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a b s t r a c t

Differential evolution (DE) is among the most efficient evolutionary algorithms (EAs) for

global optimization and now widely applied to solve diverse real-world applications. As the

most appropriate configuration of DE to efficiently solve different optimization problems can

be significantly different, an appropriate combination of multiple strategies into one DE vari-

ant attracts increasing attention recently. In this study, we propose a multi-population based

approach to realize an ensemble of multiple strategies, thereby resulting in a new DE vari-

ant named multi-population ensemble DE (MPEDE) which simultaneously consists of three

mutation strategies, i.e., “current-to-pbest/1” and “current-to-rand/1” and “rand/1”. There are

three equally sized smaller indicator subpopulations and one much larger reward subpopula-

tion. Each constituent mutation strategy has one indicator subpopulation. After every certain

number of generations, the current best performing mutation strategy will be determined ac-

cording to the ratios between fitness improvements and consumed function evaluations. Then

the reward subpopulation will be allocated to the determined best performing mutation strat-

egy dynamically. As a result, better mutation strategies obtain more computational resources

in an adaptive manner during the evolution. The control parameters of each mutation strategy

are adapted independently as well. Extensive experiments on the suit of CEC 2005 benchmark

functions and comprehensive comparisons with several other efficient DE variants show the

competitive performance of the proposed MPEDE.

© 2015 Published by Elsevier Inc.

1. Introduction1

Differential evolution (DE), first proposed by Storn and Price [47], is one of the most efficient evolutionary algorithms (EAs)2

currently in use. DE is a population-based stochastic search technique, in which mutation, crossover, and selection operators3

are utilized at each generation to move the population toward the global optimum [56]. Numerous studies have been done on4

DE with respect to the novel mutation strategy design [5,23,51,52], hybridization [37,43,72] and population diversity control5
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[10,61,73]. DE has been now widely applied to solve various optimization problems from various fields, such as power systems6

optimization [7,60], time series prediction [15], and feature selection [2].7

The performance of DE highly depends on the configuration of mutation strategy and control parameters, such as population8

size NP, scaling factor F and crossover rate Cr [33]. Generally, the most appropriate mutation and parameter settings required by9

DE to solve different optimization problems are different [56]. This is because some mutation strategies are effective for the global10

search [39] and some others are useful for rotated problems [12], and that some control parameter settings can promote the11

convergence [40] and some other settings are more efficient for solving separable functions [41]. In addition, evidences show that12

even for one specific optimization problem, the required best strategies and parameters may vary during the evolutionary process13

[39]. Moreover, as can be observed in literature, several claims and counter-claims were reported concerning the setting of the14

control parameters [14]. Nevertheless, traditional trial-and-error approaches for determining the best strategy and parameters15

are usually inefficient and time-consuming, especially when solving a variety of optimization problems.16

As a result, methods for automated tuning or ensemble of mutation strategies and parameters naturally attract increasing17

attention [6,19,33,39,67]. Consequently, many enhanced DE variants such as SaDE (with adapted mutation strategies and param-18

eters) [39], jDE (with self-adapted parameters) [6], CoDE (composition of multiple strategies and parameter settings) [56], JADE19

(with “current-to-pbest/1” mutation strategy and adaptive parameters) [67], DE–DPS [42] (with dynamic selection of the best20

performing combinations of parameters), self-CCDE and self-CSDE [17] (with cluster-based strategy and self-adaptive parameter21

control), ADE [63] (with two-level adaptive parameter control scheme), CoBiDE (with covariance matrix learning and bimodal22

distribution parameter setting) [57] and EPSDE (with ensemble of mutation strategies and parameters) [33], have been proposed.23

In this study, we propose a novel DE variant (named MPEDE for short), in which a multi-population based approach is utilized24

to realize a dynamic ensemble of multiple mutation strategies. In addition, parameters such as scaling factor F and crossover rate25

Cr, associated with each mutation strategy are adapted based on the approach proposed in [67]. In MPEDE, mutation strategies26

“current-to-pbest/1”, “current-to-rand/1” and “rand/1” are taken as constituent mutation strategies. There are two types of sub-27

populations in MPEDE namely, three indicator subpopulations and one reward subpopulation. Initially, each mutation strategy28

obtains an indicator subpopulation and the reward subpopulation is randomly assigned to one of the three mutation strategies.29

Then during the evolutionary process, after every certain number of generations, the mutation strategy that performed the best30

during the previous generations is determined with respect to the ratios between the fitness improvements and consumed func-31

tion evaluations. Subsequently, the reward subpopulation is assigned to the determined best performed mutation strategy as a32

reward. With the algorithm proceeding, the best mutation strategy determination and reward population assignment operations33

are executed periodically. By using these steps, we ensure that the recently best performing strategy will be given more com-34

putational resources. MPEDE is tested on the suit of CEC 2005 benchmark functions with 30 and 50 variables, respectively. The35

competitive performance of MPEDE is exhibited by extensive comparisons with several state-of-the-art DE variants.36

Recently, population partitioning techniques for enhancing the performance of EAs and swarms, such as particle swarm op-37

timization (PSO) and DE, attracted increasing attention [4,28,35,64,68,70]. Our work is different from previous studies in several38

aspects. First and foremost, the application of multi-population techniques in previous literature is aimed to maintain popula-39

tion diversities of EAs while our study is aimed to realize the ensemble of multiple mutation strategies as well as automated40

computational resource allocation among mutation strategies of DE. Second, all previous work partition the original population41

into multiple smaller ones that have the same sizes. By contrast, the sizes of subpopulations in this paper are not equal. Third,42

major former studies utilize the same mutation strategy in different subpopulations while in MPEDE three mutation strategies43

are employed and the best mutation strategy will dynamically be rewarded with larger population resources during the run of44

MPEDE. We believe that the proposed multi-population framework will be a new paradigm for effective ensemble of multiple45

strategies for DE.46

The rest of the paper is structured as follows: Section 2 gives a brief introduction to canonical DE, including its typical muta-47

tion operators, crossover, and selection operators. Section 3 reviews the related works in literature. Section 4 introduces details48

of the implementation of MPEDE. Section 5 reports the experimental results. Section 6 applies MPEDE to solve a real-world49

problem. Section 7 concludes this paper.50

2. Differential evolution51

Differential evolution (DE) being a parallel direct search method utilizes NP, D-dimensional decision vectors called population52

that encodes the candidate solutions, i.e. Xi,G = {x1
i,G

, . . . , xD
i,G

}, i = 1, . . . , NP. The initial value of the jth decision variable of the53

ith individual at generation G = 0 is generated within the search space constrained by the prescribed minimum and maximum54

decision variable’s bounds Xmin = {x1
min

, . . . , xD
min

} and Xmax = {x1
max, . . . , xD

max} by:55

x j
i,0

= x j
min

+ rand(0, 1).(x j
max − x j

min
) j = 1, 2, . . . ,D (1)

where rand(0,1) represents a uniformly distributed random variable within the range [0,1]. In other words, the initial population56

is obtained by uniform random sampling of the search space.57

After initialization, the population evolves over generations through operations such as mutation, crossover and selection.58

In every generation, corresponding to each individual in the current population, trial vectors are produced through mutation59

and crossover operations. Each trial vector competes to replace the corresponding parent in the population during the selection60

process.61
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At generation G, during the mutation process, corresponding to each individual Xi,G in the current population, mutant vector62

Vi,G = {v1
i,G

, v2
i,G

, . . . , vD
i,G

} is produced employing one of the following mutation strategies.63

“DE/best/1” [46] : Vi,G = Xbest,G + F.(Xr1
i,G − Xri

2
,G) (2)

64

“DE/best/2” [46] : Vi,G = Xbest,G + F.(Xr1
i,G − Xri

2
,G) + F.(Xr3

i,G − Xri
4
,G) (3)

65

“DE/rand/1” [46] : Vi,G = Xr1
i,G + F.(Xr2

i,G − Xri
3
,G) (4)

66

“DE/rand/2” [39] : Vi,G = Xr1
i,G + F.(Xr2

i,G − Xri
3
,G) + F.(Xr4

i,G − Xri
5
,G) (5)

67

“DE/current-to-rand/1” [24] : Ui,G = Xi,G + K.(Xri
1,G − Xi,G) + F.(Xri

2,G − Xri
3,G) (6)

In Eqs. (2)–(6), corresponding to each i, the indices ri
1
, ri

2
, ri

3
, ri

4
, ri

5
should be mutually exclusive and are generated randomly68

once for each mutant vector within the range of [1, NP]. Xbest ,G is the best individual vector with the best fitness value in the69

population at generation G. F is positive parameter referred to as the scale parameter for scaling the difference vector. K and F are70

randomly chosen within the range [0,1].71

From the target vector Xi,G and its corresponding mutant vector Vi,G, trial vector Ui,G = {u1
i,G

, u2
i,G

, . . . , uD
i,G

} is generated by a72

crossover operation. In DE, the crossover operation can be realized by using one of the two methods referred to as binomial (or73

uniform) and exponential (or two-point modulo) [71]. Frequently DE employs binomial crossover defined as [47]:74

uj
i,G

=
{

v j
i,G

x j
i,G

if (rand j[0, 1] ≤ CR) or ( j = jrand), j = 1, 2, . . . , D

otherwise
(7)

In (7), the crossover probability, CR ∈ [0,1], is a user-specified constant which controls the number of decision variable values75

that are copied from the mutant vector to the trail vector. jrand is a randomly chosen integer in the range [1, D]. In the above76

equation, the condition j = jrand is employed to ensure trial vector Ui,G to differ from its corresponding target vector Xi,G in77

at least one decision variable. Binomial crossover is uniform and does not exhibit a representational bias since each decision78

variable of the mutant vector, regardless of its location, has the same probability CR of inheriting its value from a given to the79

trail vector Ui,G.80

During mutation and crossover operations, if any decision variable’s value of newly generated trial vectors exceeds the upper81

or lower bound, then they are set to the corresponding bound or reinitialized randomly and uniformly within the pre-specified82

range. The objective function values of all trial vectors are then evaluated and the selection operation is performed. In other83

words, the objective function value of each trial vector f (Ui,G) is compared to its corresponding target vector f (Xi,G) in the84

current population. In a minimization problem, if the trial vector has a less or equal objective function value compared to the85

corresponding target vector, then the trial vector will replace the target vector and enter the population for the next generation.86

If not, the target vector remains in the population for the next generation. The selection operation can be expressed as follows:87

Xi,G+1 =
{

Ui,G,

Xi,G,

if f (Ui,G) ≤ f (Xi,G)

otherwise
(8)

These 3 steps – mutation, crossover, and selection – are repeated generation after generation until a termination criterion88

(reaching the preset maximum number of function evaluations) is satisfied.89

3. Related works90
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Differential evolution (DE) algorithm is a floating-point encoded evolutionary algorithm over continuous spaces [47]. Re-

cently, DE has attracted much attention due to its simplicity. However, the performance of conventional DE algorithm depends

on the chosen mutation/crossover strategies and the associated control parameters. In addition, the performance of DE becomes

more sensitive to strategies and their associated parameter values as the complexity of the problem increases [16]. In other

words, the inappropriate selection of strategies and parameters may lead to a premature convergence, stagnation, or a waste of

computational resources [13,16,27,38,65]. Initially it was thought that [47,48] selection of strategies and parameters is straightfor-

ward. But, due to the complex decision variables’ interaction with DE’s performance on hard optimization problems [6], choosing
appropriate mutation and control strategies and control parameters require some expertise. Since DE was proposed, various em-

pirical guidelines have been suggested for choosing strategies and their associated control parameter settings depending on the

characteristics of the problem.

The standard DE algorithm proposed by Price and Storn employs DE/rand/1/bin. In [16, 47] it was stated that 2 difference

vector strategies, such as DE/rand/2/bin and DE/best/2/bin, are better single difference vector strategies such as DE/rand/1/bin

and DE/best/1/bin due to their ability to improve the diversity by producing more trial vectors [27]. In addition, the mutation

strategies relying on the best individual in the current population such as DE/best/1/bin and DE/rand-to-best/1/bin are faster

for easier optimization problems, but become unreliable when solving highly multi-modal problems. To balance the exploration

Please cite this article as: G. Wu et al., Differential evolution with multi-population based ensemble of mutation strategies,
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and exploitation abilities of DE, the DE/target-to-best/1/bin scheme employing a topological neighborhood concept of each pop-

ulation member was proposed [12]. Classical rand-based strategy is slower, but more robust compared to strategies that rely

on the best-so-far vector. “current-to-rand/1” mutation strategy demonstrates rotation-invariance compared to other strategies

[24]. In [67], Zhang and Sanderson proposed the “current-to-pbest/1” mutation operator with optional archive, which balances

the exploitation and exploration capabilities. Exploitation and exploration are two key points in designing efficient evolutionary

and swarm intelligence algorithms [59]. In [18], ranking-based mutation operators were designed and incorporated into classical

mutation strategies, which results in significant performance improvement.

Extensive studies have been done on appropriate setting of the control parameters of DE, such as the population size NP,

crossover rate CR and scaling factor F . For example, separable and uni-modal functions require smaller population sizes to speed

up the convergence, whereas decision variable-linked multi-modal functions require larger populations to avoid premature con-

vergence. Initially, a population size NP = 10D was considered to be a good choice for the DE to find the global optimum [47].

However, to balance convergence speed and reliability, different ranges of NP values, such as 5D–10D [47], 3D–8D [16], and 2D–

40D [41] have also been suggested. Crossover rate CR (0 ≤ CR ≤ 1) controls the number of components in each individual to be

mutated in the current population [66]. A large value of CR speeds up convergence [16, 46, 47]. In [47], it was said that CR = 0.1

was a good initial choice whereas CR = 0.9 or 1.0 could be tried to increase the convergence speed. In [16], a good choice for CR

was said to lie in between 0.3 and 0.9. The scaling factor, F is generally chosen from [0.5,1] [46]. A larger F increases the probabil-

ity of escaping from a local optimum [16,41]. In [16,47], it was said that F = 0.6 or 0.5 would be a good initial choice. However, in

[41] it was mentioned that F = 0.9 would be a good initial choice. Therefore, according to [41] typical values of F lie in between

0.4 and 0.95.

From the above, it can be observed that various conclusions have been drawn regarding the manual parameter tuning of

DE, which lack sufficient justification. Therefore, to avoid the tuning of trial-and-error, various techniques have been developed.

Some parameter adaptation strategies were proposed, such as linear reduction [13], random sampling [8], fuzzy logic control

[30], simulated annealing based parameter control [22] and population diversity based parameter control [65]. Omran et al.

[36] introduced a self-adaptation scheme (SDE) in which the CR was generated randomly for each individual using a normal

distribution N(0.5, 0.15), whereas the scale factor F was adapted analogously to the adaptation of the crossover rate CR in [1].

Brest et al. [6] proposed a self-adaptation scheme (jDE), in which control parameters F and CR were encoded into the individuals

and are adjusted in the run of DE.

Recently, to alleviate the problem of strategy and parameter tuning, the idea of incorporating ensemble strategies and pa-

rameters into evolutionary algorithms has been explored. Qin et al. [39] proposed a self-adaptive DE algorithm (SaDE) in which

the mutation strategies and the respective control parameter are self-adapted based on their previous experiences of generating

promising solutions. The scale factor, F was randomly generated with a mean and standard deviation of 0.5 and 0.3, respectively.

Gong et al. [20] presented two DE variants with two adaptive strategy selection techniques, namely the Probability Matching and

Adaptive Pursuit to choose appropriate mutation strategies with certain probabilities. The selection probabilities of mutation

strategies are determined by their respective previous search performance that is evaluated by a credit assignment technique.

In [31,33], the authors proposed a DE algorithm with an ensemble of mutation strategies and parameter values (EPSDE) which

consists of a pool of mutation and crossover strategies and their associated parameter values. Initially, the population members

randomly pick the strategies and parameter values from the respective pools and produce an offspring population. Depending

on the success of the offspring, the corresponding combination of strategies and their associated parameter values is retained or

reinitialized. In EPSDE, the retaining of the combination that produces better offspring and reinitializing the combination that

are incapable of producing competitive offspring favors the selection of the combination that produce better solutions in the

due course of the evolution. Inspired by the success, the idea ensemble learning has been further explored to solve constrained

optimization problems [32]. Wang and co-workers presented a DE variant named ICDE to deal with constrained optimization

problems. ICDE employs multiple mutation strategies and the binomial crossover to generate the offspring population [25]. Very

recently, Gong et al. [21] proposed a cheap surrogate model for the ensemble of multiple search operators in evolutionary op-

timization. In their approach, a set of candidate offspring solutions are generated by using the multiple offspring reproduction

operators and the best one according to the surrogate model is chosen as the offspring solution. Multi-objective optimization

involves more than one objective function to be optimized simultaneously, which plays an important role in multiple criteria de-

cision making [53–55]. Zhao et al. proposed an ensemble of different neighborhood sizes with online self-adaptation to enhance

the multiobjective evolutionary algorithm based on decomposition [69].

The concepts of “multi-swarm” and “multi-population island models” have been introduced to improve the performance of

particle swarm optimization (PSO) and DE in several studies [4,28,29,35,64,68,70]. These previous studies mainly partition the

initial population or swarm into multiple equal smaller subpopulations or sub-swarms. As the algorithm proceeds, information

exchange among subpopulations (or sub-swarms) and regrouping operators will be triggered with a certain frequency with the

aim to maintain the diversity of the whole population and balance the exploitation and exploration capabilities. Recently, a multi-

population DE (mDE-bES) was introduced to boost the population diversity while preserving simplicity to solve large-scale global

optimization problems [3]. In mDE-bES, subpopulations have the same sizes and each is with a different mutation and update

strategy. After every certain number of generations, individuals between the subgroups are exchanged to facilitate information

exchange. Shang et al. [45] proposed a multi-population based cooperative coevolutionary algorithm (MPCCA) to solve the multi-

objective capacitated arc routing problem. In MPCCA, population is partitioned into multiple subpopulations with respect to their

different direction vectors. These subpopulations evolve separately and search different objective sub-regions simultaneously.
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The adjacent subpopulations are able to share their information. The differences between our research and other related studies

are explained in Section 1.

4. Multi-population based ensemble DE (MPEDE)

In this work, to realize an effective ensemble of multiple mutation strategies into one DE variant, we dynamically partition

the whole population into multiple indicator subpopulations (with equal and relatively smaller sizes) and one relatively large

sized reward subpopulation at each generation. Each indicator subpopulation is assigned to a mutation strategy. Meanwhile, the

reward subpopulation is assigned to the mutation strategy that performed the best during the recent previous generations. Sub-

populations represent computational resources. Thus, the best performing mutation strategy is able to gain more computational

resources.

4.1. Multi-population based mutation strategy ensemble approach

Different mutation strategies are required for a DE variant to solve various optimization problems efficiently. In addition, even

for a specific optimization problem, the most suitable mutation strategies may be different at different stages of the evolutionary

process. As a result, the choice of candidate mutation strategy plays a key role in designing an efficient ensemble DE variant.

Our principle is to choose well investigated mutation strategies each of which has respective advantages. Three popular muta-

tion strategies are selected in this study, including “current-to-pbest/1” with an archive, “current-to-rand/1” and “rand/1”. The

“rand/1” is robust and the most commonly used mutation strategy. In addition, evidences show that “current-to-pbest/1” with

an archive is very competitive in solving complex optimization problems, especially those with unimodal landscapes [67] or after

one or more population members discover the global basin in a multimodal landscape. In contrast, the “current-to-rand/1” mu-

tation strategy, which is applied without the aid of crossover operation, is particularly useful in solving rotated problems, as it is

rotation-invariant [12]. The employed constituent mutation strategies are listed as below. It should be noted that the “rand/1” and

“current-to-pbest/1” mutation strategies are used with the combination of binominal crossover while the “current-to-rand/1”

strategy is used without crossover.

Mutation strategy 1: “current-to-pbest/1”

Vi,G = Xi,G + F · (Xpbest,G − Xi,G + Xri
1
,G − X̃ri

2
,G) (9)

Mutation strategy 2: “current-to-rand/1”

Ui,G = Xi,G + K · (Xri
1
,G − Xi,G) + F · (Xri

2
,G − Xri

3
,G) (10)

Mutation strategy 3: “rand/1”

Vi,G = Xri
1
,G + F · (Xri

2
,G − Xri

3
,G) (11)

To realize the effective ensemble of the three constituent mutation strategies, we divided the population into four subpopu-

lations, say pop1, pop2, pop3 and pop4 randomly every generation. pop1, pop2 and pop3 have the same size and are categorized

as indicator subpopulations while pop4 is categorized as the reward subpopulation. In general, the size of an indicator subpopu-

lation is much smaller than the size of the reward subpopulation. Let pop denote the overall population. Obviously, we have

pop =
⋃

j=1,...4
popj (12)

Let NP be the size of pop, NPj be the size of pop j , and λ j be the portion between pop j and pop. Clearly, we have

NPj = λ j · NP, j = 1, 2, . . . , 4 (13)

∑
j=1,...4

λ j = 1 (14)

In this study, we let λ1 = λ2 = λ3.

At the beginning, subpopulations pop1, pop2 and pop3 are assigned to the corresponding mutation strategies and pop4 is

randomly assigned to one constituent mutation. As the algorithm proceeds, after every ng (a predefined parameter) number of

generations, we determine the mutation strategy that performed the best during the previous ng generations. The determined

best performed mutation strategy then will be rewarded by more computational resources in the following ng generations by

assigning the reward subpopulation pop4. When determining the current best performing constituent mutation strategy, the

metric for evaluating the performance of the jth mutation strategy is � f j/�Fes j , where � f j is the accumulated fitness improve-

ment brought by the jth mutation strategy during the previous ng generations, and �Fes j is the function evaluations consumed

by the jth mutation strategy during the former ng generations.

The best performing mutation strategy determination and reward subpopulation assignment operations described above are

executed periodically with ng being the period. With this idea, we ensure that the best mutation strategy consumes the most

computational resources.
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The indicator subpopulation is to provide each mutation strategy with basic and sufficient computational resources to facil-

itate the effective evaluation of the performance of each mutation strategy. The reward subpopulation gives more resources to

the best performed mutation strategy which then dominates the optimization process. It should be noted that, in the imple-

mentation of MPEDE, each subpopulation is randomly sampled from the overall population at each generation, which actually

enables mutation strategies to share optimization experience with each other and realizes the information exchange among

subpopulations.

4.2. Parameter adaptation

Several effective parameter adaptation approaches have been proposed in previous studies [6,39,67]. As mutation strategies

and parameters are correlated in influencing the performance of a DE variant and different mutation strategies may require

different parameter settings, we let each mutation strategy have its independent parameters. We have tried to use different

techniques in [6,39,67] to adapt the parameters of MPEDE and found the technique in [67] is the most suitable. As a result, the

technique in [67] is eventually applied and extended here to adapt the parameters of multiple mutation strategies in MPEDE.

Let CRi, j be the crossover probability of individual Xi that uses jth mutation strategy to produce a trial solution. At each

generation g, CRi, j is generated according to the following normal distribution,

CRi, j = randni, j(μCRj, 0.1), (15)

where, μCR j is the mean value and 0.1 is the standard deviation value. CRi, j will be truncated to [0,1] if necessary. Let SCR, j be

the collection of any CRi, j that helps the jth mutation strategy to generate improved solutions at generation g. The initial value

of μCR j is set to 0.5. After each generation, μCR j is updated as

μCRj = (1 − c) · μCRj + c · meanA(SCR, j), (16)

where, c is a positive constant between 0 and 1 and meanA is a function calculating the arithmetic mean value of elements in

SCR, j .

Similarly, the scaling factor Fi, j of individual Xi that uses the jth mutation strategy is updated according to Cauchy distribution

as below at each generation g

Fi, j = randci, j(μFj, 0.1), (17)

where, μFj is the location parameter and 0.1 is the scale parameter of the used Cauchy distribution. Also, Fi, j will be truncated to

[0,1] if necessary after the update.

Let SF, j be the collection of any Fi, j that helps the jth mutation strategy to generate improved solutions at generation g. μFj is

initialized to 0.5 and updated as below at each generation,

μFj = (1 − c) · μFj + c · meanL(SF, j), (18)

where, meanL is the Lehmer mean as below

meanL =
∑

F∈SF
F 2∑

F∈SF
F

(19)

According to the mutation strategy ensemble and parameter adaptation introduced above, we come to the framework of MPEDE

as given in Algorithm 1.

5. Experimental study

5.1. Experimental settings

To test the performance of MPEDE, a suit of 25 well benchmarked optimization functions proposed in the CEC 2005 spe-

cial session on real-parameter optimization are utilized [49]. This benchmark suit includes unimodal functions (F1–F5), basic

multimodal functions (F6–F12), expanded multimodal functions (F13–F14) and hybrid composition functions (F15–F25). For

more information about the benchmark optimization functions, please refer to [49]. When implementing MPEDE, correspond-

ing parameters are set as: λ1 = λ2 = λ3 = 0.2, NP = 250 and ng = 20. Related parameter sensitivity analyses will be given in

Section 5.4.

MPEDE was compared with six other state-of-the-art DE variants including JADE [67], jDE [6], SaDE [39], EPSDE [33], CoDE

[56] and SHADE [50]. The reasons we choose these six DE variants as comparative algorithms are explained as follows. First, JADE

and jDE are two representative DE variants that are very efficient and frequently cited in literature as baseline algorithms. Second,

SaDE, EPSDE and CoDE also incorporate multiple mutation strategies as MPEDE. Hence, it is meaningful to compare MPEDE with

them. Third, SHADE is a recently proposed DE variant, which reflects the latest progress of DE. All the mutation strategies and

parameter settings of these DE variants are the same as those given in the original references.

To provide a more comprehensive comparison, we run each comparative algorithm 25 times over the benchmark functions

with 30 and 50 decision variables. The allowed maximum function evaluations (FEs) for the benchmark functions with 30 and
50 decision variables are set to 300 000 and 500 000, respectively.
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Algorithm 1

Pseudo code of MPEDE.

Set μCRj = 0.5, μFj = 0.5, � f j = 0 and �Fes j = 0 for each j = 1, . . . , 4;

Initialize, NP, ng for each j = 1, . . . , 4;

Initialize the pop randomly distributed in the solution space;

Initial λ j and set NPj = λ j · NP;

Randomly partition pop into pop1, pop2, pop3 and pop4 with respect to their sizes.;

Randomly select a subpopulation popj ( j = 1, 2, 3) and combine popj with pop4. Let popj = popj ∪ pop4 and NPj = NPj + NP4;

Set g = 0;
While g ≤ MaxG

g = g + 1;
For j = 1 → 3

Calculate μCRj and μFj;

Calculate CRi, j and Fi, j for each individual Xi in popj;

Perform the jth mutation strategy and related crossover operators over subpopulation pop j;

Set SCR, j = ∅ and SF, j = ∅;

End For

For i = 1 → NP

If f (Xi,g) ≤ f (ui,g)

Xi+1,g = Xi,g;

Else

Xi+1,g = Ui,g; � f j = � f j + f (Xi,g) − f (ui,g);

CRi, j → SCR, j; Fi, j → SF, j

If Else

End For

pop = ⋃
j=1,...3 popj;

If mod(g, ng) == 0

k = arg (max1≤ j≤3(
� f j

ng·NPj
))

� f j = 0;

End If

Randomly partition pop into pop1, pop2, pop3 and pop4;

Let popk = popk ∪ pop4 and NPk = NPk + NP4;

End While

5.2. Experimental results and comparisons with other peer DE variants

The computational results obtained by running each of the six comparative DE variants 25 times on each benchmark function

with 30 and 50 variables are reported in Tables 1 and 2, respectively. The mean error and standard deviation (in bracket) of the

function error values are provided in the two tables. Results obtained by MPEDE are highlighted if they are the best. In addition,

Wilcoxon’s rank sum test at a 0.05 significance level is conducted between MPEDE and JADE, jDE, SaDE, EPSDE, CoDE and SHADE.

Signs “−”, “+”, and “≈” indicate that the related comparative DE variant is significantly worse than, better than, and similar to

MPEDE, respectively. From the data given in Table 1, we can make several observations and conclusions.

First, for unimodal functions F1–F5, JADE and SHADE show the best performance. MPEDE is also very competitive. Actually,

MPEDE obtains significantly better results for F3 than all other peers. In addition, MPEDE is comparable to JADE and SHADE on

functions F1 and F4. Although JADE and SHADE outperform MPEDE on functions F2 and F5, MPEDE is capable of finding the

optimal solutions for these two functions at the cost of a few more functions evaluations. Whereas, compared with the other

four DE variants, jDE, SaDE, EPSDE and CoDE, MPEDE exhibits better overall performance. MPEDE outperforms jDE, SaDE, EPSDE

and CoDE on four, four, three and four benchmark functions, respectively. jDE, SaDE and CoDE are not able to produce a better

solution than MPEDE on any of the considered unimodal functions. EPSDE is comparable to MPEDE on benchmark function F2.

Secondly, for basic multi-modal benchmark functions F6–F12, both MPEDE and CoDE show better performance than other

comparative ones. MPEDE is superior to CoDE on functions F7, F10 and F12 while inferior to CoDE on functions F6, F8 and F11.

MPEDE outperforms JADE, jDE, SaDE, EPSDE and SHADE on three (F10–F12), five (F6, F7 and F10–F12), four (F7 and F10–F12),

four (F7 and F10–F12) and three (F10–F12) benchmark functions, respectively. Both JADE and jDE cannot beat MPEDE on any of

the considered basic multi-modal functions. SaDE, EPSDE and SHADE are better than MPEDE on one (F11), one (F6) and two (F6

and F8) functions, respectively.

Thirdly, as for expanded multimodal functions, MPEDE generally performs worse than other peer DE variants (except SaDE)

on function F13 while it outperforms (jDE, SaDE and EPSDE) or equals (JADE, CoDE and SHADE) to other DE variants on function

F14.

Finally, with regard to the more complex hybrid composition functions, MPEDE exhibits better overall performance than these

comparative DE variants. In fact, it outperforms JADE, jDE, SaDE, EPSDE, CoDE and SHADE on four (F16, F17, F23 and F25), three

(F16, F17 and F25), five (F16, F17, F21, F22 and F25), six (F16, F17, F21 and F23–F25), four (F16, F17, F19 and F25) and three (F16,

F17 and F25) benchmark functions, respectively. JADE, jDE, CoDE and SHADE cannot outperform MPEDE on any of the considered

hybrid composition functions. The performance of SaDE is better than that of MPEDE only on function F19. EPSDE is superior to

MPEDE on functions F15, F18–F20 and F22.
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Table 1

Computational result of benchmark functions with 30 variables.

Functions JADE jDE SaDE EPSDE CoDE SHADE MPEDE

Unimodal

functions

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ 0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (0.00E+00)

F2 1.26E−28 3.45E−06 2.77E−06 8.32E−26 6.77E−15 4.51e−29 1.01E−26

(1.22E−28)+ (2.76E−06)− (8.52E−06)− (2.66E−26)≈ (3.44E−15)− (7.28e−29)+ (2.05E−26)

F3 8.42E+03 2.44E+05 5.33E+05 6.34E+05 5.65E+05 6.20e+03 1.01E+01

(6.58E+03)− (3.22E+05)− (4.34E+05)− (3.44E+06)− (5.66E+04)− (5.14e+03)− (8.32E+00)

F4 4.13E−16 4.78E−02 1.93E+02 3.88E+02 6.21E−03 7.03e−16 6.61E−16

(3.45E−16)≈ (2.12E−01)− (3.22E+02)− (3.13E+03)− (4.67E−02)− (1.01e−15)≈ (5.68E−16)

F5 7.59E−08 5.56E+02 3.76E+03 1.38E+03 3.16E+02 3.15e−10 7.21E−06

(5.65E−07)+ (5.62E+02)− (6.12E+02)− (7.43E+02)− (3.62E+02)− (6.91e−10)+ (5.12E−06)

Basic

multi-modal

functions

F6 1.16E+01 2.65E+01 5.28E+01 6.44E−01 2.32E−01 2.64e−27 9.65E+00

(3.16E+01)− (2.32E+01)− (4.15E+01)− (1.24E+00)+ (6.57E−01)+ (1.32e−26)+ (4.65E+00)

F7 8.27E−03 1.14E−02 1.65E−02 1.58E−02 7.39E−03 2.17e−03 2.36E−03

(8.22E−03)− (7.28E−03)− (1.58E−02)− (2.54E−02)− (6.45E−03)− (4.29e−03)≈ (1.15E−03)

F8 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.01E+01 2.05e+01 2.09E+01

(1.68E - 01)≈ (4.54E−01)≈ (3.54E−01)≈ (2.84E−01)≈ (125E−01)+ (3.39e−01)+ (5.87E−01)

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (0.00E+00)

F10 2.42E+01 5.46E+01 4.76E+01 5.24E+01 4.21E+01 1.62e+01 1.52E+01

(5.44E+00)− (8.85E+00)− (1.26E+01)− (4.64E+01)− (2.84E+01)− (3.35e+00)− (2.98E+00)

F11 2.57E+01 2.88E+01 1.68E+01 3.77E+01 1.24E+01 2.71e+01 2.58E+01

(2.21E+00)≈ (2.61E+00)− (1.64E+00)+ (6.22E+00)− (3.55E+00)+ (1.57e+00)− (3.11E+00)

F12 6.45E+03 8.23E+03 3.44E+03 3.67E+04 3.21E+03 2.90e+03 1.17E+03

(2.89E+03)− (8.54E+03)− (4.42E+03)− (5.66E+03)− (4.48E+03)− (3.11e+03)− (8.66E+02)

Expanded

multimodal

functions

F13 1.47E+00 1.67E+00 3.84E+00 2.04E+00 1.66E+00 1.15e+00 2.92E+00

(1.15E−01)+ (1.56E−01)+ (2.66E−01)− (2.12E−01)+ (3.25E−01)+ (9.33e−02)+ (6.33E−01)

F14 1.23E+01 1.30E+01 1.26E+01 1.35E+01 1.23E+01 1.25e+01 1.23E+01

(3.21E−01)≈ (2.23E−01)− (2.83E−01)− (2.35E−01)− (3.56E−01)≈ (3.67e−01)− (4.22E−01)

Hybrid

composition

functions

F15 3.61E+02 3.75E+02 3.85E+02 2.12E+02 3.86E+02 3.72e+02 3.78E+02

(2.24E+02)≈ (5.34E+01)≈ (4.42E+01)≈ (2.25E+01)+ (5.24E+01)≈ (9.62e+01)≈ (6.32E+01)

F16 9.33E+02 7.64E+01 8.65E+01 1.18E+02 7.25E+01 9.79e+01 3.77E+01

(1.31E+02)− (3.16E+01)− (5.65E+01)− (8.25E+01)− (6.22E+01)−- (1.35e+02)− (5.22E+00)

F17 1.21E+02 1.24E+02 8.15E+01 1.42E+02 7.16E+01 1.71e+02 4.36E+01

(1.08E+02)− (4.82E+01)− (3.46E+01)− (1.15E+02)− (2.35E+01)− (1.58e+02)− (6.35E+00)

F18 9.04E+02 9.04E+02 8.73E+02 8.24E+02 9.04E+02 9.04e+02 9.04E+02

(1.24E+00)≈ (1.21E+01)≈ (5.44E+01)≈ (5.84E+00)+ (1.34E+00)≈ (9.88e−01)≈ (1.21E+00)

F19 9.04E+02 9.04E+02 8.74E+02 8.31E+02 9.05E+02 9.04e+02 9.04E+02

(8.32E−01)≈ (1.32E+00)≈ (6.34E+01)+ (4.25E+00)+ (3.22E−00)− (8.06e−01)≈ (1.24E+00)

F20 9.04E+02 9.04E+02 8.81E+02 8.26E+02 9.04E+02 9.04e+02 9.04E+02

(7.65E−01)≈ (1.24E+00)≈ (5.22E+01)≈ (3.44E+00)+ (6.42E−01)≈ (6.84e−01)≈ (1.18E+00)

F21 5.00E+02 5.00E+02 5.45E+02 8.35E+02 5.00E+02 5.00e+02 5.00E+02

(4.67E−13)≈ (4.72E−13)≈ (2.15E+02)− (1.21E+02)− (4.68E−13)≈ (1.68e−13)≈ (3.54E−14)

F22 8.68E+02 8.78E+02 9.21E+02 5.07E+02 8.78E+02 8.67e+02 8.72E+02

(2.24E+01)≈ (2.23E+01)≈ (2.66E+01)−- (5.54E+00)+ (3.54E+01)≈ (2.23e+01)≈ (2.98E+01)

F23 5.48E+02 5.34E+02 5.34E+02 8.63E+02 5.34E+02 5.34e+02 5.34E+02

(8.62E+01)− (2.42E−04)≈ (8.27E−04)≈ (4.81E+01)− (4.45E−04)≈ (9.99e−05)≈ (3.87E−04)

F24 2.00E+02 2.00E+02 2.00E+02 2.13E+02 2.00E+02 2.00e+02 2.00E+02

(2.12E−14)≈ (3.05E−14)≈ (8.54E−14)≈ (1.68E+00)− (2.62E−14)≈ (8.58e−13)≈ (2.21E−14)

F25 2.11E+02 2.11E+02 2.14E+02 2.13E+02 2.11E+02 2.11e+02 2.09E+02

(7.35E−01)− (5.11E−01)− (2.35E+00)− (2.86E+00)− (6.82E−01)− (9.97e−01)− (3.32E−01)

− 9 13 15 14 11 8

+ 3 1 2 7 4 5

≈ 13 11 8 4 10 12

In summary, MPEDE has the best overall performance compared with other five competitors, namely JADE, jDE, SaDE, EPSDE,

CoDE and SHADE on all the 25 benchmark functions with 30 variables. Actually, the results of Wilcoxon’s rank sum tests reported

in the last three rows indicate that MPEDE is significantly better than JADE, jDE, SaDE, EPSDE, CoDE and SHADE on 9, 13, 15, 14, 11

and 8 functions, respectively. It is significantly worse than JADE, jDE, SaDE, EPSDE, CoDE and SHADE on 3, 1, 2, 7, 4 and 5 functions

and similar to them on 13, 11, 8, 4, 10 and 12 functions, respectively. It can be seen from Table 1 that MPEDE is superior to all

other peer algorithms on benchmark functions F3, F10, F12, F16, F17 and F25 with 30 variables.

From the data about benchmark functions with 50 variables given in Table 2, some observations can be made.

For unimodal functions, MPEDE and SHADE show better overall performance than other DE variants. In addition, JADE is also

competitive. MPEDE outperforms JADE, jDE, SaDE, EPSDE, CoDE and SHADE on three (F3–F5), four (F2–F5), four (F2–F5), three

(F3–F5), five (F1–F5) and two (F4 and F5) functions, respectively. jDE, SaDE and CoDE cannot outperform MPEDE on any of

the considered unimodal functions. It is worth noting that JADE, EPSDE and SHADE surpass MPEDE on function F2, and SHADE

generates the best results for function F3.
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Table 2

Computational results of benchmark functions with 50 variables.

JADE jDE SaDE EPSDE CoDE SHADE MPEDE

Unimodal

functions

F1 0.00E+00 0.00E+00 0.00E+00 5.25E−29 8.07E−30 0.00E+00 0.00E+00

(0.00E+00)≈ (0.00E+00)≈ (0.00E+00)≈ (1.28E−28)− (4.04E−29)− (0.00E+00)≈ (0.00E+00)

F2 3.57E−27 2.22E−02 6.55E−02 5.77E−23 5.87E−09 7.04E−27 8.45E−12

(1.67E−27)+ (3.21E−02)− (4.34E−02) (8.87E−23)+ (6.51E−09)− (3.12E−27)+ (5.66E−12)

F3 1.41E+05 4.48E+05 8.01E+05 7.82E+06 3.22E+05 2.31E+04 6.46E+04

(6.61E+03)− (2.21E+05)− (5.44E+05)− (1.35E+07)− (8.66E+04)− (1.62E+04)+ (3.15E+04)

F4 2.79E+00 3.88E+02 7.28E+02 3.42E+03 4.98E+02 1.31E+00 1.28E+00

(1.26E+01)− (3.13E+02)− (4.56E+02)− (3.51E+04)− (5.78E+02)− (7.65E−01)− (5.22E−01)

F5 1.45E+03 3.65E+03 8.34E+03 4.66E+03 3.60E+03 1.12E+03 4.69E+02

(4.38E+02)− (6.29E+02)− (1.29E+03)− (8.85E+02)− (5.69E+02)− (7.95E+02)− (1.22E+02)

Basic

multi-modal

functions

F6 7.71E+00 4.43E+02 4.39E+02 1.43E+02 1.23E+02 1.59E+00 1.61E+00

(3.03E+01)− (2.78E+01)− (2.52E+01)− (1.95E+00)− (2.12E+00)− (1.89E+00)≈ (1.78E+00)

F7 7.57E−03 2.85E−03 9.23E−03 1.08E−02 6.54E−03 4.92E−03 3.27E−03

(1.09E−02)− (6.10E−03)+ (5.45E−02)− (1.79E−02)− (9.36E−03)− (8.60E−03)− (2.65E−03)

F8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.01E+01 2.07E+01 2.11E+01

(5.93E−02)≈ (3.72E−02)≈ (4.33E−02)≈ (3.35E−02)≈ (1.09E−01)+ (3.12E−01)+ (2.87E−02)

F9 0.00E+00 0.00E+00 9.94E−01 6.39E−16 2.38E+00 7.10E−17 2.68E−07

(0.00E+00)+ (0.00E+00)+ (2.21E−01)− (1.01E−15)− (4.33E−01)− (3.55E−16)+ (2.66E−8)

F10 6.55E+01 9.98E+01 1.14E+02 1.54E+02 8.29E+01 3.75E+01 3.83E+01

(6.93E+00)− (1.32E+01)− (1.54E+01)− (2.53E+01)− (1.93E+01)− (5.78E+00)≈ (4.54E+00)

F11 5.24E+01 5.42E+01 4.45E+01 7.04E+01 3.14E+01 5.56E+01 4.42E+01

(2.15E+00)− (2.10E+00)− (1.89E+00)≈ (3.21E+00)− (5.35E+00)+ (2.21E+00)− (3.16E+00)

F12 1.54E+04 1.57E+04 5.65E+04 3.16E+05 1.54E+04 9.67E+03 8.89E+03

(1.27E+04)− (1.54E+04)− (2.04E+04)− (3.85E+04)− (1.73E+04)− (8.94E+03)− (6.24E+03)

Expanded

multimodal

functions

F13 2.78E+00 2.94E+00 7.27E+00 6.17E+00 3.23E+00 2.13E+00 5.68E+00

(1.99E−01)+ (2.41E−01)+ (7.34E−01)− (6.03E−01)− (4.15E−01)+ (1.15E−01)+ (9.34E−01)

F14 2.16E+01 2.25E+01 2.23E+01 2.34E+01 2.19E+01 2.20E+01 2.19E+01

(4.76E−01)+ (2.26E−01)− (2.42E−01)− (2.63E−01)− (4.39E−01)≈ (3.59E−01)− (2.19E−01)

Hybrid

composition

functions

F15 3.77E+02 3.62E+02 3.86E+02 2.64E+02 3.88E+02 3.21E+02 3.12E+02

(9.03E+01)− (1.21E+02)− (7.62E+01)− (6.45E+01)+ (6.00E+01)− (9.55E+01)≈ (8.51E+01)

F16 8.42E+01 8.35E+01 8.78E+01 1.50E+02 9.35E+01 3.72E+01 3.39E+01

(7.92E+01)− (1.03E+01)− (6.57E+01)− (4.25E+01)− (7.01E+01)− (4.07E+00)− (5.66E+00)

F17 9.39E+01 1.81E+02 9.81E+01 2.38E+02 7.21E+01 9.05E+01 3.62E+01
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(2.64E+01)− (2.31E+01)− (1.01E+02)− (7.01E+01)− (2.58E+01)− (3.11E+01)− (3.11E+01)

F18 9.21E+02 9.20E+02 9.78E+02 8.53E+02 9.21E+02 9.19E+02 9.17E+02

(4.38E+00)− (3.35E+00)− (8.37E+01)− (2.42E+01)+ (5.42E+00)− (4.25E+00)− (3.78E+00)

F19 9.19E+02 9.20E+02 9.78E+02 8.59E+02 9.21E+02 9.19E+02 9.17E+02

(1.07E+01)− (2.88E+00)− (7.81E+01)− (1.54E+01)+ (4.64E+00)− (3.98E+00)− (3.15E+00)

F20 9.21E+02 9.20E+02 9.55E+02 8.56E+02 9.11E+02 9.19E+02 9.18E+02

(3.38E+00)− (3.14E+00)− (3.54E+01)− (3.03E+00)+ (3.38E+01)+ (4.66E+00)− (6.55E+00)

F21 5.52E+02 7.21E+02 5.66E+02 7.29E+02 6.83E+02 6.41E+02 5.00E+02

(1.49E+02)− (2.55E+02)− (2.32E+02)− (2.82E+00)− (2.49E+02)− (2.32E+02)− (2.87E−12)

F22 9.05E+02 9.05E+02 9.82E+02 5.00E+02 9.01E+02 8.96E+02 8.98E+02

(2.48E+01)− (1.23E+00)− (8.21E+01)− (6.61E−02)+ (2.18E+01)− (1.90E+01)≈ (3.01E+01)

F23 5.82E+02 8.60E+02 5.98E+02 7.33E+02 7.10E+02 7.48E+02 5.39E+02

(1.31E+02)− (2.25E+02)− (7.29E+00)− (4.48+00)− (2.33E+02)− (2.39E+02)− (3.41+00)

F24 2.00E+02 2.00E+02 2.89E+02 2.38E+02 2.00E+02 2.31E+02 2.00E+02

(1.49E−12)≈ (1.62E−12)≈ (6.55E+01)− (1.34E+01)− (5.81E−14)≈ (1.57E+02)− (1.65E−12)

F25 2.18E+02 2.16E+02 2.24E+02 2.47E+02 2.17E+02 2.17E+02 2.14E+02

(1.71E+00)− (1.41E+00)− (1.25E+01)− (1.87E+01)− (1.97E+00)− (1.78E+00)− (1.08E+00)

− 18 19 22 18 19 15

+ 4 3 0 6 4 5

≈ 3 3 3 1 2 5

For basic multi-modal benchmark functions, the overall performance of MPEDE is superior to all comparative DE variants.

Actually, MPEDE performs better than JADE, jDE, SaDE, EPSDE, CoDE and SHADE on five (F6, F7 and F10–F12), four (F6 and

F10–F12), five (F6, F7, F9, F10 and F12), six (F6, F7 and F9–F12) five (F6, F7, F9, F10 and F12) and three (F7, F11 and F12)

functions, respectively. In contrast, MPEDE is inferior to JADE, jDE, CoDE and SHADE on one (F9), two (F7 and F9), two (F8 and

F11) and two (F8 and F9) functions, respectively. SaDE and EPSDE do not show better performance than MPEDE on any multi-

modal benchmark functions tested.

JADE performs the best in solving both expanded multimodal functions. MPEDE surpasses jDE and SHADE on function F14

while performs worse than them on function F13. MPEDE is inferior to CoDE on function F13 while comparable to it on function

F14. MPEDE beats SaDE and EPSDE on both test functions. In other words, MPEDE’s performance is not satisfactory in solving F13

but competitive in solving F14.

MPEDE exhibits the best overall performance on hybrid composition functions. In fact, MPEDE is superior to JADE, jDE, SaDE,

EPSDE, CoDE and SHADE on ten (F15–F23 and F25), ten (F15–F23 and F25), eleven (F15–F25), six (F16, F17, F21 and F23–F25),
Please cite this article as: G. Wu et al., Differential evolution with multi-population based ensemble of mutation strategies,
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nine (F15–F19, F21–F23 and F25) and nine (F16–F21 and F23–F25) functions, respectively. JADE, jDE, SaDE and SHADE cannot307

outperform MPEDE on any one of the hybrid composition functions. However, EPSDE shows better performance than MPEDE on308

functions F15, F18–F20 and F22.309

Overall, although MPEDE does not rank the best in solving expanded multimodal functions, its comprehensive performance is310

the best on the whole 25 benchmark functions with 50 variables. The results of Wilcoxon’s rank sum tests indicate that MPEDE is311

superior to JADE, jDE, SaDE, EPSDE, CoDE and SHADE on 18, 19, 22, 18, 19 and 15 functions, respectively. It is worse than JADE, jDE,312

SaDE, EPSDE, CoDE and SHADE on 4, 3, 0, 6, 4 and 5 functions while similar to them on 3, 3, 3, 1, 2 and 5 functions, respectively.313

It can be found that MPEDE is significantly better than all other comparative algorithms on functions F4, F5, F12, F16, F17, F21,314

F23 and F25 with 50 variables.315

It is worth noting that, in our experiments, the overall performance of MPEDE is the best, however no comparative algorithm316

can completely beat all other peer ones on all benchmark functions. Generally, different comparative algorithms may have their317

particular advantages on different benchmark functions. For example, EPSDE generally outperforms or at least as competitive as318

other peer algorithms on functions F15, F18–F20 and F22. Moreover, MPEDE outperforms all other peer algorithms on functions319

F12, F16, F17 and F25 for both 30 and 50 variables.320

The superiority of MPEDE to other comparative algorithms is more apparent when the number of decision variables in the321

test functions increases to 50. This indicates that the multi-population based multi-strategy ensemble approach has potential in322

addressing problems with more complex landscapes resulted from an increase in the number of decision variables.323

The reasons why MPEDE performs better than other comparative algorithms can be explained as follows. First, evidences324

have shown that one mutation strategy may be efficient in searching landscapes of some specific problems while inefficient in325

others. Therefore, the mixture of multiple well-studied mutation strategies can support one another in solving different kinds326

of optimization problems and improve the overall performance of MPEDE. Furthermore, multiple mutation strategies are able327

to help MPEDE to sample points in the complex landscape of a problem via different ways, thereby increasing the probability328

of finding the optimal solution. Second, compared to other DE variants with multiple mutation strategies (e.g. SaDE, CoDE and329

EPSDE), MPEDE adopts a simple but efficient multi-population based ensemble approach that dynamically allocates more com-330

putational resources (i.e. population) to the recent best performed mutation strategy. It is known that, in SaDE and EPSDE, each331

individual changes its search behaviors in a gradual manner. However, MPEDE is more reactive as it gets feedback on the search332

experience quickly and gives the best performed mutation strategy more computational resources directly.333

5.3. Evolution of mutation strategies and parameters334

It would be interesting to find out which mutation strategy is the most frequently used for each benchmark function and how335

the parameters are adapted. We select six benchmark functions as representative ones (i.e. functions F4, F8, F12, F16, F20 and F24)336

and show changes of the portion (probability) of each mutation strategy being the best mutation strategy and the parameter337

adaptation during the evolutionary process. From Fig. 1, we can observe that mutation strategies 1 and 2 generally dominate338

the evolutionary process. Mutation 3 usually exerts least effect on the function optimization processes. In addition, mutation 1339

tends to perform best at the start while it is outperformed by mutation 2 rapidly with MPEDE proceeding. The proportion of each340

mutation strategy being the best varies with different problems or even different evolutionary stages of one problem,341

As the mutation 2 (“current-to-rand/1”) is not controlled by a crossover operator, we plot the crossover rate changes for342

mutation 1 and 3. It can be observed that different mutation strategies may require significantly differing crossover rates. For343

example, when solving functions F12 (Fig. 1-c2) and F24 (Fig. 1-f2), the appropriate crossover rate of mutation 3 is close to zero,344

that of mutation 1 is close to 1 and around 0.5 respectively. This phenomenon stresses that when designing DE variants with345

multiple mutation strategies, it is necessary to independently set parameters for each mutation strategy. In addition, we can346

find that one mutation generally needs different crossover rates to solve different optimization problems more efficiently. For347

instance, the most proper crossover rate for mutation 1 solving functions F4 (Fig. 1-a2) and F12 (Fig. 1-c2) is close to 1 while for348

solving functions F16 (Fig. 1-d2) and F20 (Fig. 1-e2), it is close to zero. Similar situations also happen if we look at the crossover349

rate changes of mutation 3 when solving different benchmark functions.350

With regard to scaling factor, we have three main observations. First, the proper scaling factor values of these three different351

mutation strategies are different when solving one optimization problem. For example, when solving function F12 (Fig. 1-c3),352

the proper scaling factor values of mutation strategies 1 and 2 are around 0.5, while that of mutation 3 is around 0.8. Second, the353
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proper scaling factor values of one mutation strategy are different when solving different optimization problems. Take mutation

strategy 2 as an example, its best scaling factor values for solving function F8 (Fig. 1-b3) is around 0.8. In contrast, the best

scaling factor values for mutation 2 solving function F12 gradually stabilize at 0. 5. Third, the appropriate scaling factor value for

one mutation strategy solving one optimization problem may change during the evolutionary process. For instance, there are

obvious changes on the scaling factor values of mutation strategy 2 when solving functions F8 (Fig. 1-b3), F16 (Fig. 1-d3) and F20

(Fig. 1-e3).

5.4. Parameter analysis

There are three tunable parameters in MPEDE, including the population size and two newly introduced ones, namely the ratio

λ1 (as λ1 = λ2 = λ3) between indicator population and whole population, and generation gap ng for determining the recent best

performing mutation strategy periodically. We analyze the impacts of parameters λ , ng and NP on the performance of MPEDE.
1
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Fig. 1. Best mutation strategy portion and parameter evolution of six representative functions. (a1), (a2) and (a3) are the evolution of portion being best mutation

strategy crossover rate and scaling factor of function F4, respectively; (b1), (b2) and (b3) are related to function F8; (c1), (c2) and (c3) are related to function F12;

(d1), (d2) and (d3) are related to function F16; (e1), (e2) and (e3) are related to function F20; (f1), (f2) and (f3) are related to function F24.
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Table 3

Computational results of MPEDE with different λ1 and ng settings over benchmark functions with 30 variables. Best results of each function are

highlighted.

MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE

λ1 = 0.1 λ1 = 0.15 λ1 = 0.25 λ1 = 0.3 ng = 10 ng = 30 ng = 50 ng = 80 Standard

F1 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00

F2 5.39E−24− 4.59E−26≈ 1.19E−24− 5.45E−23− 4.65E−26≈ 9.89E−26≈ 5.92E−26≈ 2.13E−25− 1.01E−26

F3 4.03E+01− 1.04E+01≈ 1.43E+02− 1.76E+01− 1.49E+01− 3.09E+01− 4.22E+01− 1.37E+01− 1.01E+01

F4 8.58E−07− 3.43E−12− 5.80E−16≈ 2.22E−15− 1.05E−14− 9.16E−16≈ 8.32E−16≈ 4.81E−13− 6.61E−16

F5 5.32E−04− 7.82E−06≈ 4.85E−05− 1.71E−05− 1.07E−05− 8.24E−06≈ 7.45E−05− 6.41E−05− 7.21E−06

F6 1.05E+01− 9.89E+00≈ 2.85E−01+ 6.41E+00+ 8.22E+00+ 8.07E+00+ 1.19E+01− 1.54E+01− 9.65E+00

F7 3.77E−03− 4.92E−03− 4.43E−03− 4.45E−03− 3.59E−03− 2.29E−03≈ 2.31E−03≈ 3.95E−03− 2.36E−03

F8 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01

F9 0.00E+00≈ 0.00E+00≈ 9.90E−09− 4.25E−09− 2.70E−08− 0.00E+00≈ 1.74E−07− 2.12E−07− 0.00E+00

F10 2.05E+01− 2.08E+01− 1.81E+01− 1.78E+01− 1.60E+01− 1.64E+01− 1.74E+01− 1.87E+01− 1.52E+01

F11 2.64E+01− 2.79E+01− 2.78E+01− 2.83E+01− 2.70E+01− 2.70E+01− 2.78E+01− 2.71E+01− 2.58E+01

F12 1.86E+03− 1.26E+03≈ 2.20E+03− 2.39E+02− 1.52E+03− 1.38E+03− 1.48E+03− 2.22E+03− 1.17E+03

F13 2.88E+00≈ 2.95E+00≈ 2.95E+00≈ 3.03E+00≈ 2.90E+00≈ 2.97E+00≈ 2.98E+00≈ 3.00E+00≈ 2.92E+00

F14 1.25E+01− 1.24E+01− 1.25E+01− 1.26E+01− 1.25E+01− 1.25E+01− 1.25E+01− 1.25E+01− 1.23E+01

F15 3.80E+02≈ 3.91E+02− 3.86E+02≈ 3.93E+02− 4.13E+02− 3.93E+02− 3.86E+02≈ 3.80E+02≈ 3.78E+02

F16 6.64E+01− 4.62E+01− 3.88E+01≈ 3.90E+01− 6.27E+01− 3.85E+01− 4.31E+01− 4.96E+01− 3.77E+01

F17 4.94E+01− 4.87E+01− 7.60E+01− 6.75E+01− 4.70E+01− 5.33E+01− 6.02E+01− 6.59E+01− 4.36E+01

F18 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F19 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F20 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F21 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02

F22 8.68E+02≈ 8.69E+02≈ 8.64E+02≈ 8.67E+02≈ 8.66E+02≈ 8.61E+02≈ 8.71E+02≈ 8.66E+02≈ 8.72E+02

F23 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02

F24 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02

F25 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02

− 12 9 9 13 12 8 10 13

+ 0 0 1 1 1 1 0 0

≈ 13 16 15 11 12 16 15 12

In the parameter sensitivity analyses, the candidate values for λ1 include 0.1, 0.15, 0.25, and 0.3, candidate values for ng include

10, 30, 50, and 80 and candidate values for NP include 50, 100, 150, 200, 250, 300 and 400. When one parameter is analyzed,

other parameters are set to the default values (i.e. NP = 250, λ1 = 0.2 and ng = 20). MPEDE with default parameter values here

is called standard MPEDE. We also perform Wilcoxon’s rank sum test at a 0.05 significance between standard MPEDE and other

MPEDE versions of different parameter values. “−”, “+”, and “≈” mean that the related MPEDE versions is worse than, better

than, and similar to standard MPEDE. The sensitivity analysis results of parameters λ1 and ng are recorded in Table 3 and that of

parameter NP are listed in Table 4.

From the data given in Table 3, it can be observed that MPEDE is not sensitive to parameters λ1 and ng on many of the bench-

mark functions, including F1, F8, F13 and F18–F25. In addition, MPEDE versions with other parameter values seldom outperform

the standard MPEDE, which indicates the reasonable parameter setting of the standard MPEDE. It is worth noting that, however,

MPEDE with λ1 = 0.15 surpasses standard MPEDE on function F6.

Table 4 provides the analysis results of parameter NP. In contrast with parameters λ1 and ng, we can find that parameter

NP exerts higher impact on the performance of MPEDE. Some interesting phenomena can be observed. First, MPEDE is not

sensitive to parameter NP in solving problems F9, F13, and F21–F25. Second, MPEDE shows better performance with population

size increase in solving problems F3, F7 and F25. Third, MPEDE’s performance improves with population size decrease in solving

problems F6, F11, F13 and F14. Statistical results show that standard MPEDE with NP = 250 obtains the overall best performance.

It was traditionally thought that larger population is good for diversity maintenance of DE and thus is good for the solution

of multi-modal optimization problems, while smaller population is suggested in dealing with unimodal optimization problems.

However, our experiments reveal that this is not always the case. For example, when dealing with unimodal problem F4, the

performance of MPEDE degrades rapidly with the population size being less than 150. In addition, MPEDE can generate much

better solution for unimodal function F3 if we increase its population size. Moreover, evidences show that smaller population

size is beneficial to MPEDE in solving multi-modal problems F11, F13 and F14. As a result, the appropriate setting of NP actually

is not tightly related to whether the targeted problems are unimodal or multi-modal. Current parameter adaptation methods

mainly focus on crossover rate and scalar factor of DE. The automated configuration for population size of DE deserves more

investigations.

5.5. Comparisons between MPEDE and its variants with different mutation strategies

MPEDE consists of three different mutation strategies. To show the efficiency of the multi-population based ensemble

of mutation strategies, we compare MPEDE with its variants derived by setting mutation strategies differently. MPEDE-M1,
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Table 4

Computational results of MPEDE with different population sizes over benchmark functions with 30 variables. Best

results of each function are highlighted.

MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE MPEDE

Pop 50 Pop 100 Pop 150 Pop 200 Pop 300 Pop 400 Standard

F1 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00 ≈ 0.00E+00≈ 1.36E−27− 0.00E+00

F2 9.67E−27≈ 9.32E−27≈ 1.65E−26≈ 8.28E−27≈ 5.23E−25− 1.43E−21− 1.01E−26

F3 1.24E+04− 2.08E+04− 9.03E+03− 9.57E+02− 1.43E−10+ 1.09E−11+ 1.01E+01

F4 3.26E−01− 4.24E−05− 1.17E−09− 2.24E−13− 1.62E−15− 5.73E−13− 6.61E−16

F5 2.48E+02− 2.41E−03− 4.93E−05− 4.54E−05− 2.98E−05− 4.21E−04− 7.21E−06

F6 1.20E+00+ 8.34E−01+ 1.02E+00+ 6.02E+00+ 8.81E+00≈ 1.19E+01− 9.65E+00

F7 1.32E−02− 6.98E−03− 8.17E−03− 4.43E−03− 2.32E−03≈ 9.85E−04+ 2.36E−03

F8 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+00≈ 2.09E+01

F9 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 3.17E−02− 7.26E+00− 0.00E+00

F10 3.45E+01− 2.26E+01− 2.18E+01− 1.90E+01− 1.82E+01− 3.88E+01− 1.52E+01

F11 2.19E+01+ 2.18E+01+ 2.31E+01+ 2.50E+01≈ 2.84E+01− 2.94E+01− 2.58E+01

F12 2.24E+03− 3.39E+03− 1.85E+03− 1.89E+03− 1.15E+03≈ 2.13E+03− 1.17E+03

F13 1.30E+00+ 1.62E+00+ 2.18E+00+ 2.51E+00+ 3.19E+00− 3.78E+00− 2.92E+00

F14 1.20E+01+ 1.19E+01+ 1.22E+01+ 1.23E+01≈ 1.26E+01− 1.28E+01− 1.23E+01

F15 3.72E+02≈ 3.72E+02≈ 3.56E+02≈ 3.65E+02≈ 3.84E+02≈ 4.10E+02− 3.78E+02

F16 1.82E+02− 1.08E+02− 4.51E+01− 3.97E+01≈ 5.24E+01− 5.27E+01− 3.77E+01

F17 1.67E+02− 6.95E+01− 4.59E+01− 4.23E+01≈ 5.63E+01− 9.93E+01− 4.36E+01

F18 9.06E+02− 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F19 9.05E+02− 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F20 9.05E+02− 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02≈ 9.04E+02

F21 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02

F22 8.80E+02≈ 8.70E+02≈ 8.66E+02≈ 8.71E+02≈ 8.68E+02≈ 8.63E+02≈ 8.72E+02

F23 6.15E+02− 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02

F24 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02

F25 2.12E+02− 2.10E+02− 2.10E+02− 2.09E+02≈ 2.09E+02≈ 2.09E+02≈ 2.09E+02

− 13 9 9 6 11 12

+ 4 4 4 2 2 2

≈ 8 12 12 17 12 11

MPEDE-M2, MPEDE-M3 are DE with “current-to-pbest/1”, “current-to-rand/1” and “rand/1”, respectively. They can be thought as392

special MPEDE variants with a single mutation strategy. MPEDE-MR denotes an MPEDE variant in which three mutation strate-393

gies are randomly selected. Note that the Cr and F parameter adaptation strategies are employed in each MPEDE variant.394

We can find from Table 5 that the standard MPEDE outperforms its other variants noticeably. In fact, statistical tests reveal that395

MPEDE is superior to MPEDE-M1, MPEDE-M2, MPEDE-M3 and MPEDE-MR on 9, 18, 20 and 13 functions respectively, and inferior396

to them on 3, 2, 1 and 0 functions respectively, and equal to them on 13, 5, 4 and 12 functions, respectively. These results clearly397

show the advantage of MPEDE caused by incorporating three mutation strategies and assigning different population resources398

to each mutation strategy dynamically. It is worth noting that MPEDE-M1 show competitive performance on three unimodal399

functions F2, F4 and F5 and two multi-modal functions F13 and F14. In addition, MPEDE-M2 and MPEDE-M3 obtain much better400

results for F15 than the other variants.401

6. An application to economic load dispatch problems402

To test the efficiency of MPEDE in dealing with real-world optimization problems, we apply MPEDE to the economic load403

dispatch (ELD) problem.404

6.1. Formulation of the ELD problem405

The ELD problem is about minimizing the fuel cost of generating units for a specific period of operation, usually 1 h of oper-406

ation, so as to accomplish optimal generation dispatch among operating units and in return satisfying the system load demand,407

generator operation constraints with ramp rate limits and prohibited operating zones.408

The objective function corresponding to the production cost is represented as:409

Minimize : f =
NG∑
i=1

fi(Pi) (20)

where,410

fi(Pi) = aiPi
2 + biPi + ci +

∣∣ei sin
(

fi

(
Pmin

i − Pi

))∣∣, i = 1, 2, 3, . . . , NG (21)

is the expression for cost function corresponding to ith generating unit and ai, bi and ci are its coefficients.411
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Table 5

Comparison results between MPEDE and its variants derived by different setting of

mutation strategies. Best results of each function are highlighted.

MPEDE–M1 MPEDE–M2 MPEDE–M3 MPEDE–MR MPEDE

F1 0.00E+00≈ 9.29E−17− 4.12E−08− 0.00E+00≈ 0.00E+00

F2 1.26E−28+ 2.81E+02− 1.23E+04− 7.07E−24− 1.01E−26

F3 8.42E+03− 6.87E+05− 2.07E+07− 1.94E+01− 1.01E+01

F4 4.13E−16≈ 3.63E−03− 1.79E+04− 1.17E−15− 6.61E−16

F5 7.59E−08+ 3.51E+03− 4.69E+03− 2.38E−04− 7.21E−06

F6 1.16E+01− 3.07E+01− 9.53E+01− 1.01E+01− 9.65E+00

F7 8.27E−03− 4.07E−01− 1.44E+00− 4.01E−03− 2.36E−03

F8 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01

F9 0.00E+00≈ 2.08E+00− 1.00E−05− 6.41E−09− 0.00E+00

F10 2.42E+01− 6.86E+01− 1.10E+02− 1.73E+01− 1.52E+01

F11 2.57E+01≈ 2.80E+01 2.78E+01 2.55E+01≈ 2.58E+01

F12 6.45E+03− 3.16E+04− 3.96E+04− 1.87E+03− 1.17E+03

F13 1.47E+00+ 2.69E+00+ 3.06E+00− 3.10E+00− 2.92E+00

F14 1.23E+01≈ 1.28E+01− 1.30E+01− 1.26E+01− 1.23E+01

F15 3.61E+02≈ 1.59E+02+ 2.90E+02+ 4.12E+02− 3.78E+02

F16 9.33E+02− 1.57E+02− 1.42E+02− 3.85E+01≈ 3.77E+01

F17 1.21E+02− 1.92E+02− 1.91E+02− 5.66E+01− 4.36E+01

F18 9.04E+02≈ 9.08E+02− 9.09E+02− 9.04E+02≈ 9.04E+02

F19 9.04E+02≈ 9.08E+02− 9.09E+02− 9.04E+02≈ 9.04E+02

F20 9.04E+02≈ 9.08E+02− 9.09E+02− 9.04E+02≈ 9.04E+02

F21 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02≈ 5.00E+02

F22 8.68E+02≈ 8.91E+02≈ 9.62E+02− 8.63E+02≈ 8.72E+02

F23 5.48E+02− 5.34E+02≈ 5.34E+02≈ 5.34E+02≈ 5.34E+02

F24 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02≈ 2.00E+02

F25 2.11E+02− 2.10E+02− 2.33E+02− 2.09E+02≈ 2.09E+02

− 9 18 20 13

+ 3 2 1 0

≈ 13 5 4 12

P is the real power output (in MW ) of ith generator corresponding to time period t .412

413

414

415

416
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418

419

420
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422
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426

427
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NG is the number of online generating units to be dispatched.

ei and fi are the cost coefficients corresponding to valve point loading effect.

Various constraints need to be satisfied which are discussed as below.

Power balance constraint: This constraint is based on the principle of equilibrium between total system generation and total

system loads (PD) and losses (PL). That is,

NG∑
i=1

Pi = PD + PL (22)

where PL is obtained using B- coefficients, given by

PL =
NG∑
i=1

NG∑
j=1

PiBi jPj +
NG∑
i=1

B0iPi + B00 (23)

Capacity constraints: The output power of each generating unit has a lower and upper bound so that it lies in between these

bounds. This constraint is represented by a pair of inequality constraints as follows:

pmin
i ≤ Pi ≤ Pmax

i (24)

where pmin
i

and Pmax
i

are lower and upper bounds for power outputs of the ith generating unit.

Ramp rate limits: Increasing or decreasing the output generation of each unit is restricted to an amount of power over a time

interval due to the physical limitations of each unit. The generator ramp rate limits change the effective real power operating

limits as follows:

max (pmin
i , Pi(t − 1) − DRi) ≤ Pi(t) ≤ min (Pmax

i , Pi(t − 1) − URi) (25)

where Pi(t − 1) is the output power of generator i in the previous dispatch.

Prohibited operating zones (POZ): Modern generators with valve point loading have many prohibited operating zones. There-

fore, in practical operation, when adjusting the generation output Pi of unit i, the operation of the unit in the prohibited zones

must be avoided. The feasible operating zones of the unit i can be described as follows:
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Table 6

Comparison of optimization results of the instance with 6 units.

Method Minimum Average Maximum

MPEDE 1.5444e+04 1.5444e+04 1.5444e+04

SOH–PSO [9] 1.5446e+04 1.5497e+04 1.5610e+04

NPSO–LRS [44] 1.5450e+04 NA NA

GA [44] 1.5451e+04 NA NA

GAAPI [11] 1.5450e+04 15450e+04 1.5450e+04

SA–PSO [26] 1.5447e+04 1.5447e+04 1.5455e+04

Table 7

Comparison of optimization results of the instance with 15 units.

Method Minimum Average Maximum

MPEDE 3.2692e+04 3.2693e+04 3.2693e+04

SOH–PSO [9] 3.2751e+04 3.2878e+04 3.2945e+04

GAAPI [11] 3.2733e+04 32735e+04 32756e+04

SA–PSO [26] 32708e+04 32747e+04 32807e+04

FA [62] 32705e+04 32856e+04 33175e+04

pmin
i ≤ Pi ≤ PLB

i,1

PLB
i, j ≤ Pi ≤ PLB

i, j , j = 2, 3, . . . , NPi

PUB
i,NPi

≤ Pi ≤ Pi
max (26)

where NPi is the number of prohibited zones of unit i.429

6.2. Experimental results430

The ELD problem is a constrained optimization problem. Therefore, it is necessary to combine MPEDE with a constraint431

handling technique. Several constraint handling techniques have been presented in literature, such as penalty function, feasible432
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rules, stochastic ranking and ε-constrained method [34]. We adopt the idea of variable reduction to tackle equality power balance

constraint [58]. In brief, at every generation of MPEDE, we calculate the value of power output P1 through formula (27), which is

derived from (22).

P1 = ( − b +
√

b2 − 4ac)/2a, (27)

where,

a = B11, (28)

b =
∑
i=2

B1,i · Pi +
∑
j=2

Pj · Bj,1 + B01 − 1, (29)

c =
∑
i=2

∑
j=2

PiBi jPj+
∑
i=2

PiBoi + B00 + PD −
∑
i=2

Pi. (30)

In addition, the inequality constraints are addressed by following penalty function.

F(x) = f (x) + α1φ1(x) + α2φ2(x) + α3φ3(x), (31)

where, f (x) is the power cost, and φ1(x), φ2(x) and φ3(x) denote capacity constraints, ramp rate limits and prohibited operating

zones constraint, respectively. Penalty coefficients α1, α2 and α3 are set to 1e+3, 1e+5 and 1e+5, respectively.

Two instances with 6 and 15 units are solved by MPEDE, respectively. The computational results of MPEDE are compared with

those reported in recent literature. Details are listed in Tables 6 and 7, respectively. The symbol “NA” in tables means that the

related data are not reported in the reference. From the data recorded in Table 6 and Table 7, it can be observed that MPEDE is

able to find the best results for the considered ELD instances. This means that MPEDE is a good alterative algorithm for dealing

with ELD problems and may have potential in dealing with general real-world optimization problems.

7. Conclusions

Mutation strategies can significantly affect the performance of differential evolution (DE) on different optimization problems.

In addition, different mutation strategies with different advantages can complement one another even when DE is applied to
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one optimization problem. As a result, an efficient integration of different mutation strategies is a promising way to enhance the450

performance DE. In this paper, a multi-population based approach is proposed to realize the adapted ensemble of three mutation451

strategies into a novel DE variant, i.e. MPEDE. The population of MPEDE is dynamically partitioned into several subpopulations452

including three indicator subpopulations and one reward subpopulation as the algorithm proceeds. Each indicator subpopulation453

with relatively smaller size is assigned to a constituent mutation strategy and the reward subpopulation with relatively lager size454

is assigned to the currently best performed mutation strategy as an extra reward. Through this manner, we effectively realize455

the dynamic computation resource allocation among mutation strategies and the best mutation strategy is expected to timely456

obtain most computational resources (given with the reward subpopulation). In addition to the adaptive ensemble of multiple457

mutation strategies, the control parameters of each mutation strategy are adapted independently. Extensive experiments on CEC458

2005 benchmark suit show that MPEDE outperforms several other efficient and popular peer DE variants including JADE, jDE,459

SaDE, EPSDE, CoDE and SHADE.460

Experimental analyses show that the appropriate control parameters required by different mutation strategies are generally461

different. Two new parameters are brought to MPEDE, namely the ratio between indicator population and whole population, and462

the generation gap for periodically determining the recently best performed mutation strategy. We experimentally show that463

MPEDE is not sensitive to these two new parameters on majority of benchmark functions.464

In our future work, we plan to apply MPEDE to solve additional real-world optimization problems to further test its perfor-465

mance. In addition, the multi-population based approach can be a general ensemble framework. It is meaningful to apply it to466

other evolutionary algorithms (EAs), such as particle swarm optimization (PSO) and Biogeography-based optimization (BBO).467
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