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1. Introduction

Biogeography is the science and study of the geographical
distribution of plant and animal life. Alfred Wallace and Charles
Darwin were some of the first to observe patterns of biogeogra-
phy, and they introduced the subject to the scientific world in the
1800s [27]. Biogeography evolved into a quantitative science with
the work of Robert MacArthur and Edward Wilson in the early 1960s
[19]. Other scientists also contributed to the quantitative study of
biogeography, the earliest being Eugene Munroe in 1948 [21].

Biogeography motivated the development of an evolutionary
algorithm called biogeography-based optimization (BBO). Since
its introduction in [35], BBO has been theoretically analyzed and
modeled using Markov theory [14,36,37] and dynamic system
models [38]. BBO has also been applied to several real-world
problems, including robot controller tuning [13,34], aircraft
engine health sensor selection [35], power system optimization
[31], groundwater detection [24], mechanical gear train design
[33], satellite image classification [23], antenna design [40], and
biomedical signal processing [22,28].

In this paper, we introduce a distributed version of BBO, which
we call distributed BBO (DBBO). The primary difference between
BBO and DBBO is that BBO is coordinated by a central computer.
However, DBBO does not depend on a central computer. Instead,
each of the DBBO individuals evaluates its own cost function and
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communicates directly with other individuals for the purpose of
information sharing and mutual improvement.

The over-arching goal of this paper is to introduce DBBO and
motivate further research in its theory and application. We
achieve this goal through four individual objectives.

1) First, we introduce the DBBO algorithm.

2) Second, we develop a Markov model of DBBO, and confirm the
model’s validity with simulation results.

3) Third, we use standard benchmark functions to show that BBO
and DBBO are competitive with other evolutionary algorithms.

4) Fourth, we implement DBBO on an experimental robot system
to demonstrate its practicality in real-world systems.

The development of DBBO is motivated by two observations.
First, we see that EAs are powerful optimizers, and can find optimal
solutions to many important, real-world problems. Second, we see
that EAs typically use a central processor that coordinates selection,
recombination, mutation, and any other operations that are involved
in the evolutionary process. Although parallel EAs are common [6],
most EAs are still implemented sequentially for the sake of conve-
nience. The parallelization of EAs requires additional computational
resources and design efforts beyond what is required for sequential
EAs. However, in the real world, we may want to solve optimization
problems by generating candidate solutions that are relatively
independent of each other, and that cannot always communicate
with a central processor or with the entire population. This is the
case, for example, in peer-to-peer networking strategy optimization,
and in many mobile robot applications. Distributed EAs may also be
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important in any application where reliability and robustness are
important, and where a single-point failure in the optimization
process cannot be tolerated.

The DBBO algorithm that we propose is a form of cooperative
intelligence. Each individual has the same goal, intentionally com-
municates with others, and shares information with others to help
one another in the attainment of the goal. Our application is robot
controller tuning. Each robot has the same goal, which is maintaining
a fixed distance from a wall while traveling at a constant velocity.
The robots share each other’s control parameters among themselves
in an attempt to improve their performance.

Researchers have classified distributed intelligence into sev-
eral different types. The DBBO algorithm that we propose is a
form of cooperative intelligence [43]. That is, each individual has
the same goal, intentionally communicates with other indivi-
duals, and the individuals mutually share information with each
other to help one another attain the goal. Our application is robot
controller tuning. Each robot has the same goal, which is main-
taining a fixed distance from a wall while traveling at a constant
velocity. The robots share each other’s control parameters among
themselves in an attempt to improve their performance.

Each robot has its own control strategy. Some robots perform
well, and others perform poorly. The robots interact with each other
through wireless radios, but their interaction is sporadic due to the
limitations of radio communication, and due to their physical
movements from one location to another. We want the robots to
evolve controller solutions as they intermittently communicate with
each other. This means that each robot needs to implement an EA in
its microprocessor. The EA that is implemented by each robot is not
aware of the entire EA population, but is aware only of those robots
with which it can communicate. This EA, which is implemented in
each robot and which involves a dynamically changing subset of the
entire EA population, is called DBBO.

This paper is organized as follows. Section 2 gives an overview
of centralized BBO [35], which is the standard BBO algorithm, and
extends it to our proposed DBBO algorithm. Section 3 derives a
Markov model for DBBO, which is an exact mathematical model
in the limit as the generation count approaches infinity. Section 4
investigates the performance of BBO and DBBO on benchmark
optimization problems, and also provides a comparison to other
EAs. Section 5 provides simulated and experimental results of DBBO
performance on mobile robot controller tuning. Section 6 summarizes
the results of this paper and suggests directions for future work.

2. Biogeography-based optimization

BBO is an evolutionary algorithm that was introduced in [35],
and is modeled on the science of biogeography. Biogeography
describes how species migrate between habitats based on envir-
onmental factors [12,19]. These environmental factors can be
represented quantitatively and are called suitability index vari-
ables (SIVs). Examples of SIVs include the amount of rainfall, the
amount of available fresh water, the diversity of vegetation, and
the temperature range. An area that is highly suitable for the
habitation of biological species is considered to have a high
habitat suitability index (HSI). Biologists have developed mathe-
matical models of migration, speciation, and extinction.

A high-HSI habitat is likely to have a large number of species.
Therefore, because of the accumulation of probabilistic effects on
its large population, it has a high probability of emigrating species
to other habitats. Because of its dense population, and because it
may be saturated with so many species that it is unable to
support additional life forms, it has a low probability of immi-
grating species from other habitats. The opposite situation occurs
in low-HSI habitats because of its sparse population. A habitat’s

emigration and immigration probabilities are therefore propor-
tional to the number of species that live in the habitat.

BBO is modeled on the above description of migration prob-
abilities. BBO includes a population of individuals, each of which
is a candidate solution to some optimization problem. A BBO
individual with high fitness is analogous to an island with a high
HSI. That individual has a high probability of emigrating its
features (that is, its decision variables) to other individuals. The
individuals that receive those features tend to increase their own
fitness. Similarly, a BBO individual with low fitness is analogous
to an island with a low HSI. That individual has a high probability
of immigrating features from other individuals.

The standard BBO algorithm is called centralized BBO here, to
distinguish it from the distributed BBO algorithm. Section 2.1
reviews centralized BBO, and Section 2.2 introduces distributed BBO.

2.1. Centralized BBO

BBO individuals with high fitness have high emigration prob-
ability u, and low immigration probability 4. Migration probabil-
ities are normalized to [0, 1].

If we denote the entire population as {P;}, with P; being the ith
individual in the population, then the migration probabilities of P;
are given as

— __fP)—mingf(Py)
= maxf (Py)—mingf(Py)

Zi=1—py ™
where f (P;) is the fitness of P;,. Nonlinear relationships can also be

used in BBO [14], but for the purposes of this paper, linear models
are sufficient. We see the following from Eq. (1):

Ai=0
Least fit individual in population : p; =0, 4;=1.

Most fit individual in population : w; =1,

If all individuals in the population have the same fitness, then
the denominator in Eq. (1) is equal to 0. In this case we set the
emigration and immigration probabilities to 1/2 for all of the
individuals in the population.

As in other EAs, we also implement mutation in BBO to
increase the exploration of the search space. Algorithm 1
describes the centralized BBO algorithm. In the “For each indivi-
dual P;” loop in Algorithm 1, the immigration decision for each
individual and the selection of the emigrating individual are made
independently of all previous decisions.

Algorithm 1. The centralized BBO algorithm.

Generate a population of individuals (that is, candidate
solutions) P={P;}
While not (termination criterion)
Calculate the fitness f (P;) of each individual in P
Use Eq. (1) to calculate the migration probabilities of each
individual in P
For each individual P;
For each decision variable v in P;
Use the immigration probability A; to decide
whether to immigrate to P;
If immigrating to P; then
Use {u ;} to probabilistically select the
emigrating individual Py
Migrate from Py to P;: Py(v) <« Py(v)
End immigration
Next decision variable
Probabilistically mutate P;
Next individual: i«i+1

Next generation
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As in other EAs, the “termination criterion” in Algorithm 1 is

problem-dependent and might be, for example, generation count,
or some quantity that measures the convergence of the popula-
tion’s fitness. As in other EAs, we usually implement elitism in
BBO, although this is not depicted in Algorithm 1. Elitism means
that we save the best individuals at the end of each generation,
and include them in the population at the beginning of the
following generation. This ensures that we do not lose the best
individuals, and that the best candidate solution never gets worse
from one generation to the next. The mutation mentioned in
Algorithm 1 can be performed in any way that is used in other
EAs.
Algorithm 1 shows that BBO is a relatively simple algorithm. For
real-world problems, the vast majority of computational effort
and time required by BBO, as in any other EA, is due to fitness
function evaluation. The computational effort required for fitness
function evaluation “is usually so great that it will rarely pay to
give any consideration at all to any other aspect of the run” for a
typical EA [10, Appendix H]. As an example, each fitness function
evaluation for our robot control example in Section 5 requires
about 30 s (the time period for which the robots track the wall),
while the BBO algorithm requires computational effort on the
order of microseconds.

Fitness function evaluations for benchmark problems often
require very little computational effort due to their simplicity. In
this case the complexity of an EA might require more considera-
tion. Previous work with benchmark function optimization has
provided numerical comparisons of the computational effort
required by BBO and other EAs [15,35].

2.2. Distributed BBO

Here we proposed a modified form of BBO, which we call
distributed biogeography-based optimization (DBBO). DBBO was
proposed conceptually in [13] and the first experimental results
were given in [34]. Here we give a more thorough description of
DBBO. DBBO has the same goal as centralized BBO, which is to
find solutions to an optimization problem. However, DBBO does
not use a central computer to control the evolution of the
population. DBBO thus allows evolutionary optimization in case
a central computer is not available, or in case the individuals in
the population are scattered through time or space in such a way
that centralized coordination is not possible. As an example, Fig. 1
shows a swarm of robots communicating without centralized
coordination.

In DBBO, the evolutionary algorithm is executed by each
individual in the population. In the practical application of DBBO
that we demonstrate in Section 5, the DBBO individuals will be
robots, as shown in Fig. 1, but in general, the DBBO individuals
can be any candidate solutions to any optimization problem.

The DBBO algorithm is similar to BBO. However, in BBO the
migration probabilities are determined by the entire population,
as indicated by the “max” and “min” functions in Eq. (1). In DBBO,
the migration probabilities for a group of communicating indivi-
duals are determined only by the individuals in that group.

Suppose that we have a subset G of the population P that is
communicating with each other, where G<P, and G; is the ith
individual in G. We call G a peer group. Since we do not have a
central computer, we do not know the minimum and maximum
fitness values in the population, which are used in Eq. (1) to
calculate migration rates for centralized BBO. However, due to the
fact that DBBO individuals regularly communicate with each
other, they can estimate the minimum and maximum fitness
values of the population based on the fitness values of those
individuals with whom they have communicated in the past. We

use W; and B; to denote the ith individual’s estimate of the worst
and best fitness in the population, respectively. Then each time
the ith individual G; in G communicates within its group, it
updates its estimates W; and B; as follows:

Wi = min [W,—.minkf(Gk)]

B; = max[B;,maxyf(Gy)]. )
Then instead of using Eq. (1), individual G; sets its migration

probabilities as

G)—W,
= L

;.,‘ = l—ﬂl (3)
We see the following from Eq. (3):
4i=0

Ji=1.

Most fit individual in G : y; =1,
Least fit individual in G : u; =0,

In case the denominator is equal to O in Eq. (3), we set the
emigration and immigration probabilities to 1/2 for all of the
individuals in G. Algorithm 2 describes the DBBO algorithm.
Similar to Algorithm 1, in the “For each individual G;” loop in
Algorithm 2, the immigration decision for each individual and the
selection of the emigrating individual are made independently of
all previous decisions. Also, the stochastic “Select M individuals”
statement in Algorithm 2 is also made independently of all
previous decisions.

Algorithm 2. The distributed BBO algorithm.

Generate a population of individuals (that is, candidate
solutions) P={P;}
Initialize the best fitness estimate of each individual: Bj= — «©
Initialize the worst fitness estimate of each individual:
Wi=+ o
While not (termination criterion)
Select M individuals G={G;} to communicate with each
other, where Gc P
Calculate the fitness f (G;) of each individual in G
Use Eq. (2) to update the worst and best estimates for
each individual in G
Use Eq. (3) to calculate the migration probabilities of
each individual in G
For each individual G;
For each decision variable v in G;
Use the immigration probability 4; to decide
whether to immigrate to G;
If immigrating to G; then
Use {u ;} to probabilistically select
the emigrating individual G
Migrate from Gy to G;: Gi(v) <« Gi(v)
End immigration
Next decision variable
Probabilistically mutate G;
Next individual: i<i+1
Next generation

2.3. Peer group selection

The first statement inside the loop in Algorithm 2, “Select M
individuals G to communicate with each other,” is problem
dependent. The number M depends on how many DBBO indivi-
duals are in contact with each other at any given generation. In
some applications M will be fixed, while for other applications it
will change from one generation to the next. The method for
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Fig. 1. Robots communicating with each other. If the robots are not in commu-
nication range of a central computer, then it is not possible to implement the
standard BBO algorithm to evolve robot behavior. Instead, distributed BBO can be
used to control the evolution of the population.

selecting the subset G is also problem dependent. For some
applications the selection of G might be deterministic while for
other applications the selection might be random.

In the Markov modeling and robot application of DBBO later in
this paper, we randomly select individuals for membership in G
each generation. This is motivated by our application, which is
robot control optimization. A typical industrial task for a mobile
robot might be to move along a hallway, looking for a particular
office to deliver mail. As robots implement their control strate-
gies, they move from one location to another. By the time they
have completed their task, they have enough information to
quantify their tracking performance, and to try to improve their
control strategy. However, the group of robots that are in radio
range of each other will have completely changed since the
beginning of the task. That is, the peer group G randomly changes
each generation.

We can view the population of robots as a connected graph
where each vertex is a robot, and edges connect robots that are
within radio range of each other. A peer group is a clique (that is,
a complete subgraph). In practice the peer group does not need to
be a clique as long as they form a strongly connected component
(that is, as long as unconnected robots can communicate with
each other through other robots). But for practical purposes we
can consider a peer group to be a clique. Algorithm 2 assumes that
DBBO runs in only one peer group at a time. In future work we
might want to extend Algorithm 2 to allow multiple peer groups
to simultaneously execute DBBO. This possibility introduces
additional complications such as synchronization issues, and the
possibility of a single robot belonging to multiple peer groups. We
defer these issues to future research.

3. Markov modeling

In this section we use Markov theory to model DBBO and
provide some mathematical tools for its analysis. We also use
some simple simulations to verify the Markov model. Since
Markov models of DBBO are mathematically exact in the limit
as the generation count approaches infinity, they can be used in
place of Monte Carlo simulations to quantify DBBO performance.
The probability of an event with a very low likelihood may be
difficult to measure with simulations. However, we can exactly
obtain these probabilities, no matter how small, with Markov
models (and also with dynamic system models, whose develop-
ment follows that of Markov models [38]). We will see that
Markov models are not computationally tractable for large
problems; but for small problems, they provide exact results,

and can therefore provide exact numerical comparisons between
different algorithms and their variations.

A Markov model is a state sequence for which the probability
of changing from a certain state s; to another state s, is given by
the probability p;r, which does not depend on any of the previous
states of the system. The matrix P=[pj] is called the Markov
transition matrix. The set of possible states is S = {s1,52,...,5}.

In BBO Markov modeling, we assume that the BBO search
space is discrete, and that a state represents a population
distribution. That is, if the search space of BBO is represented as
{x;}, then the BBO state indicates how many of each x; individual
there are in the population.

Section 3.1 reviews previous research on Markov modeling for
centralized BBO [37]. Section 3.2 extends the centralized BBO
Markov model to DBBO. Section 3.3 presents some simulations to
verify the DBBO Markov model.

3.1. Markov modeling for centralized BBO

This section reviews the Markov model for centralized BBO [37].
First, in Section 3.1.1, we define the notation. Then in Section 3.1.2 we
show how BBO migration can be modeled with a Markov transition
matrix. In Section 3.1.3 we show how the incorporation of mutation
in the BBO algorithm modifies the Markov transition matrix.

3.1.1. Markov model notation

Suppose that we are trying to find a g-bit string to optimize
some problem. The search space of BBO is represented as {x;},
where each x; is a bit string that consists of g-bits. For example, in
an optimization problem for which the search space consists of
three-bit strings, the search space could be represented as

{X1,X2,X3,X4,X5,X6,X7,Xg} = {000,001,010,011,100,101,110,111}.
“)

In this example, the cardinality of the state space is n=8.

In general, we use N to denote the BBO population size, and we
use v to denote the population vector. The population vector
contains the count of each bit string in the population, so

n
Z Vi= N. (5)
i=1
We use y; to denote the ith individual (out of N total) in the
BBO population. The population consists of a number of x;
components, and we order the BBO individuals in the same order
as the elements in {x;}, so the population can be written as

IN) = XX, o Xn,Xn} 6)

Recall that there are v, copies of x; in the population, v, copies
of x, and so on. We use /; to represent the probability of
immigration to x;, and y; to represent the probability of emigra-
tion from x;. We use x;(s) to represent the sth bit of x;, where the
bits are numbered from left to right, beginning with number 1.
We use J;(s) to represent the search space indices that have the
same sth bit values as the sth bit of x;; that is,

Population = {y;,... X2,X2,. .

3i() = { : X(5) = X;(9)}- Q)
The kth element in the population, y, can be written as
Ye=xXm(k) for k=1,.,N 8)

where m(k) is given as

.
m(k)=minr suchthat > v;>k. )
=

Example. To more clearly explain the above notation, we con-
sider a simple example. Suppose we have the three-bit search
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space of Eq. (4), and a BBO population size N=3, with
y1=X=001, y,=x,=110, and y3=x;=110. That is,
Vit = {V1Y2Y3} = {X2x7x7}.

In this case, the elements of the population vector v are given
as

11=0, v,=1, v3=0, v4=0, v5=0, vg=0, v7;=2, vg=0.

That is, the population consists of one x, individual, and two x;

individuals. We can derive J;(s) for the different bits in the
various individuals in the population. For example, from Eq. (7),

S = x5(1) =x1(1)} (10

Since x;=000, we see that x;(1)=0. Eq. (10) can then be
written as

31D ={j:x;(1)=0}.
Note that the first bit of x; is zero for x,=001, x3=010, and
x4=011. From this we see that 3;(1)={1, 2, 3, 4}. If we continue
this process we obtain
31(1)=1{1,2,3,4}, 3:2)=(1,2,5,6},
S(1)=1{1,2,3,4}, 3(2)={1,2,5,6},
33(1)=1{1,2,3,4}, 33(2) = {3,4,7,8},
34(1)=1{1,2,3,4}, 31(2)={3,4,7,8},
35(1) = {5,6,7,8}, 35(2)={1,2,5,6},
36(1)={5,6,7,8}, 3Ts(2)={1,2,5,6},
37(1)=1{5,6,7,8}, 37(2)=1{3,4,7,8},
35(1)={5,6,7,8}, 3J5(2)={3,4,7,8},

3(3)=(1,3,57)
3,(3) = (2,4,6,8)
33(3)=(1,3,5,7)
34(3) = (2,4,6,8)
35(3)=(1,3,5,7)
F6(3) = (2,4,6,8)
3,(3)=1(1,3,5,7)
33(3) = (2,4,6,8).

3.1.2. Migration in centralized BBO

As seen in the previous section, each decision variable in
individual yj in a BBO population has a A probability of being
selected for immigration. We use y,(s); to denote the sth bit of y;
at generation t. If the sth bit of y, is not chosen for immigration
during generation t, then y,(s) does not change from generation t
to generation t+1:

Y41 = Xmky(S)

Therefore, the conditional probability that y.(s);,1 is equal to
x;(s) can be written as

if no immigration to y,. an

PI[y(S)e 1 = Xi(9)] = 1o (Xmay(S) —X;(5))  if no immigrationto y;
(12)

where 1y is the indicator function on the set {0}. That is, 1¢(x)=1
if x=0, and 1o9(x)=0 if x £ 0.
If the sth bit of y, is chosen for immigration during generation
t, then the probability that y,(s);,; =x;(s) is proportional to the
sum of all of the emigration probabilities of the individuals whose
sth bit is equal x,(s):
2 Vil
Pr[y(S) s 1 =xi(5)] = 1
jz] Vil

if immigration to y, (13)

Egs. (12) and (13) can be combined to obtain
Pr{yi(S)e 1 = Xi(s)] = Pr(no immto y, ) Pr[y,(s);, ; = X;(s)|no imm to y;]+
Pr(imm to y, ) Pr[y(S); , 1 = X;(s)|imm to y,]

j Z(s)vjuj
" (SN
= (1 *’Lm(k)) 19 (Xrn(k)(s)—xi(s)) + /lm(k)jni .

D Vil

j=1
(14)

Now we use Pi(v) to denote the probability that, given the
population vector v, the kth individual in the population, yy, is
equal to the ith individual in the search space, x;, at the (t+1)st
generation. Taking into consideration that there are g-bits in each
BBO individual, and that migration to each bit is independent (as
seen from Algorithm 1 in Section 2.1), P(v) can be computed
from Eq. (14) as

Pii(V) =Pr(yyr o1 =2%;)

1 j ; >vjuj
e Ji(s
= H (] _/lm(k))10 (Xm(k)(s)*xi(s)) +)~m(k)]n7 . (15)
o > Uik
j=1

Computing this probability for each ke[1, N] and for each
ie[1,n], we can find the N x n transition matrix P(v). This is not yet
the Markov transition matrix, but the element in the kth row and
ith column of P(v), which is denoted as Py;(v), gives the probability
that kth individual in the population at the (t+1)st generation is
equal to x;.

The probability that the BBO population transitions from a
given population vector v to another population vector u can be
calculated with the multinomial theorem [37]. The multinomial
theorem tells us how to calculate the probability that the ith
possible outcome occurs exactly u; times after N trials, where the
probability of the ith outcome at the kth trial is given as Py(v).
Applying the multinomial theorem to BBO allows us to calculate
Pr(u|v), which is the probability that the BBO population transi-
tions from a given population vector v to another population
vector u:

Pr(ujv)=>" I—N[ f[ [Pi(v)Pe

JevYk=1i=1

n
where Y={eR"" : J;€{0,1},> Jy=1 for allk,
=

N
and > Jy=u; for all i}. 16)
k=1
Details for the derivation of Eq. (16), along with an example,
are given in [37].

3.1.3. Mutation in centralized BBO

The previous section obtained the Markov transition matrix for
centralized BBO when migration was the only BBO operation.
However, in BBO, we also use mutation. We include mutation in
the Markov model with an n x n mutation matrix U, where Uj, is
the probability that the individual x, mutates to x; [29]. We used
Pii(v) in the previous section to denote the probability that y,=x;
when only migration is taken into account. In this section, we use
P2 (v) to denote the same probability with both migration and
mutation taken into account. The equation for this probability is

PR W)= > UyPy(v) 17)
j=1

which gives

Py =Pw)UT (18)

where the components of P(v) are given in Eq. (15). Again using
the multinomial theorem as in the previous section, we obtain the
probability of transitioning from population vector v to popula-
tion vector u in a single generation as

P (uly) =3 I I1 [PRo]™. (19)

Y k=1i=1



D. Simon et al. / Swarm and Evolutionary Computation 10 (2013) 12-24 17

This equation can be used to determine the transition prob-
ability between all possible population distributions u and wv.
Combining all of these transition probabilities gives a matrix Q
which contains the probabilities of transitioning between each
population distribution. Q is a T x T matrix, where T is the number
of possible BBO population distributions [37], which depends on
the population size and the search space cardinality.

3.2. Markov modeling for distributed BBO

This section extends BBO Markov modeling to DBBO. Recall the
step in the DBBO procedure of Algorithm 2 that says, “Select M
individuals G to communicate with each other.” In this section,
we assume that M is a constant, and we also assume that the
selection of the subset G is random. Therefore, we can use the
previously-developed Markov model by realizing that in DBBO,
k=0 for the (N—M) randomly chosen individuals that are not
part of G, where N is the population size. We refer to G as the peer
group, which includes the M randomly chosen individuals:

G={Vi,-Yim} (20)
where {iy,...,i);} are unique random integers from {1,...,N}. From
combinatorics, we know that there are

N!

Cny = m (21)

unique possible peer groups.

As an example, suppose that we have population size N=4,
that the population P={yq, ¥2, ¥3, Y4}, that the search space
cardinality n=8 (that is, the search space consists of three-bit
individuals), and that the peer group size M=3. In this case, there
are four possible peer groups:

{y1.y2,y3}, (y1.y3.y4}, {y2,y3.y4} and {yl,y2,y4}.

Now we consider, for example, only peer groups that include
y». There are three such possible peer groups:

G1={1Y2y3h Ga={¥2.Y3.¥4), G3 = {¥1.¥2.Y4)-

We can calculate how many unique peer groups include y, by
using a modified form of Eq. (21):

c 3 (N=1)! _ (N-1)
N=LM-1 = (M—D)I(N—1=-(M=1))! _ (M=1){(N—M)!

In DBBO, each individual y, in the BBO population has a a
specific probability of immigration. The probability of not immi-
grating to y, includes: (1) the probability of not immigrating
given that y is randomly selected as part of peer group G, and
(2) the probability of not immigrating given that y, is not
randomly selected as part of G:

(22)

Pr(no imm to y;) = Pr(no imm | y, € G)Pr(y, € G)
+Pr(no imm | y,¢G)Pr(y£G)

= (1=mqe) (%) +(1)<1 . %) —1- (%) y— 23)

Similarly, the probability of immigrating to yy is
Pr(imm to y) = Pr(imml|y, € G)Pr(y, € G) +Pr(imm|y,¢G)Pr(y,£G)

= (“mao) <%) +(0) (1 - %)

M
= () 2

Comparing these immigration probabilities to those of cen-
tralized BBO, in which the probability of migration is simply A,
we see that the probability of immigration has been modified by
the factor M/N. This factor is the ratio of the peer group size to the
population size. We call this probability of immigration 2;,,, for

distributed BBO. Using this notation, we rewrite Eqgs. (23) and (24)
for the no-immigration probability and the immigration prob-
ability as

Pr(no imm.to ;) = 1—/p,
Pr(imm. to yy) = A (25)

Now recall that the population vector is denoted as v. We
denote the population vector of the peer group G as v'. With this
notation, we use an analysis similar to the centralized BBO
analysis of Eq. (13). We note that if immigration to y(s) occurs,
then the probability that y,(s),, ; = Xi(S) is proportional to the sum
of all of the emigration probabilities of those individuals in G
whose sth bit is equal x,(s):

X Vil
_JeTik)

Pr(yi(S)r1 = xi(9)|imm) = ————. (26)

20 Vil
j=1

Note that the DBBO peer group population vector v has n
elements and satisfies the following properties:

iv,j =M

i=1
v’ € [0,M] for all i e [1,n]. 27)

As we noted above in Eq. (22), in DBBO there are (N—1,M—1)
possible peer groups, all of which are equally likely, which
contain a given individual y,. There are thus Cy_1_1 possible
v’ vectors. We denote the oth possible v' vector as v/(a). With this
notation, we can write the DBBO counterpart to Eq. (14) as

Pr(yi(S)e+ 1 = Xi(s)) = Pr(no imm to y} ) Pr(y,(s);; 1 = Xi(s) [no imm to y,)+
Pr(imm to y; ) Pr(y4(S); 4 1 = X;(S) |imm to y,)

> Uj’(a).uj

CN_1m—
s

= (1 *i;n(k)) To (Xmqiy (8)—Xi($)) + C;”;‘;;,l > n
oot S vy

j=1

(28)

Now, as in Eq. (15) of the centralized BBO analysis, we use
Pyi(v) to denote the probability that, given the population vector
v, the kth individual in the DBBO population, y,, is equal to the ith
individual in the search space, x;, at the (t+1)st generation:

Pii(v) = Pr(yk,t+1 = Xi)

q A )‘;n(k) Cnm je%(s)vj (O)H;
=11 (1—/Lm(k))10(Xm(k)(5)—xi(s)) +c >
s=1 N-1,M-1 ;4 ZU/(D() .
i (G
j=1
(29)

Just as in the centralized BBO analysis at the end of Section
3.1.2, we can use the above P,;(v) to find the probability that the
DBBO population transitions from a given population vector v to
another population vector u. Eq. (16) therefore holds for DBBO, if
we use the Pi(v) quantities from Eq. (29) in Eq. (16). The
incorporation of mutation in DBBO exactly follows the develop-
ment of Section 3.1.3, assuming that we allow the possibility of
mutation for each individual in the population at each generation.

3.3. Simulation results and Markov model confirmation

In this section, we use some simple simulations to confirm the
DBBO Markov model.

We use three-bit problems with a search space cardinality of
eight and a population size of five (n=8 and N=5). From [37,
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Appendix B] we calculate the total number of possible popula-
tions as

N+n-1\ (12
T:( . );(5>:792. (30)

Therefore, the state transition matrix Q is a 792 x 792 matrix.
The element in the ith row and kth column of Q gives the
probability that the population transitions from the ith popula-
tion distribution v; to the kth population distribution v,. Repeat-
edly multiplying Q by itself results in the matrix Q* in the limit as
the number of multiplications approaches «c, and each column of
Q™ is identical [29]. The element in the ith row of each column of
Q> gives the probability that the DBBO population distribution
after an infinite number of generations is equal to the ith possible
population distribution v;. Other more efficient and numerically
robust methods also exist for finding these probabilities, but the
above description is meant to give the general idea.

Note that Q must be positive recurrent in order for Q™ to exist;
that is, every state must have a finite average time between
occurrences. This property is guaranteed for the BBO and DBBO
Markov chains if every element of the mutation matrix U is
positive [17].

We also note that the beginning of Section 3.2 assumed that M is
constant, and that the selection of the subset G is random. The first
assumption can probably be relaxed; that is, the Markov model of
Section 3.2 can probably be rederived without much difficulty if M
varies from one generation to the next. However, if G is not random,
then Q will be time-varying; it will change from one generation to the
next as the peer group changes. In this case, the limiting population
distribution Q* might not exist. We can still implement DBBO in this
case, but additional research is required to determine the properties
of the Markov model for this situation.

We use the one-max problem and a deceptive problem to
confirm the DBBO Markov model of Section 3.2. The one-max
problem has a fitness function that is proportional to the number
of ones in the individual, and is a popular test function in EA
research [1]. The fitness values of the three-bit one-max problem
are

f(000)=1, fO01)=2, f(010)=2, fO11)=3,
f(100)=2, f101)=3, f(110)=3, f(111)=4.

The fitness values of the three-bit deceptive problem are the
same as those of the one-max problem, except that the most fit
individual is comprised of all zeros. The fitness values of the
deceptive problem are

f(000)=5, fO01)=2, f(010)=2, f(011)=3,
f(100)=2, f(101)=3, f(110)=3, f(111)=4.

Table 1 shows a comparison of the analytical DBBO Markov
model results and simulation results. The simulation results are
averaged over 10 Monte Carlo simulations, with each simulation
running for 10,000 generations. We used a mutation rate of 10%
per bit per generation. We see that the simulation results match
the Markov model results to within one standard deviation, thus
confirming the Markov model equations derived in Section 3.2.
Since the population size is five, M=5 in Table 1 is equivalent to
the centralized BBO algorithm in which the entire population is in
communication with each other.

Table 1 shows that the one-max problem results in a greater
probability than the deceptive problem of finding at least one
optimum, which is as expected. Table 1 also shows that as the size
of the peer group increases, the performance of DBBO also increases.
However, the point of Table 1 is not to investigate performance, but
rather to confirm the Markov model of Section 3.2.

Table 1

This table shows the probability (percent) that the three-bit DBBO algorithm with
a population size of five contains at least one optimal individual. The simulation
results show the average and standard deviation of 10 simulations. M is the
number of individuals in the randomly-selected peer group. The mutation rate
was 10% per bit.

M One-max problem Deceptive problem

Markov model Simulation Markov model Simulation
2 60.8 61.5+1.6 51.9 53.2+2.7
3 69.3 70.0 1.1 53.1 56.1+3.9
4 75.7 76.2+1.3 54.8 57.4+3.9
5 80.1 80.4+0.8 57.3 55.2+438

Finally, we note that the Markov model and simulation results
both use the mutation matrix described in Section 3.1.3. This
assumes that even though communication occurs only among a
peer group of size M at each generation, mutation still occurs
throughout the entire population at each generation. This
assumption may or may not be valid, depending on the particular
DBBO implementation. If mutation occurs only among the peer
group at each generation, then the mutation matrix U needs to be
modified accordingly.

The Markov model developed here can be used to provide
exact quantitative comparisons between BBO, DBBO with various
parameter settings, and other EAs [39]. It can also be used to
obtain convergence conditions [16] and dynamic system models
[38], which are exact in the limit as the population count
approaches infinity. We leave these Markov model applications
as important tasks for future research.

4. Benchmark simulation results

In this section we test BBO and DBBO on some benchmark
problems from the 2005 competition of the IEEE Congress on
Evolutionary Computation (CEC) [42]. The CEC 2005 benchmarks
are continuous-domain problems. The Markov models presented
in the previous section apply only to binary encodings. They can
be extended in a straightforward way to other discrete encodings,
but not to continuous state spaces. For continuous state spaces,
the Markov transition matrix is replaced with a transition kernel
K, where K(x, A) is the probability of transitioning from the state x
to the region A in state space. With this change we could obtain
results that are analogous to those in Section 3, but the mathe-
matics of continuous-state-space Markov processes are more
involved than those of discrete-state-space Markov processes
[32]. We therefore relegate the development of Markov models
for continuous-domain BBO and DBBO to future work.

The CEC 2005 benchmarks that we use in this paper are as
follows.

F;: Shifted sphere function.

F>: Shifted Schwefel’s problem 1.2.

F3: Shifted Rotated High Conditioned Elliptic Function.

Fs: Schwefel’s problem 2.6 with global optimum on bounds.
Fg: Shifted Rosenbrock’s function.

F5: Shifted rotated Griewank’s function without bounds.

Fo: Shifted rotated Ackley’s function with global optimum on
bounds.

F1o: Shifted Rastrigin’s function.

F11: Shifted rotated Rastrigin’s function.

F15: Shifted rotated Weierstrass function.

F1s: Schwefel’s problem 2.13.

We choose these functions because they have known solu-
tions. We do not test with F, because it is a noisy function, and we
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Table 2

Comparison between BBO and 11 other EAs on five unimodal problems. The algorithms are listed in order from best to worst. See the text for a more detailed description of

this table.

Number of solved functions Success rate (%) F F F3 Fs Fs

G-CMA-ES 5 100 1.6 (25) 1(25) 1(25) 1(25) 1.5 (25)
L-CMA-ES 5 100 1.7 (25) 1.7 (25) 1.1 (25) 1(25) 1.3 (25)
EDA 5 97 10 (25) 4.6 (25) 2.5(23) 4.2 (25) 9.6 (22)
DE 5 96 29 (25) 19.2 (25) 18.5(20) 6.9 (25) 6.6 (24)
DMS-L-PSO 5 96 12.0 (25) 5.0 (25) 1.8 (25) 18.6 (20) 7.7 (25)
L-SaDE 5 93 10.0 (25) 4.2 (25) 8.0 (16) 10.7 (25) 6.8 (25)
BBO 5 84 1.7 (25) 0.8 (25) 0.3 (25) 8.1 (5) 1.1 (25)
BLX-GL50 4 83 19.0 (25) 17.1 (25) [10] 932 4.7 (25) 7.3 (25)
SPC-PNX 3 67 6.7 (25) 12.5 (25) [12] 10806 6.8 (25) [11] 18.9
CoEVO 3 67 23.0 (25) 11.3 (25) 6.8 (25) [11]2.13 [12] 12.5
K-PCX 3 58% 1.0 (25) 1(25) [9] 0.42 [12] 485 1.0 (22)
BLX-MA 2 40 12.0 (25) 15.4 (25) [11] 4771 [10] 0.02 [10] 1.49

have not implemented any noise-handling capabilities in BBO.
Each of these problems can be implemented with any number of
dimensions. F;-Fg are unimodal problems, and F,-F;s are multi-
modal problems. Problems F;-Fs are considered to be solved if we
come within 10~ of the global minimum, and problems Fg—Fs
are considered to be solved if we come within 102 of the global
minimum.

We compared our BBO and DBBO algorithms to the 11
algorithms that were accepted for the CEC 2005 competition,
which we refer to as the baseline algorithms:

1. BLX-GL50, which is a two-sex GA with original crossover
operators [9].
. BLX-MA, which is an adaptive memetic algorithm [20].
. CoEvo, which is a co-evolutionary algorithm [25].
. DE, which is differential evolution [30].
. DMS-L-PSO, which is a multi-swarm particle swarm method
[11].
. EDA, which is an estimation of distribution algorithm [44].
7. G-CMA-ES, which is a covariance matrix adaptation evolution
strategy [3].
8. K-PCX, which is an amalgamation of various EA strategies
[41].
9. L-CMA-ES, which is another covariance matrix adaptation
evolution strategy [4].
10. L-SaDE, which is an adaptive differential evolution algorithm
[26].
11. SPC-PNX, which is a continuous genetic algorithm [5].

U W

()]

We collected benchmark performance data for these EAs from
the above references.

4.1. Centralized BBO results

First we compare the results of centralized BBO with the 11
algorithms listed above. We run 25 Monte Carlo simulations, use
a population size of 100, use a 1% mutation probability, and
implement elitism by replacing the two worst individuals each
generation with the two best individuals from the previous
generation. We also augment BBO with a standard local search
algorithm. We limit our benchmark study to 10-dimensional
problems, and we impose a function evaluation limit of 100,000.

As in the CEC 2005 competition, we rank the algorithms based
on the number of problems that they solve at least once out of 25
Monte Carlo simulations. In case of a tie, the algorithm that solves
the problems the most times is better.

Table 2 shows the results of BBO and the baseline algorithms
on the unimodal problems. The “number of solved functions”
column shows how many of the benchmark problems the algorithm

solved at least once out of 25 Monte Carlo simulations. The
“success rate” column shows how many of the total number of
(25 x 5) simulations were successful at solving a problem.

Each cell in Table 2 corresponds to a given algorithm and a
given problem, and contains two numbers. If the algorithm was
successful in solving the problem at least once, then the number
of successes is in parentheses. If the algorithm was not successful
even once in solving the problem, then the number in square
brackets indicates the performance rank of the algorithm for that
particular problem, out of a total of 12 algorithms. The number
outside of the parentheses or brackets in each cell shows the
normalized function value that was achieved by the algorithm,
averaged over 25 Monte Carlo simulations.

Table 2 shows that BBO is able to solve all five of the unimodal
benchmarks; however, six other algorithms are also able to solve
all of the unimodal benchmarks, and all six of them perform
better, on average, than BBO. On the other hand, BBO is the best
algorithm for the F,, F5, and Fg benchmarks.

Table 3 shows the results of BBO and the baseline algorithms
on the multimodal problems that we tested. BBO is ranked third
out of the 12 algorithms. However, BBO has the best success rate
(65%). BBO is the best algorithm for the Fg and F;; benchmarks. In
addition, BBO is the only algorithm that solved F;5 100% of
the time.

We realize that we could perform many more benchmark
tests, including additional benchmark functions, higher dimen-
sions, and additional EAs. The results we present here on a
widely-accepted set of benchmark functions confirm the compe-
titive ability of BBO. Also, by extension, they confirm the compe-
titive ability of DBBO, as discussed in the following section.

4.2. Distributed BBO results

Next we test distributed BBO on the benchmark functions. We
implement DBBO with three different peer group sizes: 2, 4, and
6. We call these algorithms DBBO/2, DBBO/4, and DBBO/6.
Tables 4 and 5 show the comparison between BBO and DBBO.
We see that the performance of the centralized and distributed
versions of BBO are very similar. For the unimodal functions in
Table 4, DBBO/6 performs slightly better than BBO, although the
difference is probably not statistically significant. For the multi-
modal functions in Table 5, BBO performs slightly better than any
of the DBBO versions, although, again, the difference between the
performance levels is probably not statistically significant.

We intuitively expect BBO to outperform DBBO. But just
because BBO has more individuals to choose from when perform-
ing migration, that does not guarantee that it will outperform
DBBO. The fact that BBO has more individuals to choose from
might increase the probability of a detrimental migration. Further
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Table 3
Comparison between BBO and 11 other EAs on five multimodal problems. The algorithms are listed in order from best to worst. See the text for a more detailed description
of this table.
Number of solved functions Success rate (%) F; Fy Fio Fi1 Fiz Fis
G-CMA-ES 5 63 1.0 (25) 4.5 (19) 1.2 (23) 1.4 (6) 4.0 (22) [9] 400
DE 5 30 255 (2) 10.6 (11) [9] 13.7 1.0 (12) 8.8 (19) 75.8 (1)
BBO 4 66 9.9 (24) 0.2 (25) [8] 124 [10] 5.1 0.3 (25) 0.06 (25)
L-SaDE 4 53 36.2 (6) 1.0 (25) [4] 5.0 [8] 4.9 3.9 (25) 1.0 (23)
DMS-L-PSO 4 47 126 (4) 2.1 (25) [3]3.6 [7] 4.6 6.6 (19) 1.7 (22)
K-PCX 3 40 [12] 0.23 2.9 (24) 1.0 (22) [11] 6.7 1.0 (14) [11] 510
BLX-GL50 3 17 12.3 (9) 10.0 (3) [4] 5.0 [5]2.3 12.1 (13) [9] 400
EDA 3 9 404 (1) [11] 32.3 [11] 32.3 29(3) 4.3 (10) [12] 511
L-CMA-ES 2 25 1.2 (25) [12] 420 [12] 1270 [6]2.7 11.6 (12) [6]115
BLX-MA 2 15 [11] 0.20 5.7 (18) [6] 5.6 [9] 4.6 [10] 74.3 8.5 (5)
SPC-PNX 2 1 383 (1) [9] 4.0 [717.3 5.8 (1) [11] 260 [7] 254
CoEVO 0 0 [10] 0.037 [10] 19.2 [10] 26.8 [12] 9.0 [12] 605 [8] 294
Table 4
Comparison between BBO and DBBO on five unimodal benchmarks.
Number of solved functions Success rate (%) Fi F, F3 Fs Fs
BBO 5 84 1.7 (25) 0.80 (25) 0.3 (25) 8.1(5) 1.1 (25)
DBBO/2 5 82 1.7 (25) 0.82 (25) 0.4 (25) 2.5(2) 1.1 (25)
DBBO/4 5 84 1.7 (25) 0.82 (25) 0.4 (25) 5.2 (5) 1.1 (25)
DBBO/6 5 85 1.7 (25) 0.82 (25) 0.4 (25) 9.1 (6) 1.2 (25)
Table 5
Comparison between BBO and DBBO on six multimodal benchmarks.
Number of solved functions Success rate (%) F; Fy Fio Fip Fi» Fis
BBO 4 66 9.9 (24) 0.2 (25) 12.4 5.1 0.3 (25) 0.06 (25)
DBBO/2 4 66 9.6 (24) 0.2 (25) 28.1 53 0.4 (25) 0.08 (25)
DBBO/4 4 65 9.2 (23) 0.2 (25) 25.0 5.7 04 (25) 0.08 (25)
DBBO/6 4 63 10.1 (20) 0.2 (25) 24.5 5.1 0.4 (25) 0.08 (25)

research is recommended to determine the conditions under
which BBO or DBBO give better optimization results.

The benchmark tests in this section are not extensive. For
further research we recommend a more complete set of bench-
marks, including problems with higher dimensions, and also
comparisons to a broader set of optimization algorithms. How-
ever, the preliminary comparisons in this section are sufficient to
show that BBO and DBBO are competitive optimization
algorithms.

5. Robot optimization using BBO and DBBO

This section discusses the use of BBO and DBBO for robot
controller optimization. Section 5.1 discusses the robot hardware
that we used, Section 5.2 gives an overview of the robot control
task, Section 5.3 presents simulation results, and Section 5.4
presents experimental hardware results.

5.1. Robot hardware

The mobile robots that we use for this research were devel-
oped for a mapping application [7]. They were first used in BBO
research in [13], and were used for preliminary DBBO research in
[34]. This section gives some information about the robot
hardware.

The robots are equipped with two DC motors (one for each
rear wheel), and eight AA batteries that provide two separate
power supplies. The batteries power the two motors (first power

Fig. 2. Photograph of a mobile robot used for BBO and DBBO testing.

supply) and the digital electronics (second power supply). The
robots are controlled by a Microchip PIC18F4520 microcontroller.
The microcontroller controls the robot wheel motors, and controls
radio communication with a personal computer (PC). Two voltage
regulators are on each robot, one to distribute 5V to the micro-
controller and other digital electronics, and one to power the
motors. A digital signal from the microcontroller switches the
motor power supply using an H-bridge SN754410NE. Infrared
sensors measure the distance of the robot from the wall using a
light-emitting sensor and a light-detecting sensor. The robot’s
task is to track the wall as closely as possible while traveling at a
constant velocity. When running centralized BBO, the microcon-
troller communicates with a PC using a wireless radio, the
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MaxStream 9Xtend radio, and the PC runs the BBO algorithm.
When running DBBO, the robots communicate with each other
using the 9Xtend radio. Fig. 2 shows a photograph of one of the
robots.

Next we give some details about the DBBO logic of Algorithm 2
as it is implemented by the robots.

e “Select M individuals G={G;} to communicate with each
other”—This statement in Algorithm 2 is implemented by
starting with a single randomly-selected robot, and then
continuing the selection process through a random sequence
of robots. In our case, the first robot is selected by a human
operator pressing a switch on a randomly-selected robot. The
first robot then randomly selects a second robot with which it
is in radio contact. This process continues until M robots are in
radio contact with each other.

e “Calculate the fitness f (G;) of each individual in G”—This
statement in Algorithm 2 is implemented by each robot
keeping track of its own control performance as discussed
later in Section 5.3. Each robot in G transmits its fitness f(G;) to
every other robot in G.

e Each robot also transmits its decision variables (that is, its
control variables) to every other robot in G. Therefore, each
robot in G is aware of the decision variables of every other
robot in G.

e “Use Eq. (2)... Use Eq. (3)...”—These two lines in Algorithm 2
are implemented by each robot in G. Therefore, each robot in G
has an identical copy of the migration probabilities for its
peer group.

e “For each individual G;"—This loop in Algorithm 2 is imple-
mented in parallel by each robot in peer group G. The
migration in this loop is possible because each robot pre-
viously transmitted its decision variables to every other robot
in G, as described above. The robots’ migration of decision
variables, and the possible mutation of decision variables,
comprises the robot controller tuning algorithm.

e The clock speed of each robot’s microcontroller is 40 MHz,
which gives an instruction frequency of 10 MHz. The DBBO
function was written in C and compiled to 1866 assembly code
instructions. A worst-case timing analysis shows that a max-
imum of 3064 instruction cycles execute during the DBBO
logic, which requires 31 pus to execute. The remainder of the
robot code, also written in C, consists of infrared sensor
processing, motor control logic that executes at a rate of
10 Hz, radio communications, and LCD output logic, and
compiles to 20184 assembly code instructions.

5.2. Robot control

The robot controller is a proportional-integral-derivative (PID)
controller [2]. A PID controller includes a proportional gain, an
integral gain, and a derivative gain. The proportional gain, K, is
the primary determinant of the control signal magnitude, and
thus is the primary determinant of the responsiveness of the
control system. The higher the value of K, the faster the
controller responds to tracking errors. The integral gain, K;, helps
reduce steady-state error. The derivative gain, Ky, is multiplied
by the rate of change of the tracking error, and the product is
added to the control signal command. The derivative gain helps
maintain controller stability, and decreases the amount of over-
shoot due to K; and K. The PID controller can be described as
follows:

Au=Kpe+Kge +K1-/e dt 31

where Au is the change in the control signal from one time step to
the next, e is the tracking error, and the limits of the integral
depend on the user’s implementation.

In the simulations for our robots, we found that the integral
term did not provide significant improvement compared to the
proportional and derivative terms [13]. Although integral control
reduces steady-state error, it also tends to increase overshoot and
settling time. Because of this fact and the relatively short duration
of our robot task (20 s), the integral term degrades performance
for the robot control problem. Therefore, we use only the K, and
Ky terms; that is, we use PD controllers. If we apply our research
to other control tasks, or to the same control task with a longer
duration, we will need to use the integral term to get better
performance.

The robots are programmed to follow a wall using the PD
controller to maintain a specified distance from the wall. The
robot uses infrared sensors to measure its distance from the wall
and its angle relative to the wall. The robot controller uses the
tracking error and the PD controller to correct the motor com-
mands and maintain a fixed distance from the wall. See [13] for
more details about the robot control algorithm. Fig. 3 shows a
simplified diagram of the robot control task.

PD control is relatively simple; in practice we do not need a
tuning algorithm as complex as DBBO to optimize PD parameters.
We use the PD control task as a simple but realistic example of
the ability of DBBO to optimize an experimental system. Further-
more, even though PD control tuning could be done by human
operators, computer and robot time might be much cheaper than
human effort. DBBO and other automatic algorithms can be used
to tune simple systems like PD controllers with very little human
intervention, which could result in cost savings.

5.3. Robot simulation results

This section discusses our MATLAB® simulation of the robot
and its controller as described in the previous section, and our use
of BBO and DBBO to optimize the K, and Ky terms of the robots’
PD controllers.

We used 500 function evaluations with a population size of 50
and a mutation rate of 1% in our BBO and DBBO algorithms. Each
individual in the population is a mobile robot. Our function
evaluation limit is much smaller than is typically used in EA
simulations. This is motivated by the low number of function
evaluations that are often used in real-world optimization pro-
blems for which the system needs to optimize itself on-line.

To use BBO and DBBO, we need to set the search domain of
each independent variable. The domain of K}, was set to [0, 2], and
the domain of Ky was set to [0, 10]. These domains were chosen
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Fig. 3. Diagram of a wall-following robot. x and y are horizontal coordinates. V; is
the velocity of the left wheel, Vi is the velocity of the right wheel, V is the velocity
of the robot’s center of mass, and 0 is the heading angle error of the robot. The
controller adjusts V; and Vk to maintain a fixed distance from the x-axis, and to
maintain 0=0.
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on the basis of initial simulation tests. The cost function that is
minimized by BBO and DBBO is given as follows:

fo= c_/ le(t)|dt+T;. (32)

In Eq. (32), x represents one BBO or DBBO individual, and
includes K, and K values as its independent variables. e(t) is the
tracking error in millimeters as a function of time and is
integrated starting when the rise time is reached, and ending at
the end of the test, which is 20 s. T, is the rise time in seconds,
which is the time that it takes the robot to reach the commanded
distance from the wall with an error of 5% or less. In Eq. (32),cis a
parameter that weights the relative importance of tracking error
compared to rise time. Based on typical control results, we used
c=5 to obtain a good balance between tracking error and rise
time performance.

For practical control problems we need a way to limit control
effort, but we do not include control effort in Eq. (32). This is
because the search domains of K, and K; are specified as part of
the BBO algorithms ([0, 2] and [0, 10], respectively). BBO never
finds candidate solutions outside of those domains because K,
and K, are obtained by migration and mutation within the search
domain. Control chattering is avoided by a combination of the
natural PD dynamics of Eq. (31) and the natural damping of the
mechanical robot dynamics. However, for other control optimiza-
tion problems, we may need to include a penalty in the cost
function for control effort or chattering.

The results of the BBO and DBBO simulations are shown in
Table 6. As with the benchmark problems of Section 4, we ran 100
Monte Carlo simulations. We thus obtain 100 minimum costs and
100 optimal sets of PD parameters by each algorithm. Table 6
shows the minimum (best) of those 100 costs, the maximum
(worst) of the 100 costs, the average of the 100 costs, and the
standard deviation of the 100 costs.

Interestingly, the DBBO versions all found better PD solutions
than BBO (the “minimum cost” row of Table 6). However, on
average, BBO performed the best (the “average cost” row of
Table 6). In addition, BBO was more consistent and more robust
than DBBO, as seen from the “maximum cost” and “standard
deviation” rows of Table 6. The three DBBO versions all performed
similarly to each other.

5.4. Robot experiment results

We use four robots and a mutation rate of 15% for our
experimental testing of DBBO. The small population size is
comparable to many real-world applications in which a limited
number of BBO individuals participate (four robots in this
application). The mutation rate is relatively high compared to
most EAs because of the low population size and the low
generation limit. For our experiments, we use a different version
of Eq. (32) for the cost function. For our simulations, the integral
of the error in Eq. (32) begins when the rise time is reached; but
for our hardware tests, the integral of the error starts at the initial
time. This gives more emphasis to rise time, and also results in

Table 6
Cost values from 100 Monte Carlo simulations of robot control optimization using
BBO and DBBO. The best value of each metric is shown in bold font.

BBO DBBO/2 DBBO/4 DBBO/6
Minimum cost 7.48 7.23 7.30 7.16
Average cost 7.68 7.78 7.77 7.76
Maximum cost 7.99 8.12 8.07 8.10
Standard deviation 0.12 0.17 0.15 0.19

cost values that are much higher than those obtained by the
simulations.
We set the robots’ initial K, and K, values randomly as follows.

Robot 1: K,=0.93, K;=4.26.
Robot 2: K,=0.07, K;=6.36.
Robot 3: K,=0.18, K;=2.45.
Robot 4: K,=0.12, K4=2.21.

At each generation, two randomly-selected robots communi-
cate with each other via wireless radio. The PD parameters
gradually change from one generation to the next as the robots
share information with each other using the DBBO algorithm. We
run DBBO for eight generations, obtaining a cost value from Eq.
(32) for each robot at each generation. The final PD parameters for
the robots after eight generations are as follows.

Robot 1: K,=0. 82, K;=9.03.
Robot 2: K,=0.07, K;=3.41 <Best Performance.
Robot 3: K,=0. 67, K;=4.32.
Robot 4: K,=0. 02, K;=2.03.

Fig. 4 displays the experimental DBBO results. The cost func-
tion value of the best robot, and the average cost of all four robots,
decrease throughout the DBBO process. The decreasing cost
values show that the robots are learning to have faster rise times
and smaller fluctuations in their paths as they attempt to
maintain a given distance from the wall.

Recall that we built the robots by hand (see Fig. 2). Although
we tried to build them identically, there are differences between
them due to variations in hardware and manufacturing toler-
ances. This means that the optimal PD parameters vary from one
robot to the next. However, the robots are similar enough to each
other that they can still learn from each other. This is similar to
what we see in human learning. Individual humans are much
different from each other, so optimal success strategies vary from
one individual to the next. However, we are similar enough to
each other that we can still learn from each other.

Our experimental results are preliminary due to hardware
challenges. These results are not intended to be exhaustive, but
are intended to demonstrate that DBBO is a viable option for
distributed evolutionary optimization in practical real-world
systems. For further research we hope to obtain more extensive
experimental results. This will include the use of many more
evolving robots, and more generations. It will also include more
experiments so that we can study the repeatability of DBBO and
compare it with other distributed EAs. It will include the study of
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Fig. 4. Minimum cost and average cost of DBBO/2 as it optimizes the control
performance of four experimental mobile robots. Both the minimum cost and the
average cost of the four robots consistently decreases from one generation to
the next.
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various peer group sizes, including peer group sizes that change
from one generation to the next.

Finally, we note that we did not implement any collision
avoidance strategies in our algorithms. We started our robot
tracking experiments with the robots sufficiently separated from
each other so that there was no danger of collision. If we
implement the ideas in this paper in a real-world setting (for
example, in an office setting or on a factory floor), we would need
to program robot collision avoidance in conjunction with the
robots’ control algorithms.

6. Conclusion

We have developed a distributed version of biogeography-
based optimization that is based on cooperative intelligence. This
new optimization algorithm, which we call DBBO, does not
require a central computer. DBBO rather involves each individual
running the evolutionary algorithm by itself, based on its com-
munication with a small subset of the population. We have
developed a Markov model for DBBO and have verified it by
testing it against simulations. We have tested DBBO against a
common set of benchmark problems, and have used it to optimize
the parameters of a group of experimental robots.

Our results show that DBBO performs at about the same level
as BBO, and that both algorithms are competitive with other EAs.
The advantage of DBBO is that it does not require a central
computer to run the algorithm, and so it is suitable for optimiza-
tion problems in which communication between individuals is
not possible due to geographic or temporal limitations. We have
not compared DBBO in this paper with other distributed EAs, but
such comparisons are important for future work.

This paper opens up many possibilities for future work. We
could conduct additional mathematical modeling to obtain addi-
tional insights into DBBO behavior. Some additional modeling and
analysis tools that could be applied to DBBO include dynamic
system modeling [38], and statistical mechanics and Walsh trans-
form approximations [29]. The Markov models in this paper are
specific tools that can be theoretically applied to any population
size, but they are limited to the determination of population
distributions in the limit as the generation count approaches
infinity. Dynamic system models provide population distributions
at each generation in the limit as the population size approaches
infinity. A dynamic system model of BBO is derived in [38] and
could be extended in future work to DBBO. Although Markov and
dynamic system models provide population distributions, they do
not provide the variance of the population distribution. EA
population variances can be obtained with statistical mechanics
models. A statistical mechanics model of BBO is derived in [18]
and could be extended in future work to DBBO. Although we used
Markov models in this paper to find the population distribution of
DBBO, we did not study the convergence behavior of DBBO.
However, Markov models can be used to study convergence
behavior. Such a study is conducted in [17] for BBO and could
be extended in future work to DBBO.

More work could be done on finding appropriate tuning
parameters for DBBO. These tuning parameters could be obtained
using either simulation results or the Markov model. For example,
suppose that we are interested in solving some specific real-world
problem that has a computationally expensive fitness function.
We could use the Markov model on a small-scale version of the
problem to find the best values for mutation rate, migration curve
parameters, and so on, rather than relying on simulation results.

We suggest further research to provide problem-dependent
guidance for when to use DBBO instead of BBO, and vice versa. We
also note that the distributed learning approach proposed here

could also, with appropriate modifications, be implemented in
many other evolutionary algorithms (genetic algorithms, particle
swarm optimization, differential evolution, and so on). The
Markov model developed here could be used to obtain numerical
comparisons between BBO, DBBO with various parameter set-
tings, and other EAs. Finally, we mention that the development of
Markov models for BBO and DBBO in continuous state-spaces is
an important direction for future research.
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