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Motion Vector Outlier Rejection Cascade
for Global Motion Estimation

Yue-Meng Chen and Ivan V. Baji¢, Member, IEEE

Abstract—Global motion estimation (GME) from motion vector
(MYV) field in compressed domain greatly reduces the complexity of
conventional pixel-based GME. However, outlier MVs, caused by
noise or foreground objects, may reduce the accuracy of MV-based
GME. In this paper, we propose a cascade-of-rejectors approach
for removing MV outliers to achieve efficient and accurate GME.
Experimental results show that the proposed MV outlier rejection
cascade significantly lowers the complexity MV-based GME, with
an accuracy close to or better than state-of-the-art methods.

Index Terms—Global motion estimation, outlier removal.

1. INTRODUCTION

LOBAL MOTION ESTIMATION (GME) is used to es-
G timate camera motion in a video sequence, which can be
useful in content-based video analysis, such as video object seg-
mentation, background modeling, video indexing, etc. GME can
be done in either pixel domain [1], [2] or compressed domain
[3]-[5]. The compressed domain approaches utilize coarsely
sampled (i.e., block-based) motion vector (MV) field from com-
pressed video, and therefore greatly reduce the computational
complexity of GME compared to pixel-based approaches. How-
ever, MVs in the compressed bitstream are often imperfect and
inconsistent with real camera motion. To remove the outliers
poorly fit into the global motion model, an iterative approach is
usually used [3], but the computational cost of outlier removal
can be fairly high.

In [6], Dante and Brookes proposed a MV outlier removal
method for epipolar geometry, where the detection of an out-
lier is accomplished by examining the magnitude difference be-
tween a MV and its 8-neighbors. Our proposed method ex-
tends this work by also examining the phase difference among
neighboring MVs, and by replacing the hard-decision thresh-
olding from [6] with a soft-decision removal of a prescribed
fraction of worst-fitting MVs from the MV field. The proposed
method can help significantly reduce the number of iterations in
a state-of-the-art GME method from [3], while simultaneously
improving its accuracy.

The paper is organized as follows. In Section II, we investi-
gate the smoothness of the MV field generated by pure camera
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motion, and deduce several statistical parameters which are sub-
sequently used to set the filter thresholds in the proposed MV
outlier rejection cascade. The cascade itself is described in Sec-
tion III, the experimental results are presented in Section IV,
and the conclusions are drawn in Section V. The work was per-
formed in a reproducible research manner, and the MATLAB
code needed to reproduce all reported results is available at
http://www.sfu.ca/~ibajic/software.html.

II. CHARACTERIZATION OF THE MOTION VECTOR
FIELD GENERATED BY CAMERA MOTION

In [3], four 2-D motion models (translational, geometric,
affine and perspective) are summarized, with the eight-pa-
rameter perspective model being the most general one. The
perspective model is described by a vector of its parameters,
[mo, ..., m7]. Given (z,y) and (2’,y’) as the coordi-
nates in the current and the reference frame, respectively, the
perspective transformation is defined as:

m =

o = moT + M1y + me ;_ M3T + Mgy + ms )
m61’~|—m7y+17 Y m61’~|—m7y+1'

Defining x = [z,y,1]" and x' = [N,., N,,, D]*, where N, and
N, are the numerators in (1) and D is the denominator, (1) can
be represented by a homographic mapping:

x' =H(m) - x
mog M1 M2 X
=|[m3 ms ms|-|Y
meg my7 1 1
' = N./D, y = Ny/D. 2)

The homographic mapping can also be decomposed into a
product of matrices containing the focal lengths and rotation
angles [7]. In this model, the X- and Y-components of the MV
field at («, y) in the current frame are given by:
MV™(z,y;m) =o' =2, MV (z,y;m) =y —y. (3)
MV:s that come from a given motion model (a given vector of
motion parameters m) usually exhibit fairly strong spatial corre-
lation. We will use this property in our proposed outlier rejection
cascade to remove the M Vs that do not seem to fit the model. In
order to estimate how similar or how different the neighboring
MYVs from a given model can be, we performed the following
experiment. We used a range of camera parameters in the ho-
mographic mapping that are commonly found in practice [8],
[9]: focal length: 200—1000; focal length change ratio between
consecutive frames: 0.9-1; angular velocity: [—1.6, 1.6] degrees
per frame for x-, y- and z-axis. We created 14 000 combinations
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TABLE I
THE 90TH PERCENTILE OF MAGNITUDE AND PHASE DIFFERENCE

Block Size Dinag Dpn (Degrees)
32%32 1.0 45
16x16 0.4 19
8x8 0.2 9
44 0.1 4
Input MV Outlier Rejection Cascade MV
MV Field Inliers|
- Filter 1 » Filter 2 » Filter 3 » GME >
Fig. 1. Proposed MV outlier removal cascade.
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Fig. 2. Construction of MVs in S7, (a): S}, (b): S2, and (c): S3.

of camera parameters from these ranges, and for each combina-
tion, we synthesized an MV field in floating-point MV precision
according to (2) and (3). We then measured the average relative
difference in magnitude (D,,q4) and phase (D, ) between each
MYV and its 8-neighborhood. The histograms of these quantities
were then created, and the 90th percentile was computed. As-
suming a CIF (352 x 288) resolution video, Table I lists the
90th percentile values of D4 and Dy, for block sizes of 4 x
4,8 x 8,16 x 16, and 32 x 32 pixels. For example, for 16 x
16 blocks, the 90th percentile for D4, was 0.4, and the 90th
percentile for D,; was 19 degrees, meaning that 90% of the
MVs in a MV field described by a perspective model, with the
camera parameters from the ranges listed above, have the av-
erage relative magnitude difference from their neighbors of 0.4
or less, and the average phase difference of 19 degrees or less.
These 90th percentile values are used in the next section to set
the thresholds in the proposed outlier rejection cascade.

III. MV OUTLIER REJECTION CASCADE

The cascade-of-rejectors approach has been very successful
in fast object detection [10], where it is used to quickly verify
the presence or absence of certain object features. We propose
using a similar approach to remove outliers from an input MV
field, in order to speed up GME. The proposed cascade consists
of three filters, as shown in Fig. 1. Input MV field is subject
to testing in the first filter, then the MVs declared as inliers are
further tested in the second filter, and so on.

To test each input MV, the filters in the cascade employ the
following strategy. Let M'V; be the input MV to be tested in
filter 7, where j € {1,2, 3}. Associated with MV, is the set S/
of MVs computed from the 8-neighborhood of M'V; as shown
in Fig. 2, where the location of MV, is shown in gray. For
filter 1, S} consists of individual MVs from the neighborhood
of MV, as shown in Fig. 2(a). For filter 2, Si2 consists of the
averages of diagonally opposite M Vs from the neighborhood of
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TABLE II
MAGNITUDE AND PHASE THRESHOLDS

Filter j T g T j,;h (Degrees)
16x16 8x8 16x16 88
1 0.4 0.2 19 9
2 0.2 0.1 9.5 45
3 0.1 0.05 4.75 225

MYV, as shown in Fig. 2(b). Finally, for filter 3, SS’ consists of
the averages of triangularly opposite MVs from the neighbor-
hood of MV, as shown in Fig. 2(c). There are at most eight
MVs in S}, and at most four MVs in each of S? and S?.

Once S’g is constructed, we test the following conditions for
each MV € S/, and count how many times the following
conditions are satisfied:

MV = MV [|/[[MV]| <T30, @
(P(MV,) = o(MV,,)| <17, ®)
where 17, g and Tgh are the thresholds for maximum relative

magnitude difference, and maximum phase difference, respec-
tively. To avoid the computation of phase ¢(-), (5) can be
rewritten as (M'V,;, MVy) > |[MV,]|| - [|[MVg]| - cos( ph)
Let N; J be the number of times the above conditions are
satisfied. Note that N} < 16, and N/ < 8forj € {2,3}.
The weighted count is given by W N; - = W/™!' . N/, where
W/ = exp(—(WNi, — WN?)), WNIJnaX = max; WN/
and WP = 1 for all i. The weight W/ is a measure of how
similar is MV, to vectors in S7.

The magnitude and phase thresholds in (4) and (5) are deter-
mined based on the 90th percentile values for the relative mag-
nitude and phase difference found in Section II. The thresholds
for MV field with 16 x 16 and 8 x 8 blocks are set as shown
in Table II. For filter 1, the thresholds are equal to the 90th per-
centile values from Table I. These thresholds are halved for filter
2, and further halved for filter 3.

Each of the three filters in the cascade is set to keep the same
fraction of inliers in order to satisfy the target fraction of inliers.
If p € [0, 1] is the fraction of inliers we want from the cascade,
then each filter is set to keep p'/? of the input MVs, and remove
the rest as outliers. For example, if we want to keep 70% of
MVs as inliers, then p = 0.7, p*/3 ~ 0.888, so each filter
will keep approximately 88.8% of its input MVs as inliers, and
remove 11.2% as outliers. The filtering operation is summarized
as follows.

1) Symmetrically extend the MV field across frame bound-

aries, flag all MVs as inliers, and set j = 1.

2) For each inlier MV, find the weighted count W ;. I Note
that previously declared outlier MVs are 1ncluded in the
neighborhoods (S7) of inlier MVs.

3) Sort MVs in descending order of their weighted counts.

4) Declare the target number of MVs at the bottom of the
sorted list as outliers.

5) If 5 = 3, then stop. Otherwise, set 7 = j + 1, and move on
to the next filter, repeating steps 2-5.

IV. EXPERIMENTAL RESULTS

An extensive evaluation of MV-based GME approaches was
conducted in [11], where the iterative Gradient Descent (GD)
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TABLE III
TEST GLOBAL MOTION PARAMETERS

Model Motion parameters

GM 1 m=[0.9, 0, 10.4238, 0, 0.95, 5.7927, 0, 0]

GM 2 m=[0.9964, —0.0249, 1.0981, 0.0856, 0.9457, 7.2, 0, 0]

GM 3 m=[0.9964, —0.0249, 6.0981, 0.0249, 0.9964, 2.5109,
—2.7e-5, 1.9¢-5]

GM 4 m=[1,0,4.4154,0,1,0,-1.13e—4, 0]

SNR vs. Iterations - GM 1, sd=0.7 SNR vs. Iterations - GM 1, sd=3.0
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Fig. 3. SNR versus iterations with synthetic MV field (GM 1) corrupted by
Gaussian noise with standard deviation {0.7, 3.0}.

approach [3], the least square solution using an M-Estimator
(LSS-ME) [4], and RANdom SAmple Consensus (RANSAC)
[13] were identified as powerful approaches used to compute
GM parameters from MVs. We chose GD as the platform to ex-
amine the effects of using the proposed cascade to pre-process
the MV field (CAS_GD), as illustrated in Fig. 1. We compare
MYV outlier rejection capabilities of our cascade against the filter
from [6] (FLT_GD). We also implemented LSS-ME [4] and
RANSAC with least-square regression (RAN_LS) [12] for fur-
ther performance comparison. Parameter C' in LSS-ME is set to
2 in this work.

A. Evaluation on Synthetic MV Fields

We use the same four sets of motion parameters as in [3],
shown in Table III, to synthesize the test MV fields. These
models also fall within the range of parameters used in Sec-
tions II and III to set the filter thresholds. After the MV field
is synthesized, assuming CIF resolution and 16 x 16 blocks,
as in [3], the MVs are corrupted by independent zero-mean
Gaussian noise in both X- and Y-components, and outlier MVs
(groups of connected M Vs pointing in a random direction) sim-
ulating foreground moving objects. As in [3], the performance
criterion is the signal-to-noise ratio (SNR) between the MV
field generated by parameters m (Table III), and the MV field
generated by the estimated parameters m.

Fig. 3 shows the results of five GME approaches in terms
of SNR versus the number of GME iterations. In this experi-
ment, MV field, generated using parameters from GM 1, is only
corrupted by noise. Simulation results with o € {0.7,3.0} are
shown in Fig. 3 (the results with o € {1.5,2.2}, as well as re-
sults with other models from Table III, follow similar trends).
Each result is averaged over 50 runs. The filters in our cascade
were set to give 70% of inliers overall, in order to facilitate
a fair comparison with the results in [3]. We observe that the
CAS_GD converges faster than GD, LSS-ME and RANSAC,
and achieves a very close SNR to LSS-ME. Both CAS_GD and
LSS-ME have a higher SNR than other methods, especially as
the noise variance increases. In Table IV, we list the converged
SNR values of these four methods for all four GM models from
Table III. FLT_GD yields the worst performance among the

TABLE IV
SNR IN THE MV FIELD (dB), CORRUPTED BY ONLY GAUSSIAN NOISE

GM GME Standard Deviation of Gaussian Noise
Model Algorithms 0.7 1.5 2.2 3.0

CAS_GD 33.98 27.60 23.87 21.50

GD 31.71 24.63 21.85 20.11

GM 1 FLT_GD 28.15 15.83 11.19 8.73
RAN_LS 29.61 17.60 13.58 9.08

LSS-ME 34.23 27.79 23.47 20.56

CAS_GD 37.28 31.28 27.92 25.11

GD 35.02 29.01 26.33 23.01

GM 2 FLT_GD 33.92 23.04 17.37 13.62

RAN_LS 31.57 20.87 17.28 14.20

LSS-ME 38.11 31.12 27.39 24.65

CAS_GD 33.65 27.16 23.05 21.02

GD 33.01 26.53 23.73 21.18

GM 3 FLT_GD 30.49 18.43 12.23 9.77

RAN_LS 29.38 18.18 14.51 12.39

LSS-ME 34.64 29.05 25.51 21.55

CAS_GD 37.67 30.64 26.39 23.19

GD 35.56 29.11 26.22 23.14

GM 4 FLT_GD 34.51 2327 17.29 13.53

RAN_LS 33.72 2127 17.78 14.26

LSS-ME 38.11 31.48 28.11 24.23

GM 3, sd=1.5, outliers: 0% GM 3, sd=1.5, outliers: 2%
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Fig. 4. SNR versus iterations with synthetic MV field (GM 3) corrupted by
Gaussian noise (¢ = 1.5) and outliers {0%, 2%, 10%, 20%}.

tested methods, because the filter from [6] usually removes too
many input MVs.

Next, we corrupted the MV fields by both noise (o = 1.5)
and outliers made up of connected regions of 3 x 3,6 x 6,9 x
9 MVs in the center of the frame (2%, 10% and 20% of the total
MYV field size). These MV outliers are generated by adding the
vector (5, 5) to the MVs generated by the global motion model.
The results for GM 3 are shown in Fig. 4, where we can observe
that the performance of RANSAC improves compared to other
methods as the percentage of MV outliers increases. Average
(converged) SNRs for all four GMs are listed in Table V, while
the number of iterations needed to achieve SNRs from Tables IV
and V is listed in Table VI.

B. Evaluation on MV Fields From Real Test Sequences

Another way to test MV-based GME is to estimate the MVs in
a test sequence that contains mostly camera motion, use GME
on these MVs to estimate the model, and perform global mo-
tion compensation by warping the target frame onto the ref-
erence image plane according to the model using bilinear in-
terpolation [11]. If the sequence indeed contains only camera
motion, and if GME is accurate, we should expect the frames
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TABLE V
SNR IN THE MV FIELD (dB), CORRUPTED BY BOTH NOISE AND OUTLIERS

GM GME Outlier Percentage (¢ = 1.5)

Model Algorithms 0% 2% 10 % 20 %
CAS_GD 27.56 16.16 8.74 5.35

GD 24.75 15.81 8.57 4.40

GM 1 FLT_GD 15.46 12.97 7.97 3.58
RAN_LS 17.13 13.44 7.94 4.68

LSS-ME 27.67 15.93 8.52 4.42

CAS_GD 31.24 19.59 11.64 6.90

GD 29.31 19.38 11.59 6.46

GM2 FLT GD 23.05 17.82 11.25 6.65
RAN_LS 20.34 16.69 11.01 6.32

LSS-ME 31.30 19.47 11.49 6.47

CAS_GD 26.81 17.35 10.38 7.19

GD 27.04 17.21 10.12 6.15

GM 3 FLT_GD 17.54 13.61 8.20 3.11
RAN_LS 18.14 14.96 9.66 5.90

LSS-ME 28.32 17.31 10.04 6.17

CAS_GD 30.06 20.13 12.66 8.93

GD 29.11 19.93 12.43 7.93

GM 4 FLT_GD 23.20 18.99 11.81 6.01
RAN_LS 21.10 17.37 11.97 777

LSS-ME 31.24 20.06 12.39 7.79

TABLE VI

AVERAGE NUMBER OF ITERATIONS TO ACHIEVE PERFORMANCE ABOVE

Noise only (No outliers) Outliers and noise

“g‘(;):i"ﬁms ce {0.7,15,2.2,3.0} (c=15)
‘ 07 15 22 30 2%  10% 20%
CASGD 2 2 2 2 2 2 2
GD 6 6 6 6 6 6 6
FLT GD 2 2 2 2 2 2 2
RAN LS 14 132 >500 >500 144 199 327
ISSME 4 4 4 4 4 4 4
TABLE VII

(Top) GLOBAL MOTION COMPENSATION PERFORMANCE (PSNR in dB).
(Bottom) GLOBAL MOTION COMPENSATION SPEED (TIME IN ms)

Sequences CAS_GD  FLT_GD GD RAN_LS  LSS-ME
Flower Garden 2219 21.44 22.30 21.87 22.48
Stefan 24.60 22.16 24.51 24.74 24.60
City 29.48 29.25 28.70 29.62 29.88
Tempete 27.83 24.98 26.51 27.86 27.66
Waterfall 34.86 24.25 34.71 35.48 34.69
Mobile 23.47 22.69 2391 24.72 24.97
Coastguard 26.78 26.90 26.54 26.97 26.82
Average 27.03 24.52 26.73 27.32 27.30

Sequences CAS_GD FLT_GD GD RAN_LS LSS-ME
Flower Garden 2513 16.9 43.1 137.6 298.6
Stefan 25.0 16.2 422 179.2 442.0
City 25.1 15.9 44.0 143.2 479.3
Tempete 24.9 15.8 42.5 98.9 488.2
Waterfall 23.9 15.0 42.7 97.1 478.5
Mobile 24.8 15.3 422 117.4 471.5
Coastguard 24.8 16.2 44.2 11¥7A7 464.6
Average 24.8 15.9 43.0 127.3 446.9

compensated by global motion to be very close to the original
frames. The similarity can be measured using the conventional
PSNR. We performed this experiment on seven test sequences
listed in Table VII. Exhaustive search on 8 x 8 blocks is used
to estimate the MVs prior to GME. We compare the same five
GME methods as in the previous section. This time, CAS_GD
and FLT_GD are followed by a single iteration of GD, plain
GD uses six iterations while LSS-ME set to use three iterations.
The thresholds for 8 x 8 blocks listed in Table II are used in our
cascade. The total processing time per frame was measured in
MATLAB on a standard desktop PC with Intel Pentium CPU at
3.0 GHz, with 2 GB of RAM. This processing time includes all
filtering and GME operations.
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Table VII lists the average PSNR in dB and the average pro-
cessing time on the seven test sequences. FLT_GD yields the
fastest performance (36% faster than our CAS_GD), but also
has the lowest PSNR performance (about 2.5 dB worse than our
CAS_GD). Its PSNR performance, compared to other methods,
seems to be especially poor on sequences with small camera
motion, like Waterfall, where its thresholding strategy removes
too many MVs. Our CAS_GD is the next fastest method, and
achieves better PSNR (by about 0.3 dB) than plain GD, simul-
taneously with a 73% speedup compared to plain GD. Finally,
RAN_LS and LSS-ME give the best PSNR (both about 0.3 dB
higher than our CAS_GD), but at a significantly higher compu-
tational cost. Overall, our CAS_GD gives the best tradeoff be-
tween accuracy and complexity. These results should be taken
with a grain of salt, though, because the motion present in these
sequences is not entirely due to camera motion. Nonetheless,
the results provide some insight into the GME performance that
can be expected on real sequences.

V. CONCLUSION

We have proposed a cascade-of-rejectors approach for re-
moving outliers from the MV field prior to Global Motion Esti-
mation (GME). The proposed approach was tested on both real
and synthetic MV fields, and the results indicate that it can sig-
nificantly reduce the complexity of conventional GME while
achieving similar or better accuracy.
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