model for the inflow of exogenic glucose into
the blood consists of two submodels: one for the concentration of carbohydrates in
the stomach and one for the concentration of carbohydrates in the intestine (Cobelli
et al., 1982; Hanss and Nehls, 2000). Whereas the stomach is modeled as a system
with concentrated parameters, the intestine is considered as a pipe with the coordinate
z and is thus modeled as a system with distributed parameters. The paper focuses
only on the model for the concentration of carbohydrates in the stomach.

The governing model equations for the concentration cSc (t) of carbohydrates in
the stomach of volume V (t) are:

d

dt

[
cSc (t)V (t)

]
= −αV cSc , (4)

dV (t)

dt
= −αV + q∗ = −q (t) + q∗ (5)
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Fig. 1. The apparatus of digestion.

With the initial conditions:
cSc (0) =

mc0

V (0)
(6)

V (0) = Vempty + (1 + fsec)Vmeal (7)

and the parameters

α =
fgasln 2

Vmeal [θ1 − θ2exp (−τk) ]
(8)

k =
1

Vmeal
(βcmc0 + βpmp0 + βfmf0) (9)

The parameter α denotes the evacuation rate of the stomach, which can individ-
ually be adopted by the patient-specific gastroparesis factor fgas and k – the energy
density of the ingested food.

To solve the model differential equations (4) and (5) a MATLAB tools was used.
One of its most common solvers, ode45, which implements a version of the Runge-
Kutta 4th order algorithm was adapted.

4. Analysis of the uncertain model using the RDM-method

In order to analyze the model for the concentration cSc (t) of carbohydrates in the
stomach of volume V (t) (4) and (5) some certain assumptions have to be specified.
There are two uncertain parameters in the model: the gastroparesis factor fgas and
the amount of carbohydrates mc0. The gastroparesis factor in the glucose model has
a rather high degree of uncertainty, inasmuch as it depends on the patients’ individual
physique. Additionally, it is fairly difficult to determine the amount of carbohydrates
in the ingested food precisely. For these reasons, the parameters are considered as
uncertain and they are represented by RDM-method numbers, defined by:
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Fig. 2. Simulink’s model for the concentration cSc (t) of carbohydrates in a stomach
volume V (t).

fgas = 0.6 + 0.1 · αf , αf ∈ [0, 1] (10)

mc0 = 68 + 32 · αc, αc ∈ [0, 1] (11)

Other parameters (Höfig, 1998): θ1 = 0.1797 min ml−1τ = 0.2389 ml kJ−1, θ2= 0.1670
min ml−1Vempty= 50 ml, βc = 0.0167 kJ mg−1fsec = 1.0, βp = 0.0167 kJ mg−1q∗ =
0.4861 ml min−1, βf = 0.0377 kJ mg−1.

The food specific parameters mc0, mf0 and mp0 can be determined by food labels,
reference books or software. In this problem the nutritional content of carbohydrates,
fat and proteins in a specific product are considered. Their values were estimated on
the basis of product labels. Because the labels give the information about the amount
of nutrients as a weight in grams, they had to be converted to volume: mp0 = 18 ml,
mf0 = 10 ml, Vmeal= 674 ml.

The uncertain biomedical model can be simulated by the use of simulink’s model
including uncertain parameters in a form of RDM-variables. The evacuation rate of
the stomach (α) depends on these two uncertain parameters. Tab. 2 presents possible
values of α for the minimum, medium and maximum values of RDM-variables.

Tab. 2. Possible values of α for different values of RDM-variables.
αf 0 0 0 0.5 0.5 0.5 1 1 1

αc 0 0.5 1 0 0.5 1 0 0.5 1

α 0.04818 0.04812 0.04806 0.05220 0.05213 0.05206 0.05621 0.05614 0.05607

It can be seen in Tab. 2 and Fig. 3 that different values of parameter αf have
a greater impact on the value of the evacuation rate of the stomach than different
values of αc.

Parameter α has a strong influence on concentration cSc (t) of carbohydrates in
the stomach. The problem is multidimensional, cSc (t) depends on time and other
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Fig. 3. The granule of the evacuation rate of the stomach.

variables, so it is difficult to illustrate the entire solution in a figure. For this reason,
the result of the concentration of carbohydrates in the stomach is simplified to a
2D-space and presented in Fig. 4.

Fig. 4. The concentration cSc (t) of carbohydrates in the stomach.

In Fig. 4. three surfaces for different initial conditions (cSc (0)) are marked. The
green surface is for αc = 0, the blue one for αc = 0.5 and the red one for αc = 1. All
surfaces include various values of αf ∈ [0, 1]. For the first 40 min they remain more
or less constant (the value of cSc ), which depends on the value of initial conditions
including different values of mc0. The difference in the value of cSc ranges in 20 min
for these three cases. After 3 h each case comes close to achieve 0. The conclusion is
that the concentration of carbohydrates in the stomach is affected by patient specific
gastroparesis factor much more than by uncertainties in the parameter of the ingested
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food. The parameter of the ingested food has a huge influence only in the first 40 min
after eating. The future research can be expanded by a model for the inflow of insulin
into the blood and a model for the concentration of carbohydrates in the intestine.

5. Conclusions

Problems of decision making very often have a high degree of uncertainty. One of
these problems is presented in the paper. The approach to improve the parameter
identification of a complex biomedical model has turned out to be very promising and
successful. Using the RDM method, the model can be analyzed with the intention
of determining the influence of each parameter on the variation of the overall model
output.

Moreover, considering the fact that biomedical systems are extremely hard to
model and identify, the presented method can cope with all these difficulties. The
RDM-method facilitates the calculations of complex equations with uncertain vari-
ables shown in this problem and gives satisfactory results. The author believes that
this approach gives basis to conduct further research on human glucose metabolism,
which can improve therapy and develop optimal medication for diabetes.
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