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 

Abstract—Evolutionary algorithms are global optimization 

methods that have been used in many real-world applications. In 

this paper we introduce a Markov model for evolutionary algo-

rithms that is based on interactions among individuals in the 

population. This interactive Markov model has the potential to 

provide tractable models for optimization problems of realistic 

size. We propose two simple evolutionary algorithms with popu-

lation-proportion-based selection and a modified mutation oper-

ator. The selection operator whose probability is linearly propor-

tional to the number of individuals at each point of the search 

space. The mutation operator randomly modifies an entire indi-

vidual rather than a single decision variable. We exactly model 

these evolutionary algorithms with the new interactive Markov 

model. We present simulation results to confirm the interactive 

Markov model theory. The main contribution is the introduction 

of interactive Markov theory to model simple evolutionary algo-

rithms. We note that many other evolutionary algorithms, both 

new and old, might be able to be modeled by this method. 

 
Index Terms—Evolutionary algorithm; Markov model; popu-

lation-proportion-based selection; transition probability; interac-

tive Markov model 

I. INTRODUCTION 

VOLUTIONARY is algorithms (EAs) have received much 

attention over the past few decades due to their ability as 

global optimization methods for real-world applications [1, 2]. 

Some popular EAs include the genetic algorithm (GA) [3], 

evolutionary programming (EP) [4], differential evolution (DE) 

[5, 6], evolution strategy (ES) [7], particle swarm optimization 

(PSO) [8, 9], and biogeography-based optimization (BBO) [10, 
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11]. Inspired by natural processes, EAs are search methods that 

are fundamentally different than traditional, analytic optimiza-

tion techniques; EAs are based on the collective learning pro-

cess of a population of candidate solutions to an optimization 

problem. In this paper we often use the shorthand term indi-

vidual to refer to a candidate solution.  

The population in an EA is usually randomly initialized, and 

each iteration (also called a generation) evolves toward better 

and better solutions by selection processes (which can be either 

random or deterministic), mutation, and recombination (which 

is omitted in some EAs). The environment delivers quality 

information about individuals (fitness values for maximization 

problems, and cost values for minimization problems). Indi-

viduals with high fitness are selected to reproduce more often 

than those with lower fitness. All individuals have a small 

mutation probability to allow the introduction of new infor-

mation into the population.  

Each EA works on the principles of different natural phe-

nomena. For example, the GA is based on survival of the fittest, 

DE is based on vector differences of candidate solutions, ES 

uses self-adaptive mutation rates, PSO is based on the flocking 

behavior of birds, BBO is based on the migration behavior of 

species, and ACO is based on the behavior of ants seeking a 

path between their colony and a food source. All of these EAs 

have certain features in common, and probabilistically share 

information between candidate solutions to improve the solu-

tion fitness. This behavior makes them applicable to all kinds of 

optimization problems. EAs have been applied to many opti-

mization problems and have proven effective for solving var-

ious kinds of problems, including unimodal, multimodal, de-

ceptive, constrained, dynamic, noisy, and multi-objective 

problems [12].  

Evolutionary Algorithm Models 

Although EAs have shown good performance on various 

problems, it is still a challenge to understand the kinds of 

problems for which each EA is most effective, and why. The 

performance of EAs depends on the problem representation and 

the tuning parameters. For many problems, when a good rep-

resentation is chosen and the tuning parameters are set to ap-

propriate values, EAs can be very effective. When poor choices 

are made for the problem representation or the tuning parame-

ters, an EA might perform no better than random search. If 

there is a mathematical model that can predict the improvement 

in fitness from one generation to the next, it could be used to 

find optimal values of the problem representation or the tuning 

parameters.  

For example, consider a problem with very expensive fitness 

function evaluations. For some problems we may even need to 
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perform long, tedious, expensive physical experiments to 

evaluate fitness. If we can find a model that reduces fitness 

function evaluations in an EA, we can use the model during the 

early generations to adjust the EA tuning parameters, or to find 

out which EAs will perform the best. A mathematical model of 

the EA could be useful to develop effective algorithmic modi-

fications. More generally, an EA model could be useful to 

produce insights to how the algorithm behaves, and under what 

conditions it is likely to be effective. 

There has been significant research in obtaining mathemat-

ical models of EAs. One of the earliest approaches was schema 

theory, which analyzes the growth and decay over time of 

various bit combinations in discrete EAs [3]. It has several 

disadvantages, including the fact that it is only an approximate 

model. Perhaps the most developed EA model is based on 

Markov theory [13-15], which has been a valuable theoretical 

tool that has been applied to several EAs including genetic 

algorithms [16] and simulated annealing [17]. Infinite popula-

tion size Markov models are discussed in detail in [18], and 

exact finite population size Markov models are discussed in 

[19]. 

In Markov models of EAs, a Markov state represents an EA 

population distribution. Each state describes how many indi-

viduals there are at each point of the search space. The Markov 

model reveals the probability of arriving at any population 

given any starting population, in the limit as the generation 

count approaches infinity. But the size of Markov model in-

creases drastically with the population size and search space 

cardinality. These computational requirements restrict the ap-

plication of the Markov model to very small problems, as we 

discuss in more detail in Section II. 

Overview of the Paper 

The goals of this paper are twofold. First, we present a 

Markov model of EAs that is based on interactions among 

individuals. The standard EA Markov model applies to the 

population as a whole; that is, it does not explicitly model in-

teractions among individuals. This is an extremely limiting 

assumption when modeling EAs, and it leads directly to in-

tractable Markov model sizes, as we show in Section II. In 

interactive Markov models, we define the states as the possible 

values of each individual. This gives a separate Markov model 

for each individual in the population, but the separate models 

interact with each other. The transition probabilities for each 

Markov model are functions of the states of other Markov 

models, which is a natural and powerful extension of the 

standard noninteractive Markov model. This method can lead 

to a better understanding of EA behavior on problems with 

realistic size. 

The second goal of this paper is to propose two simple EAs 

that use population-based selection probabilities, which we call 

population-proportion-based selection. We use a modified 

mutation operator in the EAs. The modified mutation operator 

randomly modifies an entire individual rather than modifying a 

single decision variable, as in standard EA mutation. We ex-

actly model these EAs with the interactive Markov model. 

Finally, we confirm the interactive Markov model with simu-

lation on a set of test problems.  

Section II introduces the preliminary foundations of interac-

tive Markov models, presents two new simple EAs, models 

them using an interactive Markov model, and uses interactive 

Markov model theory to analyze their convergence. Section III 

discusses the similarities and differences between our two new 

simple EAs and standard, well-established EAs. Section IV 

explores the performance of the proposed EAs using both 

Markov theory and simulations. Section V presents some con-

cluding remarks and recommends some directions for future 

work. 

Notation: The symbols and notations used in this paper are 

summarized in Table 1. 

 
Table 1  Symbols and Notation 

A, B Interactive Markov model matrices 

K 
Search space cardinality = number of states in  

interactive Markov model 

mi Fraction of population that is equal to xi 

m Vector of population fractions:  im m  

n 
Vector of number of individuals that are allowed to 

change, or movers 

N1 
Number of optimal individuals that are allowed to 

change (Strategy B) 

N Population size 

pij Probability of transition from sj to si 

pm Mutation probability 

P Markov transition matrix: i jP p     

rand(a, b) Uniformly distributed random number between a and b 

is  Markov model state i 

S Number of elites (Strategy B) 

t Generation number 

T Number of states in standard Markov Model 

xi Search space point 

yk EA individual k 

Y EA population 

α Replacement pool probability 

β Selection parameter 

λ Modification probability 

μ Selection probability 

φ Selection pressure 

σ Elitism vector, or stayers (Strategy B):  k   

 

II. INTERACTIVE MARKOV MODELS 

This section presents the foundation for interactive Markov 

models (Section A), presents two new EA selection strategies 

(Section B), discusses their convergence properties (Section C), 

and analyzes the interactive Markov model transition matrix of 

the two new EAs (Section D). 

A. Fundamentals of Interactive Markov Models 

A standard, noninteractive Markov model is a random pro-

cess with a discrete set of possible states 
is  ( 1, ,i K ), where 

K  is the number of possible states, also called the cardinality 

of the state space. The probability that the system transitions 

from state js  to 
is  is given by the probability i jp , which is 

called a transition probability. The K K  matrix i jP p     is 

called the transition matrix. In standard, noninteractive Markov 

models of EAs, i jp  is the probability that the EA population 
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transitions from the jth possible population distribution to the 

ith possible population distribution in one generation. In the 

standard Markov model, one highly restrictive assumption is 

that the transition probabilities apply to the entire population 

rather than to individuals. That is, individual behavior is not 

explicitly modeled; it is only the population as a whole that is 

modeled. 

To illustrate this point, consider an EA search space with a 

cardinality of 2K  ; that is, there are K  points in the search 

space. We denote these points as {x1, x2, …, xK}. Suppose there 

are a large number of EA individuals distributed over these K  

points. Suppose    im t m t     is the K-element column vector 

containing the fraction of the population that is equal to each 

point at generation t; that is,  im t  is the fraction of the popu-

lation that is equal to xi at generation t. Then the equation 

   1m t Pm t   describes how the fractions of the population 

change from one generation to the next. However, this equation 

assumes that the transition probabilities i jP p     do not de-

pend on the value of  m t ; that is, they do not depend on the 

population distribution. Interactive Markov models, as dis-

cussed in this paper, deal with cases where the elements of P  

are functions of  m t , so transition probabilities are functions 

of the Markov states. In this case P  is written as a function of 

 m t ; that is,  P P m t    , and the Markov model becomes 

interactive: 

     1m t P m t m t     .                                              (1) 

A standard Markov model with constant P  can model EAs if 

the states are properly defined, and in fact this is exactly how 

EA Markov models have been defined up to this point. Given K 

points in search space and N individuals in the population, there 

are 
1K N

T
N

  
  
 

 possible states for the population as a 

whole, and we can define a  ,T T  transition matrix which 

contains the transition probabilities from every population 

distribution to every other population distribution [14]. How-

ever, this idea is not useful in practice because there is not a 

tractable way to handle the proliferation of states. For instance, 

for a small problem with K=100 and N=20, we obtain T on the 

order of 10
22

. Markov models of that order are clearly not 

tractable. For a slightly larger problem with K=200 and N=30, 

we obtain T on the order of 10
37

. 

In contrast, interactive Markov models in the form of (1) 

prove to be tractable for much larger search spaces and popu-

lations. For instance, if K=100, then the interactive Markov 

model consists of only 100 states, regardless of the population 

size. An interactive Markov model of this size is simple to 

handle. The challenge that we address in this paper is how to 

define the interactive Markov model for a given EA, and how to 

obtain theoretical results based on the interactive model. 

The interactive Markov model is a fundamentally different 

modeling approach than the standard (noninteractive) Markov 

model. The states of the standard Markov model consist of 

population distributions, while the states of the interactive 

Markov model consist of fractions of each individual in the 

search space. This difference means that the standard Markov 

model transition matrix is independent of the EA population, 

while the interactive Markov model transition matrix is a 

function of the population distribution. The standard Markov 

model transition matrix is thus larger (T states) but with a 

simple form, while the interactive Markov model transition 

matrix is much smaller (K states) but with a more complicated 

form. Both the standard and the interactive Markov models are 

exact. However, due to their fundamentally different ap-

proaches to the definition of state, neither one is a subset of the 

other, and neither one can be derived from the other. 

For standard Markov models, many theorems are available 

for stability and convergence. But for interactive Markov 

models, such results do not come easily, given the immense 

variety of the possible forms of  P  . The literature [20] dis-

cusses a particular class of  P   functions that are defined as 

follows for a K-state system: 

   

 
 

 

 

 

  for all ,

where 

[1,

0, for all ,

min 0  for all

]

[1, ]

[1, ] 

i j i j i

i j

k j k j k

k

ij i j ij

m k j k j k

k

a b m
p m i j

a b m

a b

K

K

K

a i j

a b m j






  













  (2) 

where the summations go from 1 to K, and    im t m t     is 

abbreviated to  im m . Given values for the matrices i jA a     

and i jB b    , we have a complete interactive Markov model.  

The specification of the transition matrix  P m  is complete 

from (2), and the evolution of  m t  from any initial value 

 0m  is determined by (1). In a standard Markov model, the 

probability  i jp m  of a transition from state j to state i would be 

constant; that is,  i j i jp m a . But in an interactive Markov 

model,  i jp m  depends on m . The transition probability 

 i jp m  is, in a sense, a measure of the attractive power of the 

ith state. In (2), if 0i jb   then a greater population in the ith 

state makes it more attractive, and if 0i jb   then crowding in 

the ith state makes it less attractive. 

Since the columns of    i jP m p m     must each sum to one, 

a normalization of  i jp m  is needed. The division in (2) of each 

column of the matrix i j i j ia b m    by the corresponding column 

sum  k j k j kk
a b m  provides the desired normalization.  

B. Selection Strategies 

In this subsection, we modify two previously-published 

models of social processes to obtain two simple EAs that use 

population-based selection. We will see that these EAs have 

interactive Markov models of the form of (2). 
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1) Strategy A 

The first new EA that we introduce, which we call Strategy 

A, is based on a social process model in Example 1 in [20]. 

Strategy A involves the selection of random individuals from 

the search space, and the replacement of individuals in the 

population with the randomly-selected individuals. The basic 

form of Strategy A does not include recombination or mutation, 

although it could be modified to include these features. Strategy 

A includes three tuning parameters: , , and . The population 

of Strategy A evolves according to the following two rules. 

(a) Denote [0,1]  as the replacement pool probability. We 

randomly choose  round N  individuals, where N is the pop-

ulation size. Denote [0,1]j   as the modification probability, 

which is similar to crossover probability in GAs. 
j  is typically 

chosen as a decreasing function of fitness; that is, good indi-

viduals should have a smaller probability of modification than 

poor individuals. 

(b) The jth individual chosen above, where 

j  [1, round(N)], has a probability of j  of being replaced 

with one of K individuals from the search space (recall that K is 

the cardinality of the search space, and {xi : 1, ,i K } is the 

search space). The probability of selecting the ith individual xi 

is denoted as i and is composed of two parts: [0,1]   is as-

signed to each individual equally; and the remaining probabil-

ity 1   is assigned among the xi individuals in the proportions 

 1, , Km m , where mi is the proportion of the xi individuals in 

the population. That is, the selection probability of xi  is 

 1i iK m     . Note that 
1

1
K

ii



 . 

Note that if the selection probability is independent of mi, 

that is, 1  , the selection probability of each individual xi is 

1i K  . According to the above two rules, an EA that oper-

ates according to Strategy A can be written as shown in Algo-

rithm 1.  We see from the algorithm listing that Strategy A has 

four tuning parameters: N (population size), α (replacement 

pool probability), β (the constant component of the selection 

probability), and λ (modification probability, which is a func-

tion of fitness).  

 

 
ALGORITHM 1 – AN EVOLUTIONARY ALGORITHM BASED ON STRATEGY A. 

Generate an initial population of individuals Y = {yk : 1, ,k N } 

While not (termination criterion) 

 Randomly choose  round N  parent individuals  

 For each chosen parent individual yj  (  1, ,roundj N ) 

  Use modification probability j  to probabilistically decide whether to modify yj 

  If modifying  yj  then 

   Select xi  ( 1, ,i K ) with probability [  1 iK m   ] 

   yj  xi 

  End modification 

 Next individual:  j  j+1 

Next generation 

 

 

2) Strategy B 

The second new EA that we introduce, which we call Strat-

egy B, is based on a social process model in Example 6 in [20]. 

Similar to Strategy A, Strategy B also involves the selection of 

random individuals from the search space, and the replacement 

of individuals in the population with the randomly-selected 

individuals. However, Strategy B also includes elites. Strategy 

B includes four tuning parameters: , , and , which are sim-

ilar to the same quantities in Strategy A; and 1 , which is an 

elitism parameter. The population of Strategy B evolves ac-

cording to the following two rules. 

(a) For each individual yk in the population, if yk is the best 

individual in the search space, there is a probability 1  that it 

will be classified as elite, where 1 [0,1]   is a user-defined 

tuning parameter. 

(b) If yk is not classified as elite, use k  to probabilistically 

decide whether to modify yk. If yk is selected for modification, it 

is replaced with xi with probability proportional to 
im  , 

where mi is the fraction of the population that is comprised of xi 

individuals. Recall that {xi : 1, ,i K } is the search space. 

Similar to Strategy A, Strategy B does not include recom-

bination or mutation, although it could be modified to include 

these features. According to the above two rules, an EA that 

operates according to Strategy B can be written as shown in 

Algorithm 2. We see from the algorithm listing that Strategy B 

has the same four tuning parameters as Strategy A: N (popula-

tion size), α (replacement pool probability), β (selection con-

stant), and λ (modification probability, which is a function of 

fitness). However, note that α and β are used differently in 

Strategies A and B. 
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ALGORITHM 2 – AN EVOLUTIONARY ALGORITHM BASED ON STRATEGY B. 

Generate an initial population of individuals Y = {yk  : 1, ,k N } 

While not (termination criterion) 

 For each individual yk 

  If yk  is not the best individual in the search space then 

   Use modification probability k  to decide whether to modify yk 

   If modifying yk  then 

    Select xi  ( 1, ,i K ) with probability  im   

    yk  xi 

   End modification 

  End if 

 Next individual: k  k+1 

Next generation 
 

In Strategy B we set the selection probability of xi to 

 Pr ii k iy x m                                         (3) 

for i  [1, K], where the population of individuals is 

 : 1, ,ky k N , N is the population size, and ( [0,1], )    are 

user-defined tuning parameters. Equation (3) gives the proba-

bility that yk is replaced by xi, and this probability is a linear 

function of mi, which is the proportion of xi individuals in the 

population. Note that (3) holds for all k  [1, N] (assuming that 

the given yk is selected for replacement). 

3) Selection Pressure in Strategy A and Strategy B 

The selection probabilities in Strategy A and Strategy B are 

both linear with respect to the fraction of xi individuals in the 

population. Figure 1 depicts the selection probability.  

mi

Pr(selection)

min(mi) max(mi)  
Figure 1 – Selection probability in Strategy A and Strategy B evolutionary 

algorithms. The min and max operators are taken over i  [1, K], where K is the 
cardinality of the search space. 

   

In Figure 1, if the search space cardinality K is greater than 

the population size N, as in practical EA implementations, then 

min(mi) = 0. This is because there are not enough individuals in 

the population to completely cover the search space, so there 

are always some search space individuals xi that are not repre-

sented in the population. 

In Strategies A and B, if selection is overly-biased toward 

selecting populous individuals, the population may converge 

quickly to a uniformity while not widely exploring the search 

space. If selection is not biased strongly toward populous in-

dividuals, the population will be more widely scattered with a 

smaller representation of good individuals. Note that the most 

populous individuals will be the ones with highest fitness if we 

define modification probability k as a decreasing function of 

fitness. We will see this effect later in our simulation results in 

Section IV.  

A useful metric for quantifying the difference between var-

ious selection methods is selection pressure  , which is de-

fined as follows [3, p. 34]: 

 

 

max Pr(selection)  

 average Pr(selection)
                                                    (4) 

where  Pr selection  is the probability that an individual is se-

lected as a replacement. 

The most populous individual has the maximum fraction 

 max im , which we denote as mmax. The average individual has 

the average fraction      maxmax min 2 2i im m m  , assuming 

that K > N, as discussed earlier in this section. Then the selec-

tion pressure of (4), when applied to Strategy B (Algorithm 2), 

can be written as 

max

max / 2

m

m

 


 





                                                             (5) 

If we normalize the selection probabilities so that they sum to 1, 

we get 

   
1 1

1

Pr

1

K K

k i i

i i

K

i

i

y x m

K m K

 

   

 



  

   

 


                 (6) 

In the above equation we used the fact that 
1

1
K

ii
m


  because 

the sum of all the fractions of the xi individuals in the popula-

tion must equal 1. If we desire a given selection pressure  , we 

can solve (5) and (6) for   and   to obtain the following: 

 

 

   

 

   

max

max

max

2

2 2 1

2 1

2 2 1

m

Km

Km




 




 




  




  

                                      (7) 

Note that (7) also holds for Strategy A (Algorithm 1) if  is 

replaced with /K, and  is replaced with (1). 
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C. Convergence  

In this subsection, we present a theorem that summarizes the 

convergence conditions of interactive Markov models.  

 

Theorem 1: Consider an interactive Markov model in the form 

of (1). If there exists a positive integer R such that  
1

R

t

P m t


    

is positive definite for all   0m t   such that   
1

1
K

i

i

m t


 , 

where 1,2, ,t R , then  
1

R

t

P m t


    converges as R → ∞ to a 

steady state which has all nonzero entries.  

Proof: See [21] for a proof and discussion.  

 

Later in this section, we will use Theorem 1 to show that 

there is a unique limiting distribution for the states of the in-

teractive Markov models in this paper. We will also show that 

the probability of each state of the interactive Markov model is 

nonzero at all generations after the first one. In particular, 

Theorem 1 will show that Algorithms 1 and 2 have a unique 

limiting distribution with nonzero probabilities for each point 

in the search space. This implies that Algorithms 1 and 2 will 

both eventually find the globally optimal solution to an opti-

mization problem. 

D. Interactive Markov Model Transition Matrices 

The previous subsections presented two simple but new se-

lection strategies, and showed that they both have a unique 

population distribution as the generation count approaches 

infinity. Now we analyze their interactive Markov models in 

more detail and find the solutions to the steady-state population 

distribution. 

1) Interactive Markov Model for Strategy A 

Selection: 

We can use the development of Example 1 in [20] to obtain 

the following interactive Markov model of Strategy A: 

      
  

1 1 1 if

1 if

j j j

i j

j i

K m i j
p

K m i j

     

  

           
  

        (8) 

for (i, j)  [1, K]. The quantity pij gives the probability that a 

given individual in the population transitions from xj to xi in one 

generation. The first equality in (8), when i = j, denotes the 

probability that an individual does not change from one gener-

ation to the next. This probability is composed of three parts:  

(a) the first term, 1  , denotes the probability that the indi-

vidual is not selected for the replacement pool;  

(b) the first part of the second term is the product of the prob-

ability that the individual is selected for the replacement pool 

( ), and the probability that the individual is not selected for 

modification (1 j );  

(c) the second part of the second term is the product of the 

probability that the individual is selected for the replacement 

pool ( ), the probability that the individual is selected for 

modification (
j ), and the probability that the selected indi-

vidual is replaced with itself (  1 jK m   ).  

For the second equality in (8), when i j , denotes the 

probability that an individual is changed from one generation to 

the next. This probability is very similar to the second part of 

the second term of the first equality as discussed in paragraph 

(c) above, the difference being that 
im  is used instead of 

jm ; 

that is, the selected individual is changed from xj to xi. 

 

Mutation: 

Next we add mutation into the interactive Markov model of 

Strategy A. Typically, EA mutation is implemented by proba-

bilistically complementing each bit in each individual. Then the 

probability that individual xi mutates to become xk can be 

written as  

   Pr 1
ikik

q HH

ki i k m mp x x p p


                               (9)                  

where pm  (0, 1) is the mutation rate, q is the number of bits in 

each individual, and Hij is the Hamming distance between bit 

strings xi and xj. 

But with this type of mutation, the transition matrix elements 

kj ki ij

i

p p p would not satisfy the form of (2) and (8). So we 

use a modified mutation operator that randomly modifies an 

entire individual rather than a single decision variable of an 

individual. Mutation of the jth individual is implemented as 

follows. 

 

For each individual yj 

If rand(0, 1) < pm 

yj  rand(L, U) 

   End if 

Next individual 
 

In the above mutation logic, rand(a, b) is a uniformly dis-

tributed random number between a and b, and L and U are the 

lower and upper bounds of the search space. The above logic 

mutates each individual with a probability of pm. If mutation 

occurs for a given individual, the individual is replaced with a 

random individual within the search domain. The descriptions 

of Strategy A and Strategy B with mutation are the same as 

Algorithm 1 and 2 except that we add the operation, 

“probabilistically decide whether to mutate each individual in 

the population” at the end of each generation. Note that muta-

tion acts on all individuals Y = {yk : 1, ,k N }. In particular, 

for Strategy B, we use elitism only to prevent selection, but not 

to prevent mutation. 

Now, the transition probability of the modified mutation 

operator is described as 

(1 ) if

if

m m

ki

m

p p K k i
p

p K k i

  
 


                                        (10) 

Then the transition probability of Strategy A with mutation, and 

the corresponding A and B matrices described in (2), can be 

written as follows: 
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 
 

 
 

   
    

   
   

    

2

2

1 1 1 1
(1 ) 1 (1 ) 1 (1 ) 1 1 1 if

1 1
1 1 (1 ) 1 1 1 if

kj ki ij

i

m m m m m
j j m j

m mm m m
j j m k

p p p

K p K p K p K p p
p m k j

K K K K K K

K p K pp p p
p m k j

K K K K K K



       
                

    
 

    
             

   




      


      

    

(11) 

 

and 

 

 

 
 

 
 

   
 

   
   

 

  

2

2

1 1 1 1
(1 ) 1 (1 ) 1 (1 ) 1 if

1 1
1 1 (1 ) 1 if

1 1

m m m m m
j j

kj

m mm m m
j j

kj j m

K p K p K p K p p
k j

K K K K K K
a

K p K pp p p
k j

K K K K K K

b p

       
             

    
 

    
          

   

  


     


     

 

                      (12) 

 

 

The derivation of (11) is in the appendix. Now we are in a 

position to state the main result of this subsection. 

 

Theorem 2: The K1 equilibrium population fraction vector 

m* of Algorithm 1, which is exactly modeled by the interac-

tive Markov model of (1) and (11), is equal to the dominant 

eigenvector (normalized so its elements sum to one) of the 

matrix  0 1

K

i j j k jk
A a b a


  , where aij is given by (12), and 

jb  is shorthand notation for i jb  in (12) since all the rows of B 

are the same. 

Proof: This theorem derives from Theorem 1 in [20]. We 

provide the proof in the appendix.  

 

Next we consider the special case 1i K  . In this case, the 

transition probability (11) is written as  

 
 

 
 

   

1 1
(1 ) 1 (1 ) 1 if

1 1 if

jm m

j

kj

jm m
j

K p K p
k j

K K K
p

p p
k j

K K K

   
        

  
 

 
     

 


  


  

    (13) 

which is independent of mi; that is, the interactive Markov 

model reduces to a standard noninteractive Markov model. In 

this case we can use Theorem 1 in [20] or standard 

noninteractive Markov theory [13] to obtain the equilibrium 

population fraction vector m*. 

2) Interactive Markov Model for Strategy B 

Before discussing the interactive Markov model of Strategy 

B, we define some notation. Suppose that  k   denotes the 

fraction of individuals that always remain equal to xk for each 

k  [1, K]. Then kk
  is the fraction of all individuals that 

never change. We call these individuals stayers.  1, , Kn n n  

denotes the fractions of all individuals that are allowed to 

change, and we call these individuals movers.  1, , Km m m  

denotes the fractions of all individuals in the population. The 

fraction of xj individuals thus includes two parts: j , which 

denotes the fraction of all xj individuals that are not allowed to 

change; and  1
1

K

k jk
n


 , which denotes the fraction of all xj 

individuals that may change in future generations. So the 

fraction vector m  is given by 

  

1

1
K

k

k

m n 


 
   

 
                                  (14) 

The   vector is related to EA elitism since it defines the 

proportion of individuals in the population that are not allowed 

to change in subsequent generations. One common approach 

to elitism is to prevent only optimal individuals from changing 

in future generations [12]. That is, 
1 0   (assuming, without 

loss of generality, that x1 is the optimal point in the search 

space), and 0k   for all k > 1. In this case (14) becomes  

 

 

1 1 1

1

1 for 1, which corresponds to the optimal state

1 for 1, which correspond to nonoptimal states
i

i

n i
m

n i

   
 

 

 



                                                                                         (15) 

Note that Strategy B elitism is a little different than standard 

EA elitism. In Strategy B, we assume that we know if an in-

dividual is at the global optimum. This is not always the case 

in practice, but it may be the case for certain problems. If S 

individuals at the global optimum are retained as elites, then 

1 S N   (this quantity could change from one generation to 

the next). If 1N  individuals at the global optimum are allowed 

to change, then  1 1n N N S  . If an individual is not at the 

global optimum, then we must always allow it to change  that 

is, we can implement elitism only for individuals that are at the 

global optimum. 
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Example 

To clarify the relationships between  , n , and m , we 

present a simple example. Suppose we have a population of 14 

individuals, and the search space size is 3; that is, N = 14 and 

K = 3. Then: 

 2 individuals in state 1 are stayers (they will never leave 

state 1); 

 3 individuals in state 1 are movers (they may transition 

out of state 1); 

 4 individuals are in state 2, and they are all movers; and 

 5 individuals are in state 3, and they are all movers. 

Therefore: 

 
1 3 12n   (fraction of movers that are in state 1); 

 
1 2 14   (fraction of population that are stayers in state 

1); 

 
2 4 12n   (fraction of movers that are in state 2); and 

 
3 5 12n   (fraction of movers that are in state 3).  

We substitute these values in (15) and obtain 
1 5 14m  (frac-

tion of individuals that are in state 1), 
2 4 14m   (fraction of 

individuals that are in state 2), and 
3 5 14m  (fraction of in-

dividuals that are in state 3), which are the same as the dis-

tributions stated at the beginning of the example.  

Summary of the Interactive Markov Model for Strategy B 

Now we use Example 6 in [20], combined with (6) above, to 

obtain the following interactive Markov model of Strategy B 

selection:  

    

  

   

 

1 1 1 1

1 1 1

1

1

11 1 if 1, which is the best state

1 if 1 and 

1 1 if

1 if , and

1

1

1 

j

i j

j j i

j i

n i j

n i j
p

n i j

n i j i





         
        
       


     

     

    

    

   

 

(16) 

The above equation is explained as follows. For the first 

equality, when i = j = 1, which is the best state, the transition 

probability includes two parts: (a) the first term, which denotes 

the probability that the individuals is not changed  11  ; and 

(b) the second term, which denotes the probability that the 

individual is changed to itself, and which is the product of the 

probability that the individual is changed (
1 ), and the proba-

bility that the selected xi term is equal to 
1

1

1

K

k

k

 


 
 
 

 . This 

second term can be written as 

  

   

1 1
1 1

1 1 1

1

1 1 1 1

1 1
(

1

1

)
K K

kk kk

m

n

K

n

m


 



 


  

 

 

 

 

 

 



 


  











 

                              (17) 

The third equality in (16), for 1i j  , is the same as the first 

equality, except that  1 11 jn    is replaced with  11 jn  

as indicated by (15). In the second equality in (16), when 1i   

(corresponding to the best state) and 1j   (corresponding to a 

suboptimal state), the transition probability only includes the 

probability that the individuals is changed, which is the same 

as the second term in the first equality. Finally, the fourth 

equality in (16) is the same as the third equality, except that 

 1 11 jn    is replaced with  11 jn  since 1i   (that is, xi 

is not the best state), as indicated by (15). 

By incorporating the modified mutation probability de-

scribed in (10), we obtain the transition probability of Strate-

gy B with mutation. The A and B matrices described in (2) can 

be written as follows: 

 

 

 

 

       

     

      

    

11 1 1 1

1 1 1

1

1

1 1 1 if 1, which is the best state

1 1 if 1 and 

1 1 1 if

1 1 if , an

1

1

d 1

kj ki ij

i

m m

m m j

m m j j k

m m j k

p p p

p K p n k j

p K p n k j

p K p n k j

p K p n k j k

     

    

    

   



          
 

          
        
 

       











                                                       (18) 

 

and

     

   

   

 

   

1 1 1

1

1

1 1 if 1, which is the best state

1 if 1 and 

1 1 if

1 if , and 

1

1

1

1

1

m m

m m j

k j

m m j j

m m j

kj m j

p K p k j

p K p k j
a

p K p k j

p K p k j k

b p

          

      

 
    



  


     

 







   

  

  

 

  

                                                                            (19)
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The derivation of (18) is in the appendix. Now we can  

state the main result of this subsection.  

 

Theorem 3: Assume that the search space has a single global 

optimum. Then the K1 equilibrium fraction vector of movers 

n* of Algorithm 2, which is exactly modeled by the interactive 

Markov model of (1) and (18), is equal to the dominant ei-

genvector (normalized so its elements sum to one) of the ma-

trix  0 1

K

i j j k jk
A a b a


  , where aij is given by (19), and 

jb  

is shorthand notation for 
i jb  in (19) since all the rows of B are 

the same. Furthermore, the equilibrium fraction vector m* is 

obtained by substituting n* in (15). 

Proof: The proof of Theorem 3 is analogous to that of Theo-

rem 2, which is given in the appendix.  

 

E. Computational Complexity 

The computational cost of Algorithms 1 and 2, like most 

other EAs, is dominated by the computational cost of the fit-

ness function. Algorithms 1 and 2 compute the fitness of each 

individual in the population once per generation. Therefore, 

the computational cost of Algorithms 1 and 2 are the same 

order of magnitude as any other EA that uses a typical selec-

tion-evaluation-recombination strategy. Algorithms 1 and 2 

also require a roulette-wheel process to select the replacement 

individual (xi in Algorithms 1 and 2), which requires effort on 

the order of K
2
, but that computational cost can be greatly 

reduced by using linear ranking [12, Section 8.7.5]. 

 The computational cost of the interactive Markov model 

calculations requires the formation of the transition matrix 

components, which is (12) for Algorithm 1 and (19) for Al-

gorithm 2. After the transition matrix is computed, the domi-

nant eigenvector of a certain matrix needs to be computed in 

order to calculate the equilibrium population, as stated in 

Theorems 2 and 3. There are many methods for calculating 

eigenvectors, most of which have a computational cost on the 

order of K
3
, where K is the order of the matrix, and which is 

equal to the cardinality of the search space in this paper. 

 In summary, using the interactive Markov chain model to 

calculate an equilibrium population requires three steps: 

(a) Calculation of the transition matrix components, as shown 

in (12) for Algorithm 1 and (19) for Algorithm 2; (b) For-

mation of a certain matrix, as shown in Theorem 2 for Algo-

rithm 1 and Theorem 3 for Algorithm 2; (c) Calculation of a 

dominant eigenvector, as described in Theorem 2 for Algo-

rithm 1 and Theorem 3 for Algorithm 2. The eigenvector 

calculation dominates the computational effort of these three 

steps, and is the on the order of K
3
, where K is the cardinality 

of the search space. 

III. SIMILARITIES OF EAS  

In this section we discuss some similarities between Strat-

egy A, Strategy B, and other popular EAs.  

First we point out the equivalences of Strategy A and 

Strategy B as presented in Algorithms 1 and 2 in Section II. 

Note that we only consider the case of selection here. If the 

replacement pool probability   = 1 in Strategy A, then it 

reduces to strategy B if elitism is not used (1 = 0). Although 

the probability of selection of xi in the two strategies appears 

different, they are essentially the same because they both use a 

selection probability that is a linear function of the fractions of 

the xi individuals in the population.  

Next we discuss the equivalence of Strategy B, and a ge-

netic algorithm with global uniform recombination (GA/GUR) 

and elitism with no mutation, which is described in [22, Fig-

ure 3]. Strategy B and GA/GUR are equivalent under the fol-

lowing circumstances: 

 In GA/GUR we replace an entire individual instead of 

only one decision variable at a time; 

 In GA/GUR we use a selection probability that is pro-

portional to the fractions of individuals in the population; 

and 

 In strategy B we use modification probability 1k  . 

This implementation of GA/GUR has been called the Holland 

algorithm [23]. Algorithm 3 shows this implementation of 

GA/GUR.

 
 

ALGORITHM 3  GENETIC ALGORITHM WITH GLOBAL UNIFORM RECOMBINATION (GA/GUR) WITH SELECTION PROBABILITY PROPORTIONAL TO THE FRACTIONS OF 

INDIVIDUALS IN THE POPULATION. THIS IS EQUIVALENT TO STRATEGY B IN ALGORITHM 2 IF K  = 1 FOR ALL K. 

Generate an initial population of individuals Y= {yk : 1, ,k N } 

While not (termination criterion) 

 For each individual yk  

  If yk  is not the best individual in the search space then 

   Use population proportions to probabilistically select xi, [1, ]i K  

   yk  xi 

  End if 

 Next individual: k  k+1 

Next generation  

 

 

Next we discuss the equivalences of Strategy B, and bioge-

ography-based optimization (BBO) [11] with elitism and no 

mutation. BBO is an evolutionary algorithm that is inspired by 

the migration of species between islands, and is described by 

Figure 2 in [22]. BBO involves the migration of decision var-

iables between individuals in an EA population. If we allow 
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migration of entire individuals instead of decision variables, 

and if we set the BBO emigration probability proportional to 

the fractions of individuals in the population, then BBO be-

comes equivalent to EA Strategy B. Algorithm 4 shows this 

modified version of BBO. 

 

 

ALGORITHM 4  BIOGEOGRAPHY-BASED OPTIMIZATION WITH GLOBAL MIGRATION AND WITH SELECTION PROBABILITY PROPORTIONAL TO THE FRACTIONS OF 

INDIVIDUALS IN THE POPULATION. THIS IS EQUIVALENT TO STRATEGY B IN ALGORITHM 2. 

Generate an initial population of individuals Y= {yk  : 1, ,k N } 

While not (termination criterion)  

For each individua yk   

       If yk is not the best individual in the search space then 

               Use λk  to probabilistically decide whether to immigrate to yk 

               If immigrating then 

                   Use population proportions to probabilistically select xi, [1, ]i K  

                   yk ←xi  

               End immigration 

       End if 

 Next individual: k  k+1 

Next generation 

 

  

There are many other well-established EAs, including 

evolutionary programming, differential evolution, evolution 

strategy, particle swarm optimization, ant colony optimization, 

and so on. Many of these algorithms are equivalent to each 

other under special circumstances [24], and so they may also 

be equivalent to our new Strategy A or Strategy B EAs under 

certain conditions. We leave this study to future research. 

IV. SIMULATION RESULTS AND COMPARISONS 

This subsection confirms the interactive Markov model 

theory of Section II with simulation results, and investigates 

the effects of tuning parameters on Strategy A and Strategy B. 

 

A.  Strategy A Results 

 

In Strategy A, as outlined earlier in Algorithm 1, the main 

tuning parameters are the replacement pool probability  , and 

the parameter   of the selection probability  1 iK m   . 

We use the fraction *

bm  of the best individual in the search 

space to compare performances with different tuning param-

eters. A larger fraction *

bm  indicates better performance. Test 

functions are limited to three problems with a search space 

cardinality of K = 8. Three fitness functions are investigated, 

which are given as  

 

 

 

1

2

3

1 2 2 3 2 3 3 4

4 2 2 3 2 3 3 4

4 1 1 2 1 2 2 3

f

f

f







                                           (20) 

These functions are chosen as representative functions be-

cause, when each individual is represented as three bits, f1 is a 

unimodal one-max problem, f2 is a multimodal problem, and f3 

is a deceptive problem.  

     We also use the two-dimensional multi-modal Ackley 

function to confirm the interactive Markov model of Strate-

gy A. The Ackley function is described as follows: 

 

2

1
4

1

20exp 0.2

cos 2
exp 20 , 32 32

n

ii

n

ii
i

x
f

n

x
e x

n





 
   
  
 

 
      
 
 



 

    (21)  

We deal with discrete optimization functions, so the granular-

ity or precision of each independent variable is set to 1 in this 

section. 

  In this section, we test 0.25, 0.50, 0.75  , and 

0.25, 0.50, 0.75  , with modification probabilities 

1 ( )i ifitness x  , where fitness(xi) denotes the fitness value of 

individual xi, which is normalized to the range [0, 1]. The other 

EA parameters are population size = 50, generation limit = 

20,000, and 30 Monte Carlo runs for each test. Tables 24 

show comparisons between theoretical interactive Markov 

results (Theorem 2 in Section II) and Strategy A simulation 

results with various values of parameters  ,  , and the mu-

tation rate 
m

p . Table 5 shows similar comparisons for Strat-

egy A for the special case 1  , which gives selection proba-

bility 1i K   for all i, which is independent of population 

fractions. The results in Tables 2–5 can be reproduced with 

MATLAB
®
 code that is available at the authors’ web site [25]. 
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TABLE 2  STRATEGY A RESULTS FOR TEST PROBLEMS WITH 0.25  AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF 

OPTIMAL INDIVIDUALS IN THE POPULATION. 

 
No mutation 0.001mp   0.01mp   0.1mp   

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

f1 

0.25   0.8155 0.8154 0.8016 0.7956 0.6829 0.6844 0.2232 0.2265 

0.50   0.8155 0.8183 0.8086 0.7983 0.7471 0.7354 0.3342 0.3226 

0.75   0.8155 0.8126 0.8109 0.7996 0.7694 0.7642 0.4288 0.4209 

f2 

0.25   0.8412 0.8463 0.8298 0.8249 0.7356 0.7234 0.3736 0.3782 

0.50   0.8412 0.8407 0.8356 0.8307 0.7858 0.7795 0.4748 0.4666 

0.75   0.8412 0.8445 0.8374 0.8270 0.8038 0.8032 0.5474 0.5424 

f3 

0.25   0.8645 0.8616 0.8542 0.8450 0.7630 0.7671 0.2727 0.2719 

0.50   0.8645 0.8644 0.8593 0.8583 0.8128 0.8036 0.4315 0.4247 

0.75   0.8645 0.8643 0.8611 0.8567 0.8298 0.8250 0.5393 0.5267 

f4 

0.25   0.8109 0.8137 0.8015 0.7961 0.7253 0.7278 0.2076 0.2079 

0.50   0.8109 0.8125 0.8031 0.8000 0.7327 0.7270 0.2135 0.2190 

0.75   0.8109 0.8131 0.8057 0.8056 0.7586 0.7613 0.3869 0.3856 

Ave. CPU time (s)  81.7  83.4  86.2  89.3 

 

TABLE 3  STRATEGY A RESULTS FOR TEST PROBLEMS WITH 0.5  AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF 

OPTIMAL INDIVIDUALS IN THE POPULATION. 

 
No mutation 0.001mp   0.01mp   0.1mp   

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

f1 

0.25   0.5667 0.5696 0.5544 0.5482  0.4598 0.4621 0.2012 0.2043 

0.50   0.5667 0.5655 0.5605 0.5489 0.5085 0.4928 0.2622 0.2561 

0.75   0.5667 0.5618 0.5626 0.5410 0.5268 0.5181 0.3095 0.3009 

f2 

0.25   0.6658 0.6651 0.6570 0.6426 0.5872 0.5830 0.3528 0.3535 

0.50   0.6658 0.6623 0.6614 0.6562 0.6234 0.6140 0.4198 0.4180 

0.75   0.6658 0.6682 0.6628 0.6587 0.6368 0.6282 0.4650 0.4648 

f3 

0.25   0.6631 0.6611 0.6522 0.6463 0.5623 0.5598  0.2338 0.2334 

0.50   0.6631 0.6660 0.6576 0.6430 0.6100 0.6097 0.3231 0.3230  

0.75   0.6631 0.6657 0.6595 0.6481 0.6271 0.6231 0.3882 0.3815 

f4 

0.25   0.7404 0.7387 0.7184 0.7118 0.5341 0.5318 0.0413 0.0428 

0.50   0.7404 0.7337 0.7294 0.7204 0.6313 0.6300 0.0956 0.0880 

0.75   0.7404 0.7398 0.7331 0.7382 0.6671 0.6599 0.1698 0.1526 

Ave. CPU time (s)  82.9  85.1  87.2  91.0 
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TABLE 4  STRATEGY A RESULTS FOR TEST PROBLEMS WITH 0.75  AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF 

OPTIMAL INDIVIDUALS IN THE POPULATION. 

 
No mutation 0.001mp   0.01mp   0.1mp   

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

f1 

0.25   0.3615 0.3695 0.3559 0.3452 0.3142 0.3129 0.1868 0.1883 

0.50   0.3615 0.3618 0.3587 0.3497 0.3354 0.3317 0.2232 0.2220 

0.75   0.3615 0.3610 0.3596 0.3593 0.3435 0.3425 0.2473 0.2518 

f2 

0.25   0.5276 0.5260 0.5224 0.5158 0.4828 0.4850 0.3374 0.3337 

0.50   0.5276 0.5252 0.5224 0.5219 0.5034 0.5045 0.3834 0.3852 

0.75   0.5276 0.5289 0.5260 0.5194 0.5110 0.5094 0.4116 0.4122 

f3 

0.25   0.4394 0.4396 0.4326 0.4321 0.3809 0.3814 0.2095 0.2099 

0.50   0.4394 0.4398 0.4360 0.4375  0.4075 0.4076 0.2599 0.2609 

0.75   0.4394 0.4389 0.4371 0.4370 0.4175 0.4100 0.2928 0.2959  

f4 

0.25   0.3521 0.3566 0.3274 0.3204 0.1805 0.1834 0.0356 0.0362 

0.50   0.3521 0.3585 0.3395 0.3311 0.2463 0.2411 0.0547 0.0556 

0.75   0.3521 0.3539 0.3436 0.3406 0.2764 0.2805 0.0730 0.0711 

Ave. CPU time (s)  88.6  90.4  93.5  97.6 

 

 

TABLE 5  STRATEGY A RESULTS FOR TEST PROBLEMS WITH 1   AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF 

OPTIMAL INDIVIDUALS IN THE POPULATION. 

 
No mutation 0.001mp   0.01mp   0.1mp   

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

f1 

0.25   0.2667 0.2654 0.2644 0.2675 0.2469 0.2475 0.1767 0.1797 

0.50   0.2667 0.2665 0.2655 0.2667 0.2560 0.2572 0.2004 0.1988 

0.75   0.2667 0.2665 0.2659 0.2691 0.2594 0.2604 0.2142 0.2161 

f2 

0.25   0.4444 0.4445 0.4416 0.4475 0.4198 0.4225 0.3258 0.3279 

0.50   0.4444 0.4453 0.4430 0.4462 0.4312 0.4305 0.3586 0.3574 

0.75   0.4444 0.4453 0.4436 0.4406 0.4354 0.4387 0.3772 0.3767 

f3 

0.25   0.3077 0.3066 0.3049 0.3037 0.2833 0.2823 0.1935 0.1938 

0.50   0.3077 0.3067 0.3063 0.3062 0.2946 0.2896 0.2243 0.2232 

0.75   0.3077 0.3076 0.3068 0.3081 0.2987 0.3011  0.2420 0.2436  

f4 

0.25   0.0842 0.0815 0.0818 0.0812 0.0662 0.0672 0.0307 0.0323 

0.50   0.0842 0.0840 0.0829 0.0818 0.0737 0.0711 0.0398 0.0400 

0.75   0.0842 0.0828 0.0833 0.0865 0.0768 0.0780 0.0461 0.0471 

Ave. CPU time (s)  71.2  73.3  75.9  78.4 

 

 

Several things are notable about Tables 25. First, we note 

that the parent selection probability   does not affect the 

proportion of individuals in the population in the case of no 

mutation. This is because   divides out of the  * * *m P m m  

equilibrium equation in this case. The finding is consistent with 

[20, p. 162]. However, we see that   can slightly affect the 

proportion of individuals in the case of nonzero mutation. 

Second, for a given parent selection probability   and a 

given parameter  , the proportion of optimal individuals de-

creases with the mutation rate mp . This indicates that low 

mutation rates have better performance for the test problems 

that we study. A high mutation rate of 0.1 results in too much 

exploration, and the population remains too widely distributed 

across the search space.  

Third, for a given parent selection probability   and a given 

mutation rate 
mp , the proportion of optimal individuals de-

creases with increasing  . This is because the modification 

probability i tends to result in a population in which good 

individuals dominate, and increasing   causes individuals 

with high populations to be more likely to replace other indi-

viduals. 

Fourth, Tables 25 show that the interactive Markov model 

results and the simulation results match well for all test prob-

lems, which confirms the interactive Markov model theory. 

Fifth, the average CPU times in the last rows of Tables 25 

show the simulation times of Strategy A for the four test 

problems. Strategy A runs faster with smaller mutation rates. 

The reason is that larger mutation rates require more mutation 

operations, which slightly increases computation time. How-

ever, in more realistic and interesting real-world problems, 

computational effort it dominated by fitness function evalua-

tion, which is independent of the mutation rate. 
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B.  Strategy B Results 

 

In this section we investigate the effect of selection pressure 

 , which influences the selection probability 
im   of xi in 

Strategy B, as shown in (7). In this section we test only the 

unimodal one-max problem f1 (recall that Theorem 3 assumes 

that the optimization problem is unimodal). Recall that EA 

selection pressure is constrained to the domain   1, 2  [3, p. 

34]. In this section, we test 1.25,1.50,1.75   in (7) to compute 

parameters ,   of the population-proportion-based selection 

probability, and we test elitism probabilities 

1 0.25, 0.50, 0.75  . The other parameters of the EA are the 

same as those described above in the previous subsection. Ta-

ble 6 shows comparisons between interactive Markov theory 

results and Strategy B simulation results. The results in Table 6 

can be reproduced with MATLAB
®
 code that is available at the 

authors’ web site [25]. 

 

 

TABLE 6  STRATEGY B RESULTS FOR TEST PROBLEM F1.  
THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF OPTIMAL INDIVIDUALS IN THE POPULATION. 

 
No mutation 0.001mp   0.01mp   0.1mp   

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

1.25   
1 0.25   0.3139 0.3164 0.3131  0.3134 0.3060 0.3081 0.2529 0.2526 

1 0.50   0.3372 0.3354 0.3363 0.3329 0.3287 0.3295 0.2711 0.2736 

1 0.75   0.3582 0.3559 0.3573 0.3561 0.3493 0.3467 0.2880 0.2925 

1.50  
1 0.25   0.4022 0.4056 0.4009 0.4019 0.3897 0.3926 0.3068 0.3063 

1 0.50   0.4514 0.4517 0.4500 0.4479 0.4384 0.4431 0.3494 0.3451 

1 0.75   0.4901 0.4938 0.4887 0.4929 0.4770 0.4780 0.3848 0.3842 

1.75  
1 0.25   0.5955 0.5914 0.5933 0.5950 0.5740 0.5749 0.4271 0.4262 

1 0.50   0.6511 0.6522 0.6492 0.6452 0.6320 0.6323 0.4944 0.4922 

1 0.75   0.6893 0.6869 0.6875 0.6864 0.6719 0.6687 0.5423 0.5393 

Ave. CPU time (s)  72.4  75.3  79.1  85.2 

 
We note several things from Table 6. First, for a given value 

of elitism probability 
1  and mutation rate 

mp , performance 

improves as selection pressure   increases. This is expected 

because a larger value of   exploits more information from 

the population. For a more complicated problem with a larger 

search space, we might arrive at different conclusions about 

the effect of   on performance. 

Second, for a given value of selection pressure   and mu-

tation rate 
mp , performance improves as elitism probability 

1  increases. Again, this is expected for simple problems such 

as the test problem studied in this section, but the conclusion 

may not hold for more complicated problems. 

Third, for a given value of elitism probability 
1  and se-

lection pressure  , performance improves as mutation rate 

mp  decreases. This again indicates that low mutation rates 

give better performance for the test problems that we study. A 

high mutation rate of 0.1 results in too much exploration, and 

the population remains too widely distributed across the search 

space. 

Fourth, we see that the interactive Markov model theory and 

the simulation results match well, which confirms the interac-

tive Markov model theory.  

Fifth, we see that Strategy B runs faster with smaller muta-

tion rates (the same observation we made for Strategy A in 

Tables 25). The reason is that larger mutation rates result in 

more mutation operations, which slightly increases computa-

tion time. 

 

V. CONCLUSION 

This paper first presented a formal interactive Markov 

model, which involves separate but interacting Markov mod-

els for each individual in an EA population. This is a new 

model for studying EAs. Then we proposed two simple EAs 

whose basic features are population-proportion-based selec-

tion and modified mutation, and analyzed them exactly with 

interactive Markov models. The theoretical results were con-

firmed with simulation results, and showed how the interactive 

Markov model can describe the convergence of the EAs. The 

theoretical and simulation results in Tables 26 can be re-

produced with MATLAB
®
 code that is available at the au-

thors’ web site [25]. 

The use of interactive Markov models to model evolution-

ary algorithms can lead to useful conclusions. Interactive 

Markov models prove to be tractable for much larger search 

spaces and populations than noninteractive Markov models. 

The noninteractive (standard) Markov model has a state space 

whose dimension grows factorially with search space cardi-

nality and population size, while the interactive Markov model 

has a state space whose dimension grows linearly with the 

cardinality of the search space, and is independent of popula-

tion size. Like the noninteractive Markov model, the interac-

tive Markov model provides exact models for the behavior of 

the EA. Interactive Markov models can be studied as functions 

of EA tuning parameters to predict their impact on EA per-

formance, and to provide real-time adaptation. Just as 

noninteractive Markov models have led to the development of 

dynamic system models, the same can happen with interactive 
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Markov models. Although the interactive Markov models in 

this paper explicitly provide only steady-state probabilities, 

they might also be used to understand transient EA behavior, 

and to obtain the probability of optimum-hitting each genera-

tion, and to obtain expected hitting times. We see some re-

search in this direction for noninteractive Markov models [27], 

[28]; such results are impractical for real-world problems due 

to the large transition matrices of noninteractive Markov 

models, but such a limitation will not be as great a concern for 

interactive Markov models. 

 For future work beyond the suggestions listed above, we 

see several important directions. First, the interactive Markov 

model analysis of this paper was based on two simple EAs; 

future work should explore how to apply the model to other 

EAs. Second, we only used two examples from the earlier 

literature to derive new EAs, but we could use other previ-

ously-published examples to construct additional EA para-

digms that use population-proportion-based selection. Third, 

population-proportion-based selection is a new selection 

strategy that does not require fitness calculations (possible 

computational cost savings), and future work could develop an 

entire family of modified EAs based on this selection strategy. 

Fourth, we suggest for future work the combination of es-

timation of distribution algorithms (EDAs) with our new-

ly-proposed population-proportion-based selection operator. 

Recall that EDAs use fitness values to approximate the dis-

tribution of an EA population’s fitness values. In contrast, our 

population-proportion-based selection uses population sizes 

rather than fitness values for selection. However, EDA ideas 

could be incorporated in population-proportion-based selec-

tion by approximating the probability distribution of the pop-

ulation sizes, and then performing selection on the basis of 

approximate distribution. This idea would merge the ad-

vantages of EDAs with the advantages of popula-

tion-proportion-based selection. 

Finally, we note that methods will need to be developed to 

handle problems with realistic sizes. The interactive Markov 

model presented here enables tractability for problems of 

reasonable size, which is a significant advantage over the 

standard noninteractive Markov models published before now. 

However, the interactive Markov model is still the same size 

as the search space, which can be quite large. For realistic 

problem sizes, say with a search space on the order of trillions, 

the interactive Markov model will also be on the order of 

trillions. Methods will need to be developed to reduce the 

interactive Markov model to a tractable size. 

 

 

APPENDIX 

 
A.  Here we derive the interactive Markov model of strategy A with mutation shown in (11). The selection transition matrix 

sP  of 

Strategy A in (8) can be written as  
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(A.1) 

Transition matrix MP  of the modified mutation in (10) can be written as 

 
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                                                                                                (A.2) 

where 
mp  is the mutation rate. So the transition matrix of Strategy A with mutation can be computed by  A kj M S ki ij

i

P p P P p p       : 
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 
 
 
 
 
 

       
    

    (A.3) 

Element   111,1AP p  in (A.3) is obtained as follows. 
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m m m m m
m

p K p p
m m

K K K K

K p K p K p K p p
p m

K K K K K K

 
      

 

     
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
    
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      

       (A.4) 

Element   121, 2AP p  in (A.3) is obtained as follows. 
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
         12
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m
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  
      

   
  

   (A.5) 

We follow the same process to obtain  

 
 

 
 

   
    

   
   
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K p K p K p K p p
p m k j
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p
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p m k j
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      
                

    
 

   
             

   


      


      

            (A.6) 

which is equivalent to (11), as desired. 

 

B.  Here we derive the interactive Markov model of strategy B with mutation as shown in (18). The selection transition matrix 
sP  of 

Strategy B in (16) can be written as  

          

          

          

1 1 1 1 1 2 1 1 1 1 1

1 1 2 2 2 1 2 1 2

1 1 2 1 1

1 1 1 1

1 1 1 1

1 1 1 1

K

K

S i j

K K K K K

n n n

n n n
P p

n n n

                 
        

     
 
         

              

            

            

                                       (B.1) 

Transition matrix MP of the modified mutation operator (10) can be written as 

 

 

 

 

1

1

1

m m m m

m m m m

M ki

m m m m

p p K p K p K

p K p p K p K
P p

p K p K p p K

  
 

   
 
 

   

                                                                                               (B.2) 

So the transition matrix of Strategy B with mutation can be computed as  B kj M S ki ij

i

P p P P p p       : 

 

 

 

          
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1

1
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K

K
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 
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 
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               

       
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            

            11K Kn

 
 
 
 
 
     

                                                     (B.3) 

Element   111,1BP p  in (B.3) is obtained as follows. 
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                          (B.4) 

Element   121, 2BP p  in (B.3) is obtained as follows. 
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                      (B.5) 

Element   222, 2BP p  in (B.3) is obtained as follows. 
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                      (B.6) 

Element   212,1BP p  in (B.3) is obtained as follows. 
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2,1 1 1 1 1 1

1 1 1 1 1

1

1 1 1 1

B m m m m K

m m m m m m m

m K

m m m m m m m

P p K n p p K n p K n

p K K p K p K p p K p p K n

p K n n n

p K K p K p K p p K p p K

                   

           

    

          

             

       

  

        

     

    

1 1 2

1 1 1 2

1 1 2

1

1 1

1 1

m

m m

n

p K K n

p K p n



    

      

 

    

   

                        (B.7) 

We can follow the same process to obtain  

       

     

      

    

1 1 1 1

1 1 1

1

1

11 1 1 if 1, which is the best state

1 1 if 1 and 

1 1 1 if

1 1 if ,

1

a 1n

1

d 

m m

m m j

kj

m m j j k

m m j k

p K p n k j

p K p n k j
P

p K p n k j

p K p n k j k

          
 

          
        
 

       









     

    

    

   

                                                   (B.8) 

Which is equivalent to (18), as desired. 

 

 

C.  Here we derive Theorem 2. Before proceeding with the 

proof, we establish the preliminary foundation. Time indices 

and function arguments will usually be suppressed to simplify 

notation:      , ,i i ij ijm m t m m t p p m   . The notation 

 im m    is defined by    1m m t m t    . The symbol u  

indicates the  ,1K vector of ones  1, ,1u    . The ith 

equation of the interactive Markov model (1) will often be 

written in the form 

 

 

1i ij j i ij j ii i

j j i

ij j ji i ij j ji i

j i j i j i

m p m m p m p m

p m p m p m p m



  

     

   

 

  
                 (C.1) 

where 
j means the sum over all j  from 1 to K ; and 

j i means the sum over all j  from 1 to K  except j i . 

Next, we formally prove Theorem 2. It follows from the 

definition of 
0A  and (2) that 

  0 0P m A mb   and  0 0b u I A                             (C.2) 
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Namely,  0 j j kjk
b b b a  

   because all the rows of B are 

the same. Thus the Markov chain can be written as 

     

    

0 0 0 0

0 0 0 0

1

1

m t A mb m A b m I m

A u I A m I m A u A m I m

       

           

     (C.3) 

To find the equilibrium *m , set   *1m t m m    in this equa-

tion and rearrange terms to get  

 * * *

0 0A m u A m m                                                        (C.4) 

Thus, an equilibrium * 0m   for the Markov chain exists if and 

only if (C.3) has a solution *m  such that * 0m   with 
* 1kk

m  . 

Since 
0A  is indecomposable by the equations of the inter-

active Markov model of strategy A, it has a real positive 

dominant eigenvalue and a corresponding positive eigenvec-

tor. We call the root   and the eigenvector z  (normalized so 

that its elements sum to one). Then we obtain: 

 0 0 0 0, ,A z z u A z A z u A z z                                       (C.5) 

The first equation is true by the definitions of   and z ; the 

second equation follows from the first on pre-multiplying by 

u ; and the third follows from the first two. However, com-

parison of (C.4) to the third equation of (C.5) shows that 
*m z  is a solution to (C.4). Thus, we have an equilibrium 
*m z  which is a positive dominant eigenvector of 

0A  with 

eigenvalue 

 * * * * *

0 0 0 0 01 1 1u A z u A m u m u A m u I A m b m                

(C.6) 

Furthermore, *m z  is a unique solution to (C.4) since a 

nonnegative indecomposable matrix cannot have two 

nonnegative and linearly independent eigenvectors. This 

completes the proof of Theorem 2. 
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