
1

Alternating Minimization Algorithms for Hybrid
Precoding in Millimeter Wave MIMO Systems

Xianghao Yu, Student Member, IEEE, Juei-Chin Shen, Member, IEEE, Jun Zhang, Senior Member, IEEE, and
Khaled B. Letaief, Fellow, IEEE

Abstract—Millimeter wave (mmWave) communications has
been regarded as a key enabling technology for 5G networks, as it
offers orders of magnitude greater spectrum than current cellular
bands. In contrast to conventional multiple-input-multiple-output
(MIMO) systems, precoding in mmWave MIMO cannot be
performed entirely at baseband using digital precoders, as only a
limited number of signal mixers and analog-to-digital converters
(ADCs) can be supported considering their cost and power
consumption. As a cost-effective alternative, a hybrid precoding
transceiver architecture, combining a digital precoder and an
analog precoder, has recently received considerable attention.
However, the optimal design of such hybrid precoders has not
been fully understood. In this paper, treating the hybrid precoder
design as a matrix factorization problem, effective alternating
minimization (AltMin) algorithms will be proposed for two
different hybrid precoding structures, i.e., the fully-connected
and partially-connected structures. In particular, for the fully-
connected structure, an AltMin algorithm based on manifold
optimization is proposed to approach the performance of the fully
digital precoder, which, however, has a high complexity. Thus, a
low-complexity AltMin algorithm is then proposed, by enforcing
an orthogonal constraint on the digital precoder. Furthermore,
for the partially-connected structure, an AltMin algorithm is also
developed with the help of semidefinite relaxation. For practical
implementation, the proposed AltMin algorithms are further
extended to the broadband setting with orthogonal frequency
division multiplexing (OFDM) modulation. Simulation results
will demonstrate significant performance gains of the proposed
AltMin algorithms over existing hybrid precoding algorithms.
Moreover, based on the proposed algorithms, simulation compar-
isons between the two hybrid precoding structures will provide
valuable design insights.

Index Terms—Alternating minimization, hybrid precoding,
low-complexity, manifold optimization, millimeter wave commu-
nications, semidefinite relaxation.

I. INTRODUCTION

THE capacity of wireless networks has to exponentially
increase to meet the explosive demands for high-data-rate

multimedia access. In particular, the upcoming 5G networks
aim at carrying out the projected 1000X increase in capacity
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by 2020 [2]. One way to boost the capacity is to improve the
spectral efficiency through physical layer techniques, such as
massive multiple-input-multiple-output (MIMO) and advanced
channel coding [3]. Further improvement in area spectral
efficiency can be achieved by network densification, such
as deploying small cells [4], [5] and allowing device-to-
device (D2D) communications [6], and enabling advanced
cooperation, such as Cloud-RANs [7], [8]. Nevertheless, the
spectrum crunch in current cellular systems brings a funda-
mental bottleneck for the further capacity increase. Thus, it
is critical to exploit underutilized spectrum bands, including
the bands that have not been used for cellular communications
yet.

Millimeter wave (mmWave) bands from 30 GHz to 300
GHz, previously only considered for outdoor point-to-point
backhaul links [9] or for carrying indoor high-resolution mul-
timedia streams [10], have now been put forward as a prime
candidate for new spectrum in 5G cellular systems, with the
potential bandwidth reaching 10 GHz. This view is supported
by recent experiments in New York City that demonstrated the
feasibility of mmWave outdoor cellular communications [11],
[12]. Originally, the main obstacles for the success of mmWave
cellular systems are the huge path loss and rain attenuation,
as a result of the ten-fold increase of the carrier frequency
[11]. Thanks to the small wavelength of mmWave signals,
mmWave MIMO precoding can leverage large-scale antennas
at transceivers to provide significant beamforming gains to
combat the path loss and to synthesize highly directional
beams. Moreover, spectral efficiency can be further increased
by transmitting multiple data streams via spatial multiplexing.

For traditional MIMO systems, precoding is typically ac-
complished at baseband through digital precoders, which can
adjust both the magnitude and phase of the signals. How-
ever, fully digital precoding demands radio frequency (RF)
chains, including signal mixers and analog-to-digital convert-
ers (ADCs), comparable in number to the antenna elements.
While the small wavelengths of mmWave frequencies facilitate
the use of a large number of antenna elements, the prohibitive
cost and power consumption of RF chains make digital pre-
coding infeasible. Given such unique constraints in mmWave
MIMO systems, a hybrid precoding architecture has recently
received much consideration, which only requires a small
number of RF chains interfacing between a low-dimensional
digital precoder and a high-dimensional analog precoder [13].
As the analog precoders are still of high dimension, it is
impractical to implement them in the RF domain with power-
hungry variable voltage amplifiers (VGAs) [12]. This heuristic
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leads to a rule of thumb, i.e., realizing analog precoders with
low-cost phase shifters at the expense of sacrificing the ability
to change the magnitude of the RF signals.

According to the mapping from RF chains to antennas,
which determines the number of phase shifters in use, the
hybrid precoding transceiver architectures can be categorized
into the fully-connected and partially-connected structures,
as illustrated in Fig. 1(b) and Fig. 1(c), respectively. The
former structure enjoys the full beamforming gain for each
RF chain with a natural combination between RF chains and
antenna elements, i.e., each RF chain is connected to all
antennas. On the other hand, sacrificing some beamforming
gain, the partially-connected structure significantly reduces the
hardware implementation complexity by connecting each RF
chain only with part of the antennas.

In [13], it has been pointed out that maximizing the spectral
efficiency of mmWave systems can be approximated by min-
imizing the Euclidean distance between hybrid precoders and
the fully digital precoder. This renders the hybrid precoder
design as a matrix factorization problem with unit modulus
constraints imposed by the phase shifters. Although significant
amounts of research efforts have been invested in solving var-
ious matrix factorization problems in recent years [14], [15],
with the unique unit modulus constraints, the optimal design
of hybrid precoders remains unknown. Existing works often
add some extra constraints on analog precoders to simplify
the analog part design with unit modulus constraints, which
will cause performance loss. This motivates us to reconsider
the hybrid precoder design or, in other words, the matrix
factorization problem with unit modulus constraints on analog
precoders. In particular, a better way to deal with the unit
modulus constraint deserves further delicate investigations.

In this paper, by adopting alternating minimization (AltMin)
as the main design approach, we will propose different hybrid
precoding algorithms to approach the performance of the opti-
mal fully digital precoder. Based on the principle of alternating
minimization, three novel algorithms will be proposed to find
effective hybrid precoding solutions for the fully-connected
and partially-connected structures.

A. Related Works

Hybrid precoding is a newly-emerged technique in mmWave
MIMO systems [16]–[20]. So far the main efforts are on the
fully-connected structure [13], [21]–[28]. Orthogonal matching
pursuit (OMP) is the most widely used algorithm, which often
offers reasonably good performance. This algorithm requires
the columns of analog precoding matrix to be picked from
certain candidate vectors, such as array response vectors of
the channel [13], [21], [22], and discrete Fourier transform
(DFT) beamformers [23], [24]. Hence, the OMP-based hybrid
precoder design can be viewed as a sparsity constrained
matrix reconstruction problem. Though the design problem
is greatly simplified in this way, restricting the space of
feasible analog precoding solutions inevitably causes some
performance loss. Additionally, extra overhead will be brought
up for acquiring the information of array response vectors in
advance. More recent attention has mainly focused on reducing

the computation complexity of the OMP algorithm [21], [25],
e.g., by reusing the matrix inversion result in each iteration.

There are works investigating some special hybrid precoding
systems. In [26], an optimal hybrid precoder design in a special
case was identified, i.e., when the number of RF chains is
at least twice that of the data streams. However, the optimal
solution for the general case is unknown. The authors of
[28] investigated VGA-enabled hybrid precoding according
to different design criteria. By removing VGAs from the
RF domain, low-power analog precoders with phase shifters
were also considered in [28], whose phases are heuristically
extracted from those of the VGA-enabled solution.

On the other hand, much less attention has been paid
on the partially-connected structure [29]–[34]. In [29], [30],
codebook-based design of hybrid precoders was presented for
narrowband and orthogonal frequency division multiplexing
(OFDM) systems, respectively. Although the codebook-based
design enjoys a low complexity, there will be certain perfor-
mance loss, and it is not clear how much performance gain
can be further obtained. By utilizing the idea of successive
interference cancellation (SIC), an iterative hybrid precoding
algorithm for the partially-connected structure was proposed
in [31]. The algorithm is established based on the assumption
that the digital precoding matrix is diagonal, which means
that the digital precoder only allocates power to different data
streams, and the number of RF chains should be equal to that
of the data streams. However, using only analog precoders to
provide beamforming gains is obviously a suboptimal strategy
[31], [32], which also deviates from the motivation of hybrid
precoding. So far there is no study directly optimizing the
hybrid precoders without extra constraints in the partially-
connected structure, which will be pursued in this paper.

B. Contributions
In this paper, we investigate the hybrid precoder design in

mmWave MIMO systems. We will adopt alternating minimiza-
tion (AltMin) as the main design principle, which helps de-
couple the precoder design problem into two subproblems, i.e.,
the analog and digital precoder design. The proposed AltMin
algorithms will alternately optimize the digital precoder and
the analog precoder. Our major contributions are summarized
as follows:
• For the fully-connected structure, we shall show that the

unit modulus constraints of the analog precoder define a
Riemannian manifold. We will thus propose a manifold
optimization based AltMin (MO-AltMin) algorithm. This
algorithm does not need any pre-determined candidate
set for the analog precoder, and it is the first attempt to
directly solve the hybrid precoder design problem under
the unit modulus constraints.

• By imposing an orthogonal property of the digital pre-
coder, we then develop an AltMin algorithm using phase
extraction (PE-AltMin) as a low-complexity counterpart
of the MO-AltMin algorithm, which will also be more
practical for implementation.

• For the partially-connected structure, we propose a
semidefinite relaxation based AltMin (SDR-AltMin) al-
gorithm. This algorithm effectively designs the hybrid
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(a) MmWave MIMO transmitter architecture.

Analog RF PrecoderAnalog RF Precoder

(b) The mapping strategy for the
fully-connected structure.

Analog RF PrecoderAnalog RF Precoder

(c) The mapping strategy for the
partially-connected structure.

Fig. 1. Two structures of hybrid precoding in mmWave MIMO systems using different mapping strategies: each RF chain is connected to Nt antennas in
(b) and to Nt/Nt

RF antennas in (c).

precoders by offering optimal solutions for both subprob-
lems of analog and digital precoders in each alternating
iteration, and it is the first effort directly optimizing the
hybrid precoders in such a structure.

• The three proposed AltMin Algorithms can be gener-
ally applied to both narrowband and broadband OFDM
systems. Simulation results will demonstrate that the
MO-AltMin algorithm efficiently identifies a near-optimal
solution, while the PE-AltMin algorithm with practical
computational complexity outperforms the existing OMP
algorithm.

• With the proposed AltMin algorithms, extensive compar-
isons are provided to reveal valuable design insights. In
particular, the proposed AltMin algorithms for the fully-
connected structure can help to approach the performance
of the fully digital precoder as long as the number of
RF chains is comparable to the number of data streams,
which cannot be achieved by the widely applied OMP
algorithm. On the other hand, the SDR-AltMin algorithm
for the partially-connected structure provides significant
gains over analog beamforming. Furthermore, by taking
advantage of its low-complexity hardware implementa-
tion, the partially-connected structure provides a higher
energy efficiency than the fully-connected one with a
relatively large number of RF chains implemented at
transceivers.

Thus, our results firmly establish the effectiveness of the
alternating minimization as a key design methodology for
hybrid precoder design in mmWave MIMO systems.

C. Organization

The remainder of this paper is organized as follows. We
shall introduce the system model and channel model, followed
by the problem formulation in Section II. Two alternating
minimization algorithms for the fully-connected structure are
demonstrated in Section III and Section IV, respectively.

In Section V, the hybrid precoder design for the partially-
connected structure is investigated. Extensions of the proposed
algorithms to OFDM systems are provided in Section VI, and
simulation results will be presented in Section VII. Finally, we
will conclude this paper in Section VIII.

D. Notations

The following notations are used throughout this paper. a
and A stand for a column vector and a matrix, respectively;
Ai,j is the entry on the ith row and jth column of A;
The conjugate, transpose and conjugate transpose of A are
represented by A∗, AT and AH ; det(A) and ‖A‖F denote
the determinant and Frobenius norm of A; A−1 and A† are
the inverse and Moore-Penrose pseudo inverse of A; Tr(A)
and vec(A) indicate the trace and vectorization; Expectation
and the real part of a complex variable is noted by E[·] and
<[·]; ◦ and ⊗ denote the Hadamard and Kronecker products
between two matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will first present the system model and
channel model of the considered mmWave MIMO system, and
then formulate the hybrid precoding problem.

A. System Model

Consider a single-user mmWave MIMO system1 as shown
in Fig. 1(a), where Ns data streams are sent and collected by
Nt transmit antennas and Nr receive antennas. The numbers
of RF chains at the transmitter and receiver are respectively
denoted as N t

RF and Nr
RF, which are subject to constraints

Ns ≤ N t
RF ≤ Nt and Ns ≤ Nr

RF ≤ Nr.
The transmitted signal can be written as x = FRFFBBs,

where s is the Ns × 1 symbol vector such that E
[
ssH

]
=

1The receiver side is omitted due to space limitation. More details can be
found in [13].
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1
Ns

INs . The hybrid precoders consist of an N t
RF ×Ns digital

baseband precoder FBB and an Nt×N t
RF analog RF precoder

FRF. The normalized transmit power constraint is given by
‖FRFFBB‖2F = Ns. For simplicity, we first consider a narrow-
band block-fading propagation channel, while the extension to
broadband OFDM systems will be treated in Section VI. Thus,
the received signal after decoding processing is given as

y =
√
ρWH

BBWH
RFHFRFFBBs + WH

BBWH
RFn, (1)

where ρ stands for the average received power, H is the chan-
nel matrix, WBB is the Nr

RF ×Ns digital baseband decoder,
WRF is the Nr×Nr

RF analog RF decoder at the receiver, and
n is the noise vector of independent and identically distributed
(i.i.d.) CN (0, σ2

n) elements. In this paper, we assume that
perfect channel state information (CSI) is known at both the
transmitter and receiver. In practice, CSI can be accurately and
efficiently obtained by channel estimation [18] at the receiver
and further shared at the transmitter with effective feedback
techniques [13], [35]. The achievable spectral efficiency when
transmitted symbols follow a Gaussian distribution can be
expressed as

R = log det

(
INs +

ρ

σ2
nNs

(WRFWBB)
†
HFRFFBB

×FHBBFHRFHH (WRFWBB)

)
.

(2)

Furthermore, the analog precoders are implemented with phase
shifters, which can only adjust the phases of the signals. Thus,
all the nonzero entries of FRF and WRF should satisfy the unit
modulus constraints, namely |(FRF)i,j | = |(WRF)i,j | = 1 for
nonzero elements.

According to different signal mapping strategies from RF
chains to antennas, the transceiver architecture can be catego-
rized into the fully-connected and partially-connected hybrid
precoding structures, as illustrated in Fig. 1(b) and Fig. 1(c).
For the fully-connected structure, the output signal of each
RF chain is sent to all the antennas through phase shifters,
while the partially-connected structure only has Nt/N t

RF an-
tennas connected to each RF chain. Thus, the fully-connected
structure enjoys full beamforming gain for each RF chain
with a natural combination between RF chains and antennas,
whereas the hardware implementation complexity is lower in
the partially-connected one by sacrificing some beamforming
gain for each RF chain. The structures of FRFs and WRFs
will vary for different structures, which will be discussed in
the following sections in detail.

B. Channel Model

Due to high free-space path loss, the mmWave propagation
environment is well characterized by a clustered channel
model, i.e., the Saleh-Valenzuela model [12]. This model
depicts the mmWave channel matrix as

H =

√
NtNr
NclNray

Ncl∑

i=1

Nray∑

l=1

αilar(φ
r
il, θ

r
il)at(φ

t
il, θ

t
il)
H , (3)

where Ncl and Nray represent the number of clusters and
the number of rays in each cluster, and αil denotes the gain

of the lth ray in the ith propagation cluster. We assume
that αil are i.i.d. and follow the distribution CN (0, σ2

α,i) and∑Ncl
i=1 σ

2
α,i = γ̂, which is the normalization factor to satisfy

E
[
‖H‖2F

]
= NtNr. In addition, ar(φ

r
il, θ

r
il) and at(φ

t
il, θ

t
il)

represent the receive and transmit array response vectors,
where φril(φ

t
il) and θril(θ

t
il) stand for azimuth and elevation

angles of arrival and departure, respectively. In this paper,
we consider the uniform square planar array (USPA) with√
N ×

√
N antenna elements. Therefore, the array response

vector corresponding to the lth ray in the ith cluster can be
written as

a(φil, θil) =
1√
N

[
1, · · · , ej 2π

λ d(p sinφil sin θil+q cos θil),

· · · , ej 2π
λ d((

√
N−1) sinφil sin θil+(

√
N−1) cos θil)

]T
,

(4)

where d and λ are the antenna spacing and the signal wave-
length, and 0 ≤ p <

√
N and 0 ≤ q <

√
N are the antenna

indices in the 2D plane. While this channel model will be
used in simulations, our precoder design is applicable to more
general models.

C. Problem Formulation

As shown in [13], [21], the design of precoders and decoders
can be separated into two subproblems, i.e., the precoding
and decoding problems. They have similar mathematical for-
mulations except that there is an extra power constraint in
the former. Therefore, we will mainly focus on the precoder
design in the remaining part of this paper and the algorithms
proposed in this paper can be equally applied for the decoder.
The corresponding problem formulation is given by

minimize
FRF,FBB

‖Fopt − FRFFBB‖F

subject to

{
FRF ∈ A
‖FRFFBB‖2F = Ns,

(5)

where Fopt stands for the optimal fully digital precoder, while
FRF and FBB are the analog and digital precoders to be
optimized. Additionally, A ∈ {Af ,Ap} is the feasible set of
the analog precoder induced by the unit modulus constraints,
which will be distinct for different hybrid precoding structures.

It has been shown in [13] that minimizing the objective
function in (5) approximately leads to the maximization of
the spectral efficiency. It is also intuitively true that the
optimal hybrid precoders should be sufficiently “close” to
the unconstrained optimal digital precoder. In addition, the
unconstrained optimal precoder and decoder are comprised of
the first Ns columns of V and U respectively, which are
unitary matrices derived from the channel’s singular value
decomposition (SVD), i.e., H = UΣVH .

We will mainly treat problem (5) as a matrix factorization
problem, for which alternating minimization will be adopted
as the main tool. Alternating minimization represents a widely
applicable and empirically successful approach for the opti-
mization problems involving different subsets of variables. It
has been successfully applied to many applications such as
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matrix completion [14], phase retrieval [36], image reconstruc-
tion [37], blind deconvolution [38] and non-negative matrix
factorization [39]. In this paper, the problem formulation (5)
is intrinsically a matrix factorization problem involving two
matrix variables FRF and FBB. However, jointly optimizing
these two variables is highly complicated due to the element-
wise unit modulus constraints of FRF. By decoupling the
optimization of these two variables, alternating minimization
stands out as an efficient method to obtain an effective
solution. With the principle of alternating minimization, we
will alternately solve for FRF and FBB while fixing the other,
which will be the essential idea throughout this paper.

III. MANIFOLD OPTIMIZATION BASED HYBRID
PRECODING FOR THE FULLY-CONNECTED STRUCTURE

The fully-connected structure, in which each RF chain is
connected to all the antenna elements, is frequently used in
mmWave MIMO systems, as shown in Fig. 1(b). This structure
restricts every entry in the analog precoding matrix to be unit
modulus, and this element-wise constraint makes the precoder
design problem intractable. In this section, by observing that
the unit modulus constraints define a Riemannian manifold,
we will propose an AltMin algorithm based on manifold
optimization to directly solve (5).

For the fully-connected structure, inspired by [40], the au-
thors of [26] have shown that the Frobenius norm in (5) can be
made exactly zero under the condition that N t

RF ≥ 2Ns. This
means that the hybrid precoders can achieve the performance
of the fully digital precoder in this special case, and the
optimal hybrid precoders were obtained in [26]. Thus, we will
focus on the region where Ns ≤ N t

RF < 2Ns in this paper.

A. Digital Baseband Precoder Design

We first consider to design the digital precoder FBB with a
fixed analog precoder FRF. Thus, problem (5) can be restated
as

minimize
FBB

‖Fopt − FRFFBB‖F , (6)

which has a well-known least squares solution given by

FBB = F†RFFopt. (7)

Note that the power constraint in (5) is temporarily removed,
and it will be dealt with in Section III-C. Nevertheless, the
solution in (7) has already offered a globally optimal solution
to the counterpart design problem at the receiver side.

B. Analog RF Precoder Design via Manifold Optimization

For the fully-connected structure, the feasible set Af of
the analog precoder can be specified by |(FRF)i,j | = 1, as
each RF chain is connected to all the antennas. In the next
alternating step, we fix FBB and seek an analog precoder
which optimizes the following problem2:

minimize
FRF

‖Fopt − FRFFBB‖2F
subject to |(FRF)i,j | = 1,∀i, j.

(8)

2The square of the Frobenius norm makes the objective function quadratic
and smooth, and will not affect the solution.

The main obstacles are the unit modulus constraints, which
are intrinsically non-convex. To the best of the authors’ knowl-
edge, there is no general approach to solve (8) optimally. In the
following, we will propose an effective manifold optimization
algorithm to find a near-optimal solution of problem (8).
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1. R-linear: D(af + bg) = a D(f) + b D(g), (a, b ∈ R), and
2. Leibnizian: D(fg) = D(f)g + f D(g). 

Every vector field ξ ∈ X(M) defines a derivation f 7→ ξf . Conversely, every
derivation on F(M) can be realized as a vector field. (Viewing vector fields as
derivations comes in handy in understanding Lie brackets; see Section 5.3.1.) 

3.5.6 Differential of a mapping 

Let F : M → N be a smooth mapping between two manifolds M and N .
Let ξx be a tangent vector at a point x of M. It can be shown that the
mapping DF (x) [ξx] from FF (x)(N ) to R defined by

(DF (x) [ξ]) f := ξ(f F ) (3.13)◦ 
is a tangent vector to N at F (x). The tangent vector DF (x) [ξx] is realized
by F γ, where γ is any curve that realizes ξx. The mapping ◦


DF (x) : TxM→ TF (x)N : ξ 7→ DF (x) [ξ]


is a linear mapping called the differential (or differential map, derivative, or 
tangent map) of F at x (see Figure 3.5). 

ξx

TxM
x 

γ 

M

N

F (x) 

TF (x)N

DF (x)[ξx] 

F 

DF (x) 

F (γ(t)) 

Figure 3.5 Differential map of F at x. 

Note that F is an immersion (respectively, submersion) if and only if 
DF (x) : TxM → TF (x)N is an injection (respectively, surjection) for every
x ∈M.

If N is a vector space E , then the canonical identification TF (x)E ≃ E
yields 

DF (x) [ξx] = 
∑

(ξxF i)ei, (3.14)
i 

where F (x) = 
∑

i F i(x)ei is the decomposition of F (x) in a basis (ei)i=1,...,n 

of E .
If N = R, then F ∈ Fx(M), and we simply have

DF (x) [ξx] = ξxF (3.15)

Fig. 2. The tangent space and tangent vector of a Riemannian manifold [41].

We will start with some definitions and terminologies in
manifold optimization. More background on manifolds and
manifold optimization can be found in [41]–[43], and there
are some recent applications in wireless communications [44].
As shown in Fig. 2, a manifold M is a topological space that
resembles a Euclidean space near each point [43]. In other
words, each point on a manifold has a neighborhood that
is homeomorphic to the Euclidean space. The tangent space
TxM at a given point x on the manifold M is composed of
the tangent vectors ξx of the curves γ through the point x.
In most applications, manifolds fall into a special category
of topological manifold, namely, a Riemannian manifold.
A Riemannian manifold is equipped with an inner product
defined on the tangent spaces TxM, called the Riemannian
metric, which allows one to measure distances and angles on
manifolds. In particular, it is possible to use calculus on a
Riemannian manifold with the Riemannian metric.

The rich geometry of Riemannian manifolds makes it pos-
sible to define gradients of cost functions. More importantly,
optimization over a Riemannian manifold is locally analo-
gous to that over a Euclidean space with smooth constraints.
Therefore, a well-developed conjugate gradient algorithm in
Euclidean spaces can find its counterpart on the specified Rie-
mannian manifolds. In the following, we will briefly introduce
this counterpart.

We first endow the complex plane C with the Euclidean
metric

〈x1, x2〉 = <{x∗1x2}, (9)

which is equivalent to treating C as R2 with the canonical
inner product. Then we are able to denote the complex circle
as

Mcc = {x ∈ C : x∗x = 1}. (10)

For a given point x on the manifold Mcc, the directions
along which it can move are characterized by the tangent
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vectors. Then the tangent space at the point x ∈ Mcc can
be represented by

TxMcc = {z ∈ C : z∗x+ x∗z = 2 〈x, z〉 = 0}. (11)

Note that the vector x = vec(FRF) forms a complex circle
manifold Mm

cc = {x ∈ Cm : |x1| = |x2| = · · · = |xm| = 1},
where m = NtN

t
RF. Therefore, the search space of the

optimization problem (8) is over a product of m circles in
the complex plane, which is a Riemannian submanifold of
Cm with the product geometry. Hence, the tangent space at a
given point x ∈Mm

cc can be expressed as

TxMm
cc = {z ∈ Cm : <{z ◦ x∗} = 0m} . (12)

Among all the tangent vectors, similar to the Euclidean
space, one of them that is related to the negative Riemannian
gradient represents the direction of the greatest decrease of
a function. Because the complex circle manifold Mm

cc is a
Riemannian submanifold of Cm, the Riemannian gradient
at x is a tangent vector gradf(x) given by the orthogonal
projection of the Euclidean gradient ∇f(x) onto the tangent
space TxMm

cc [41]:

gradf(x) = Projx∇f(x)

= ∇f(x)−<{∇f(x) ◦ x∗} ◦ x,
(13)

where the Euclidean gradient of the cost function in (8) is

∇f(x) = −2(F∗BB ⊗ INt)
[
vec(Fopt)− (FTBB ⊗ INt)x

]
.

(14)
Solving this Euclidean gradient involves some techniques on
complex-valued matrix derivatives, the details can be found in
[45].

Retraction is another key factor in manifold optimization,
which maps a vector from the tangent space onto the manifold
itself. It determines the destination on the manifold when
moving along a tangent vector. The retraction of a tangent
vector αd at point x ∈Mm

cc can be stated as

Retrx :TxMm
cc →Mm

cc :

αd 7→ Retrx(αd) = vec

[
(x + αd)i
|(x + αd)i|

]
.

(15)

Equipped with the tangent space, Riemannian gradient and
retraction of the complex circle manifold Mm

cc, a line search
based conjugate gradient method [46], which is a classical
algorithm in the Euclidean space, can be developed to design
the analog precoder as shown in Algorithm 1.

Algorithm 1 utilizes the well-known Armijo backtracking
line search step and Polak-Ribiere parameter to guarantee
the objective function to be non-increasing in each iteration
[47]. In addition, since Steps 7 and 8 involve the operations
between two vectors in different tangent spaces TxkMm

cc and
Txk+1

Mm
cc, which cannot be combined directly, a mapping

between two tangent vectors in different tangent spaces called
transport is introduced. The transport of a tangent vector d
from xk to xk+1 can be specified as

Transpxk→xk+1
:TxkMm

cc → Txk+1
Mm

cc :

d 7→ d−<{d ◦ x∗k+1} ◦ xk+1,
(16)

Algorithm 1 Conjugate Gradient Algorithm for Analog Pre-
coding Based on Manifold Optimization
Input: Fopt,FBB,x0 ∈Mm

cc

1: d0 = −gradf(x0) and k = 0;
2: repeat
3: Choose Armijo backtracking line search step size αk;
4: Find the next point xk+1 using retraction in (15):

xk+1 = Retrxk(αkdk);
5: Determine Riemannian gradient gk+1 = gradf(xk+1)

according to (13) and (14);
6: Calculate the vector transports g+

k and d+
k of gradient

gk and conjugate direction dk from xk to xk+1;
7: Choose Polak-Ribiere parameter βk+1;
8: Compute conjugate direction dk+1 = −gk+1 +

βk+1d
+
k ;

9: k ← k + 1;
10: until a stopping criterion triggers.

which is accomplished in Step 6. According to Theorem
4.3.1 in [41], Algorithm 1 is guaranteed to converge to a
critical point, i.e., the point where the gradient of the objective
function is zero.

C. Hybrid Precoder Design

With Algorithm 1 at hand, the hybrid precoder design via
alternating minimization for the fully-connected structure is
described in the MO-AltMin Algorithm by solving problems
(6) and (8) iteratively. To satisfy the power constraint in (5),
we normalize FBB by a factor of

√
Ns

‖FRFFBB‖F
at Step 7. The

following lemma help reveal the effect of this normalization.

MO-AltMin Algorithm: Manifold Optimization Based Hy-
brid Precoding for the Fully-connected Structure
Input: Fopt

1: Construct F
(0)
RF with random phases and set k = 0;

2: repeat
3: Fix F

(k)
RF, and F

(k)
BB = F

(k)†
RF Fopt;

4: Optimize F
(k+1)
RF using Algorithm 1 when F

(k)
BB is fixed;

5: k ← k + 1;
6: until a stopping criterion triggers;
7: For the digital precoder at the transmit end, normalize

F̂BB =
√
Ns

‖FRFFBB‖F
FBB.

Lemma 1. If the Euclidean distance before normalization is
‖Fopt − FRFFBB‖F ≤ δ, then after normalization we have∥∥∥Fopt − FRFF̂BB

∥∥∥
F
≤ 2δ.

Proof: Define the normalization factor
√
Ns

‖FRFFBB‖F
= 1

λ

and thus ‖FRFFBB‖F = λ
√
Ns = λ ‖Fopt‖F .

By norm inequality, we have

‖Fopt − FRFFBB‖F ≥ | ‖Fopt‖F − ‖FRFFBB‖F |
= |1− λ| ‖Fopt‖F ,

(17)
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which is equivalent to ‖Fopt‖F ≤ 1
|λ−1|δ.

When λ 6= 1, which indicates ‖Fopt − FRFFBB‖F 6= 0,
∥∥∥Fopt − FRFF̂BB

∥∥∥
F

=

∥∥∥∥Fopt − FRFFBB +

(
1− 1

λ

)
FRFFBB

∥∥∥∥
F

≤ ‖Fopt − FRFFBB‖F +

∣∣∣∣1−
1

λ

∣∣∣∣ ‖FRFFBB‖F

≤ δ + |λ− 1| ‖Fopt‖F ≤ δ +
|λ− 1|
|λ− 1|δ = 2δ.

(18)

Lemma 1 shows that as long as we can make the Euclidean
distance between the optimal digital precoder and the hybrid
precoders sufficiently small when ignoring the power con-
straint in (5), the normalization step will also achieve a small
distance to the optimal digital precoder.

Since the objective function in problem (5) is minimized
at Steps 3 and 4, each iteration will never increase it. In
addition, the objective function is non-negative. These two
properties together guarantee that the MO-AltMin algorithm
can converge to a feasible solution. Although the optimality
of alternating minimization algorithms for general non-convex
problems is still an open problem [48], simulation results in
Section VII will show that the proposed algorithm can provide
near-optimal performance.

However, the complexity of the MO-AltMin algorithm is
relatively high. In each iteration, the update of the analog
precoder involves a line search algorithm, i.e., Algorithm
1, so the nested loops in the MO-AltMin algorithm will
slow down the whole solving procedure. Furthermore, the
Kronecker products in (14) will result in two matrices of
dimension N t

RFNt×NsNt, which scales with the antenna size
and results in an exponential increase of the computational
complexity in the MO-AltMin algorithm. Despite the high
complexity, we note that the MO-AltMin algorithm based
on manifold optimization directly solves the hybrid precoder
design problem (5) under unit modulus constraints, which will
improve the spectral efficiency when compared to existing
algorithms. Therefore, this algorithm can serve as a benchmark
of the performance in terms of spectral efficiency, and we will
seek a low-complexity algorithm in the next section.

IV. LOW-COMPLEXITY HYBRID PRECODING FOR THE
FULLY-CONNECTED STRUCTURE

Although the MO-AltMin algorithm can directly handle the
unit modulus constraints, the number of such constraints may
be substantially large due to the large-size antenna array. Thus,
the high computational complexity will prevent its practical
implementation. It motivates us to develop a hybrid precoding
algorithm with lower computational complexity and slight
performance loss. In this section, by utilizing the orthogonal
property of the digital precoder, we will propose a low-
complexity design for the analog precoder subject to unit
modulus constraints. Thanks to the orthogonal property of
the digital precoder, the phases of the analog precoder can
be extracted from the phases of an equivalent precoder deter-
mined by the digital precoder and the unconstrained optimal

digital precoder. Though it will incur some performance loss
compared to the manifold based algorithm, simulations will
demonstrate its performance gains over existing algorithms.

A. Digital Baseband Precoder Structure

Note that the columns of the unconstrained optimal precod-
ing matrix Fopt are mutually orthogonal in order to mitigate
the interference between the multiplexed streams. Inspired
by this structure of the unconstrained precoding solution, we
impose a similar constraint that the columns of the digital
precoding matrix should be mutually orthogonal, i.e.,

FHBBFBB = αFHDDαFDD = α2INs , (19)

where FDD is a unitary matrix with the same dimension
as FBB. Although there is no existing conclusion on the
optimal structure of the digital precoder in hybrid precoding,
it is natural and intriguing to investigate the hybrid precoder
design under such an orthogonal constraint of the digital
precoder. More importantly, this orthogonal constraint creates
the potential for the analog precoder FRF to get rid of the
product form with FBB, which will help significantly simplify
the analog precoder design.

B. Hybrid precoder design

By replacing FBB with αFDD, the objective function in (5)
can be further recast as

‖Fopt − FRFFBB‖2F
= Tr

(
FHoptFopt

)
− Tr

(
FHoptFRFFBB

)

−Tr
(
FHBBFHRFFopt

)
+ Tr

(
FHBBFHRFFRFFBB

)

= ‖Fopt‖2F − 2α<Tr
(
FDDFHoptFRF

)

+α2 ‖FRFFDD‖2F .

(20)

Obviously, when α =
<Tr(FDDFHoptFRF)
‖FRFFDD‖2F

, the objective func-

tion ‖Fopt − FRFFBB‖2F in (20) has the minimum value,

given by ‖Fopt‖2F−
{<Tr(FDDFHoptFRF)}2

‖FRFFDD‖2F
. Note that the square

of the Frobenius norm ‖FRFFDD‖2F has the following upper
bound

‖FRFFDD‖2F = Tr
(
FHDDFHRFFRFFDD

)

= Tr

{(
INs

0

)
KHFHRFFRFK

}

≤ Tr
{
KHFHRFFRFK

}

= ‖FRF‖2F ,

(21)

where FDDFHDD = K

(
INs

0

)
KH is the SVD of

FDDFHDD and the equality holds when N t
RF = Ns, i.e., FDD

is a square matrix. Hence, the objective function in (5) is upper

bounded by ‖Fopt‖2F−
{<Tr(FDDFHoptFRF)}2

‖FRF‖2F
. In order to make

FRF get rid of the product with FBB, we choose to add the
constant term

(
1

2‖FRF‖2F
− 1
)
‖Fopt‖2F + 1

2 to the bound and
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multiply it by the positive constant term 2 ‖FRF‖2F . Then we
have

‖Fopt‖2F − 2<Tr
(
FDDFHoptFRF

)
+ ‖FRF‖2F

= Tr
(
FHRFFRF

)
− 2<Tr

(
FDDFHoptFRF

)

+ Tr
(
FDDFHoptFoptF

H
DD

)

=
∥∥FoptF

H
DD − FRF

∥∥2
F
.

(22)

Since directly optimizing the objective function (20) will
still incur high complexity, we intend to adopt the upper bound
(22) as the objective function rather than the original one.
In addition, as we can satisfy the transmit power constraint
by normalization after updating the hybrid precoders alter-
nately, which has been shown in the MO-AltMin algorithm
and Lemma 1, here we also temporarily remove the power
constraint. Thus, by adopting (22) as the objective function,
the hybrid precoder design problem is given as

minimize
FRF,FDD

∥∥FoptF
H
DD − FRF

∥∥2
F

subject to

{
|(FRF)i,j | = 1,∀i, j
FHDDFDD = INs .

(23)

The problem formulation (43) implies that we only need
to seek a unitary precoding matrix FDD, and then a corre-
sponding precoding matrix FBB with orthogonal columns can
be obtained. When applying alternating minimization, it turns
out that the objective function in (43) significantly simplifies
the analog precoder design. More specifically, since the matrix
FRF gets rid of the product form with FBB, it has a closed-
form solution

arg (FRF) = arg
(
FoptF

H
DD

)
, (24)

where arg(A) generates a matrix containing the phases of the
entries of A. Thus, it shows that the phases of FRF can be
extracted from the phases of an equivalent precoder FoptF

H
DD.

This closed-form solution can also be viewed as the Euclidean
projection of FoptF

H
DD on the feasible set Af of the analog

precoder.
For the digital precoder design, regarding FRF as fixed, we

try to solve a digital precoder which optimizes the following
problem

minimize
FDD

∥∥FoptF
H
DD − FRF

∥∥2
F

subject to FHDDFDD = INs .
(25)

Since problem (25) only has one optimization variable FDD,
it is equivalent to

maximize
FDD

<Tr
(
FDDFHoptFRF

)

subject to FHDDFDD = INs .
(26)

According to the definition of the dual norm, we have

<Tr
(
FDDFHoptFRF

)
≤
∣∣Tr
(
FDDFHoptFRF

)∣∣
(a)

≤
∥∥FHDD

∥∥
∞ ·
∥∥FHoptFRF

∥∥
1

=
∥∥FHoptFRF

∥∥
1

=

Ns∑

i=1

σi,

(27)

where (a) follows the Hölder’s inequality, ‖·‖∞ and ‖·‖1 stand
for the infinite and one Schatten norms [49]. The equality is
established only when

FDD = V1U
H , (28)

where FHoptFRF = UΣVH = USVH
1 , which is the SVD

of FHoptFRF, and S is a diagonal matrix whose elements
are the first Ns nonzero singular values σ1, · · · , σNs . This
result bears some similarity to the solution of the orthogonal
Procrustes problem (OPP) [50], although the formulation is
slightly different3.

PE-AltMin Algorithm: A Low-Complexity Algorithm for
the Fully-connected Structure
Input: Fopt

1: Construct F
(0)
RF with random phases and set k = 0;

2: repeat
3: Fix F

(k)
RF, compute the SVD: FHoptF

(k)
RF =

U(k)S(k)V
(k)
1

H
;

4: F
(k)
DD = V

(k)
1 U(k)H ;

5: Fix F
(k)
DD, and arg

{
F

(k+1)
RF

}
= arg

(
FoptF

(k)
DD

H
)

;

6: k ← k + 1;
7: until a stopping criterion triggers;
8: For the digital precoder at the transmit end, normalize

F̂BB =
√
Ns

‖FRFFDD‖F
FDD.

Based on the two closed-form solutions for the analog and
digital precoders, we summarize our new design as the PE-
AltMin Algorithm. There are several issues involved in the
PE-AltMin algorithm that require some further remarks.

(1) Complexity: In both the MO-AltMin and PE-AltMin
algorithms, the updating rules of the digital precoders are given
by closed-form solutions and thus these two algorithms are of
comparable complexity in the digital parts. Furthermore, in the
hybrid precoding system, the dimension of the analog precoder
is much higher than that of the digital precoder, which makes
the complexity of the algorithms predominated by the analog
part.

In each iteration of the MO-AltMin algorithm, a conju-
gate gradient descent search is needed to update the analog
precoder. In particular, when updating the analog precoder
in each iteration, we need to search on the complex circle
manifold repeatedly to find a local optimum with zero gradient
of the cost function. Additionally, the computation of the large-
size matrices, i.e., matrices of dimension N t

RFNt × NsNt,
will be involved in the gradient descent procedure due to
the use of the Kronecker products. More importantly, the
conjugate gradient descent, which is an iterative procedure
itself, is nested into each alternating minimization iteration.
This nested iteration structure will dramatically degrade the
computational efficiency of the MO-AltMin algorithm. On the
contrary, in each iteration of the PE-AltMin algorithm, the
update of the analog precoder is simply realized by a phase

3OPP tries to minimize ‖AΩ−B‖F , where the optimization variable Ω
is a square unitary matrix.
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extraction operation of the matrix FoptF
H
DD, whose dimension

is Nt×N t
RF. Compared with the MO-AltMin algorithm, it is

safe to conclude that the PE-AltMin algorithm is with a much
lower complexity, which is also numerically observed in our
simulations.

(2) Accuracy of the approximation: In the formulation of
(43), we try to minimize an upper bound given by (21)
rather than directly minimizing the original objective function.
Therefore, the effectiveness of this strategy depends on how
tight the upper bound is when Ns ≤ N t

RF < 2Ns. According
to (21), we can quantify the gap between ‖FRFFDD‖2F and
‖FRF‖2F as ‖FRFK1‖2F , where K1 is comprised of the right-
most N t

RF −Ns columns of K. Note that when N t
RF = Ns,

the upper bound is tight, i.e., the equality holds in (21).
Furthermore, when increasing N t

RF from Ns to 2Ns − 1,
the gap ‖FRFK1‖2F will become larger with increasing N t

RF,
which will result in some performance loss. The impact of
adopting this upper bound as the objective will be shown in
Section VII via simulations.

(3) Calculation of α: Although we have stated that a value
of α can be found to construct a matrix FBB corresponding to
each FDD, we do not need to actually calculate α in the PE-
AltMin algorithm for the following reasons. At the transmitter
side, even though we compute FBB = αFDD in the last
step of the PE-AltMin algorithm, this digital precoder should
be immediately normalized. Hence, the overall procedure is
equivalent to directly normalizing FDD to satisfy the power
constraint without knowing α. At the receiver side, we note
that the spectral efficiency (2) will not be influenced by the
constant factor α multiplied with WBB. That is because the
decoder WBB takes effects on both received signals and noise,
and thus signal-to-noise ratio (SNR) will not change due to
the constant factor α. Moreover, the avoidance of calculating α
will further reduce the complexity of the PE-AltMin algorithm.

V. HYBRID PRECODING FOR THE PARTIALLY-CONNECTED
STRUCTURE

Different from the fully-connected structure, the partially-
connected structure shown in Fig. 1(c) [29], [33], [34], also
called the array of subarray structure, employs notably less
phase shifters and is advocated for energy-efficient mmWave
MIMO systems [31], [32]. Particularly, the output signal of
each RF chain is only connected with Nt/N

t
RF antennas,

which reduces the hardware complexity in the RF domain.
Therefore, the analog precoder FRF in this structure belongs
to a set of block matrices Ap, where each block is an Nt/N t

RF

dimension vector with unit modulus elements and the structure
of FRF can be depicted as

FRF =




p1 0 · · · 0
0 p2 0
...

. . .
...

0 0 · · · pNtRF


 , (29)

where pi =

[
exp

(
jθ

(i−1) Nt
Nt

RF
+1

)
, · · · , exp

(
jθ
i
Nt
Nt

RF

)]T

and θi stands for the phase of the ith phase shifter. In
this section, we will propose an AltMin algorithm for this

structure. Surprisingly, optimal solutions can be found for both
subproblems of analog and digital precoders.

A. Analog RF Precoder Design

Due to the special structure of the constraint on FRF, in the
product FRFFBB, each nonzero element of FRF is multiplied
by a corresponding row extracted from FBB. Thus, the power
constraint in (5) at the transmit side can be recast as

‖FRFFBB‖2F =
Nt
N t

RF

‖FBB‖2F = Ns. (30)

Therefore, the analog precoder design is formulated as

minimize
FRF

‖Fopt − FRFFBB‖2F
subject to FRF ∈ Ap.

(31)

Also, due to the same property of FRF, problem (31) can be
reformulated as

minimize
{θi}Nti=1

∥∥(Fopt)i,: − ejθi(FBB)l,:
∥∥2
2
, (32)

where l =
⌈
i
NtRF

Nt

⌉
. This is basically a vector approximation

problem using phase rotation, and there exists a closed-form
expression for nonzero elements in FRF, given by

arg {(FRF)i,l} = arg
{

(Fopt)i,:(FBB)l,:
H
}
,

1 ≤ i ≤ Nt, l =

⌈
i
N t

RF

Nt

⌉
.

(33)

We note that the special characteristic of FRF simplifies the
analog precoder design and makes the unit modulus constraint
no longer an intractable issue in the partially-connected struc-
ture.

B. Digital Baseband Precoder Design

According to (30), the precoder design at the transmit side
can be rewritten as the following problem

minimize
FBB

‖Fopt − FRFFBB‖2F

subject to ‖FBB‖2F =
N t

RFNs
Nt

.
(34)

Problem (34) is a non-convex quadratic constraint quadratic
programming (QCQP) problem, which can be reformulated as
a homogeneous QCQP problem:

minimize
Y∈Hn

Tr(CY)

subject to





Tr(A1Y) =
NtRFNs
Nt

Tr(A2Y) = 1

Y � 0, rank(Y) = 1,

(35)

with Hn being the set of n = N t
RFNs+ 1 dimension complex

Hermitian matrices. In addition, y =
[

vec(FBB) t
]T

with
an auxiliary variable t, Y = yyH , f = vec(Fopt), and

A1 =

[
In−1 0

0 0

]
,A2 =

[
0n−1 0

0 1

]
,
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C =

[
(INs ⊗ FRF)H(INs ⊗ FRF) −(INs ⊗ FRF)Hf

−fH(INs ⊗ FRF) fHf

]
.

The derivation and the formulation of the homogeneous QCQP
problem can be found in Appendix A.

In fact, the most difficult part in problem (35) is the rank
constraint, which is non-convex with respect to Y. Thus,
we first drop it to obtain a relaxed version of (35), i.e., a
semidefinite relaxation (SDR) problem as follows.

minimize
Y∈Hn

Tr(CY)

subject to





Tr(A1Y) =
NtRFNs
Nt

Tr(A2Y) = 1

Y � 0.

(36)

It has been established that the SDR is tight when the number
of constraints is less than three for a complex-valued ho-
mogeneous QCQP problem [51]. Consequently, problem (36)
without the rank-one constraint reduces into a semidefinite
programming (SDP) problem and it can be solved by standard
convex optimization algorithms [52], from which we can
obtain the globally optimal solution of the digital precoder
design problem (34). Therefore, a step-by-step summary is
provided below as the SDR-AltMin Algorithm.

SDR-AltMin Algorithm: SDR Based Hybrid Precoding for
the Partially-connected Structure
Input: Fopt

1: Construct F
(0)
RF with random phases and set k = 0;

2: repeat
3: Fix F

(k)
RF, solving F

(k)
BB using SDR (36);

4: Fix F
(k)
BB, and update F

(k+1)
RF by (33);

5: k ← k + 1;
6: until a stopping criterion triggers.

C. Comparison Between Two Hybrid Precoding Structures

The main difference between two hybrid precoding struc-
tures considered in this paper is the number of phase shifters
NPS in use for given numbers of data streams, RF chains, and
antennas.

In terms of spectral efficiency, the fully-connected structure
provides more design degrees of freedom (DoFs) in the RF
domain and thus will outperform the partially-connected one.
However, when taking power consumption into consideration,
it is intriguing to know which structure has better energy
efficiency. Energy efficiency is defined as the ratio between
spectral efficiency and total power consumption

η =
R

Pcommon +N t
RFPRF +NtPPA +NPSPPS

, (37)

where the unit of η is bits/Hz/J and Pcommon is the common
power of the transmitter. PRF, PPS, and PPA are the power of
each RF chain, phase shifter, and power amplifier, respectively.
The number of phase shifters NPS can be expressed as follows,

NPS =

{
NtN

t
RF fully-connected

Nt partially-connected . (38)

The numerical comparison will be provided in the Section VII.

VI. HYBRID PRECODING IN MMWAVE MIMO-OFDM
SYSTEMS

In previous sections, we designed hybrid precoders for
narrowband mmWave systems. On the other hand, the large
available bandwidth is one of the unique characteristics of
mmWave systems, and therefore the design of the hybrid
precoders should be investigated when multicarrier techniques
such as OFDM are utilized to overcome the multipath fading.
In this section, we will extend the proposed AltMin algorithms
to mmWave MIMO-OFDM systems.

In conventional MIMO-OFDM systems with sub-6 GHz
carrier frequencies, digital precoding is performed in the
frequency domain for every subcarrier, which can also be
adopted in mmWave MIMO-OFDM systems. Futhermore,
the digital precoding is followed by an inverse fast Fourier
transform (IFFT) operation, which combines the signals of all
the subcarriers together. However, since the analog precoding
is a post-IFFT processing, the signals of all the subcarriers can
only share one common analog precoder in mmWave MIMO-
OFDM systems [22], [30]. Under this new restriction, the
received signal of each subcarrier after the decoding process
can then be expressed as

y[k] =
√
ρWH

BB[k]WH
RFH[k]FRFFBB[k]s+WH

BB[k]WH
RFn,
(39)

where k ∈ [0,K − 1] is the subcarrier index. H[k] is the
frequency domain channel matrix for the kth subcarrier, which
is given by [22]

H[k] = γ

Ncl−1∑

i=0

Nray∑

l=1

αilar(φ
r
il, θ

r
il)at(φ

t
il, θ

t
il)
He−j2πik/K ,

(40)
where γ =

√
NtNr
NclNray

is the normalization factor and K is the
total number of subcarriers. Then the hybrid precoder design
in mmWave MIMO-OFDM systems can be formulated as [22]

minimize
FRF,FBB[k]

K−1∑

k=0

‖Fopt[k]− FRFFBB[k]‖2F

subject to

{
FRF ∈ A
‖FRFFBB[k]‖2F = Ns,

(41)

where Fopt[k] is the optimal digital precoder for the kth
subcarrier. While it does not directly maximize the spectral
efficiency, similar to the narrowband case, as shown in [13],
[22], the objective is a good surrogate and it will make the
problem tractable.

The alternating minimization framework can be adopted to
solve problem (41). In particular, the digital precoders of all
the subcarriers can be updated in a parallel fashion, since
we can get rid of the summation in (41) when optimizing
the digital precoder for each subcarrier. Hence, the solutions
from (7), (28) and (36) still hold for problem (41). Next
we will focus on the analog precoder design, which is the
main difference from narrowband systems. Then the proposed
AltMin algorithms can be applied to the hybrid precoding in
OFDM systems.

For the MO-AltMin algorithm, based on the principles of
manifold optimization, as mentioned in Section III, we first
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derive the Euclidean gradient of the objective function in (41)
as

∇f(x) = −2

K−1∑

k=0

(F∗BB[k]⊗ INt)×
[
vec(Fopt[k])− (FTBB[k]⊗ INt)x

]
.

(42)

After calculating this Euclidean gradient, we can still use
the projection (13) and the retraction (15) to obtain the
Riemannian gradient and the mapped gradient vector on the
manifold, which are key elements in Algorithm 1.

For the PE-AltMin algorithm, after we adopt a similar
upper bound and manipulations in Section IV, the problem
formulation for the analog precoder design is given as

minimize
FRF

K−1∑

k=0

∥∥Fopt[k]FHDD[k]− FRF

∥∥2
F

subject to |(FRF)i,j | = 1,∀i, j,
(43)

which has a closed-form solution

arg (FRF) = arg

(
K−1∑

k=0

Fopt[k]FHDD[k]

)
. (44)

By substituting Step 5 in the PE-AltMin algorithm, this
solution enables the extension of the PE-AltMin algorithm to
OFDM systems.

Similar to the previous two AltMin Algorithms, the SDR-
AltMin algorithm can also be realized in OFDM systems. We
can get the closed-form solution for the analog precoder as

arg {(FRF)i,l} = arg

{
K−1∑

k=0

(Fopt[k])i,:(FBB[k])l,:
H

}
,

1 ≤ i ≤ Nt, l =

⌈
i
N t

RF

Nt

⌉
,

(45)

which can be added in Step 4 in the SDR-AltMin algorithm.
The aforementioned solutions demonstrate that the proposed

AltMin algorithms can be directly extended to mmWave
MIMO-OFDM systems, and the performance of the proposed
AltMin algorithms will be evaluated in the next section.

VII. SIMULATION RESULTS

In this section, we will numerically evaluate the perfor-
mance of our proposed algorithms. Data streams are sent from
a transmitter with Nt = 144 to a receiver with Nr = 36
antennas, while both are equipped with USPA. The channel
parameters are set as Ncl = 5 clusters, Nray = 10 rays and the
average power of each cluster is σ2

α,i = 1. The azimuth and
elevation angles of departure and arrival (AoDs and AoAs)
follow the Laplacian distribution with uniformly distributed
mean angles and angular spread of 10 degrees. The antenna
elements in the USPA are separated by a half wavelength
distance and all simulation results are averaged over 1000
channel realizations. For all the proposed AltMin algorithms,
the initial phases of the analog precoder FRF follow a uniform
distribution over [0, 2π).

A. Spectral Efficiency Evaluation

Firstly, we investigate the spectral efficiency achieved by
different algorithms when the number of RF chains is equal
to that of the data streams, i.e., N t

RF = Nr
RF = Ns. This
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Fig. 3. Spectral efficiency achieved by different precoding algorithms when
Nt

RF = Nr
RF = Ns = 3.

is the worst case since the number of RF chains cannot
be smaller under the assumptions in Section II-A. In this
case, as shown in Fig. 3, for the fully-connected structure,
the existing OMP algorithm [13] achieve significantly lower
spectral efficiency than the optimal digital precoder. On the
contrary, our proposed alternating minimization algorithm4,
i.e., the MO-AltMin algorithm, achieves near-optimal perfor-
mance over the whole SNR range in consideration. This means
that the proposed algorithm can more accurately approxi-
mate the optimal digital precoder than existing algorithms,
even though the RF chains are limited. In this scenario, the
partially-connected structure with the proposed SDR-AltMin
algorithm provides substantial performance gains over analog
beamforming, especially at high SNRs. For comparison5, the
SIC-Based method proposed in [31] is adopted as a benchmark
for the partially-connected structure. Fig. 3 shows that the
SDR-AltMin algorithm outperforms the benchmark. This is
mainly because the SDR-AltMin algorithm takes full use of
the digital precoder, while the SIC-Based method only uses the
digital precoder to allocate power to the data streams under
the extra diagonal constraint.

It has been shown in [26] that when N t
RF ≥ 2Ns and

Nr
RF ≥ 2Ns, there exists a closed-form solution to the design

problem of the fully-connected hybrid precoding, which leads
to the same spectral efficiency provided by the optimal digital
precoding. Although the hybrid precoder design in this paper
aims at cases of Ns ≤ N t

RF < 2Ns, it is interesting to

4When optimizing the analog precoder, Algorithm 1 converges within 20
iterations for almost all the channel realizations.

5Since the SIC-Based method in [31] can only design hybrid precoders at
the transmitter, we assume that the optimal digital decoder is adopted at the
receiver. Furthermore, the same setting is also employed for the SDR-AltMin
algorithm for fair comparison in Fig. 3. Nevertheless, in the remainder of this
section, both hybrid precoder and decoder are assumed at the transmitter and
receiver for the partially-connected structure.
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examine if our proposed algorithm can achieve the comparable
performance as the case considered in [26]. Fig. 4 compares
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Fig. 4. Spectral efficiency achieved by different precoding algorithms given
Ns = 2, Nt

RF = Nr
RF = NRF and SNR = 0 dB.

the performance of different precoding schemes for different
NRF. We see that the proposed MO-AltMin algorithm for the
fully-connected structure starts to coincide with the optimal
digital precoding when N t

RF = Nr
RF ≥ 4. This result

demonstrates that when N t
RF ≥ 2Ns and Nr

RF ≥ 2Ns, our
proposed algorithm can actually achieve the optimal spectral
efficiency, which, however, cannot be achieved by the OMP
algorithm. Furthermore, the comparison between two hybrid
precoding structures shows that the partially-connected struc-
ture, using less phase shifters, does entail some non-negligible
performance loss when compared with the fully-connected
structure.

B. Energy Efficiency Evaluation

In this part, we will compare the performance of the two
hybrid precoding structures in terms of energy efficiency, as
defined in (37). The simulation parameters are set as follows:
Pcommon = 10 W, PRF = 100 mW, PPS = 10 mW and
PPA = 100 mW [12]. The simulation results are shown
in Fig. 5, which shows substantially different behaviors for
the two structures. Since the number of phase shifters scales
linearly with N t

RF and Nt in the fully-connected structure, the
power consumption will increase substantially when increasing
N t

RF. As shown in Fig. 4, however, the spectral efficiency
achieved by the proposed MO-AltMin algorithm is sufficiently
close or exactly equal to the optimal digital one, and will not
increase further as NRF increases. Based on these two facts,
the power consumption grows much faster than the spectral
efficiency, which gives rise to the dramatic decrease of the
energy efficiency.

For the partially-connected structure, as the number of
phase shifters is independent of N t

RF, the dominant part
of total power consumption remains almost unchanged over
the investigated range of RF chain numbers. Meanwhile, the
spectral efficiency will gradually approach the optimal digital

2 4 6 8 10 12 14 16 18

N
RF

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
ne

rg
y 

E
ffi

ci
en

cy
 (

bi
ts

/H
z/

J)

Partially-connected
Fully-connected

Fig. 5. Energy efficiency of the fully-connected and partially-connected
structures when Ns = 2, Nt

RF = Nr
RF = NRF and SNR = 0 dB.

precoder when increasing N t
RF. The improvement of the spec-

tral efficiency and the almost unchanged power consumption
together account for the rise in the energy efficiency when
N t

RF goes up in the partially-connected structure.
More importantly, Fig. 5 shows that there is an intersection

point, i.e., when NRF = 5, of the energy efficiency for two
hybrid precoding structures. In particular, the fully-connected
structure enjoys higher energy efficiency with a small number
of RF chains, while the partially-connected one is more
energy efficient when a relatively large number of RF chains
are implemented at transceivers. This phenomenon will offer
valuable insights for the RF chain implementation in hybrid
precoding. As shown in Fig. 4, the fully-connected structure
can approach the performance of the optimal digital precoder
when the number of RF chains is slightly larger than that
of the data streams. Therefore, there is no need to implement
more RF chains considering the energy efficiency. On the other
hand, with a low-complexity hardware implementation, it is
beneficial for the partially-connected structure to leverage the
larger size of RF chains to improve both spectral and energy
efficiency.

C. Low-Complexity Design for the Fully-connected Structure

As mentioned in Section IV-B, there are two intermediate
steps taken for developing the PE-AltMin algorithm, i.e.,
constructing the digital precoder with orthogonal columns and
replacing the objective function with an upper bound. Firstly,
we test the influence of the additional constraint on the digital
precoder, for which we eliminate the impact of the second step
by setting the numbers of RF chains and data streams to be
equal, i.e., to make the bound tight.

Fig. 6 plots the spectral efficiency achieved by both the MO-
AltMin and PE-AltMin algorithms when there are 2, 4 and 8
data streams transmitted. We see that the curves of the low-
complexity PE-AltMin algorithm nearly coincide with those
of the MO-AltMin algorithm. This phenomenon implies that
the orthogonal column structure of the digital precoder has
negligible impact on spectral efficiency, which justifies the
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rationality of the digital precoder design in Section IV-B. Fig.
6 also indicates that we can achieve the performance of the
high complexity MO-AltMin algorithm by adopting the low-
complexity PE-AltMin algorithm when NRF = Ns. Under this
system setting, the PE-AltMin algorithm serves as an excellent
candidate for the hybrid precoder design, achieving both good
performance and low complexity. On the contrary, the OMP
algorithm works poorly when NRF = Ns.

Next we investigate the impact of the number of RF chains.
Fig. 7 compares different algorithms assuming 6 data streams
are transmitted. Since the optimal solution in the N t

RF ≥ 2Ns
region has been fully developed in [26], here we focus on the
remaining region, i.e., N t

RF = Nr
RF = NRF ∈ [6, 11]. From

Fig. 7, we find that the PE-AltMin algorithm has a small gap
compared with the MO-AltMin algorithm. That is because the
low-complexity algorithm tries to minimize an upper bound
instead of the original objective function. As explained in
Section IV-B, the upper bound is tight when NRF = Ns and
gets looser when NRF increases, which determines the gap
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Fig. 8. Spectral efficiency achieved by different precoding algorithms in
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between the MO-AltMin and PE-AltMin algorithms. However,
the spectral efficiency provided by the PE-AltMin algorithm is
far higher than the existing OMP algorithm, especially when
the RF chain number is small. With the proposed AltMin
algorithms, we see that the performance of the fully-connected
structure approaches that of the fully digital precoder when the
number of RF chains is comparable with the number of data
streams, which cannot be revealed from the OMP algorithm.

D. Hybrid Precoding in MmWave MIMO-OFDM Systems

In this part, we will show the performance of the proposed
AltMin algorithms when applied to mmWave MIMO-OFDM
systems. We assume that the number of subcarriers is K =
128.

Fig. 8 plots the spectral efficiency achieved by the MO-
AltMin and PE-AltMin algorithms compared to the OMP-
based method proposed in [22]. It turns out that the MO-
AltMin algorithm always has the highest spectral efficiency
under different system parameters. With a large number of RF
chains, similar to what we have observed in Fig. 7, the MO-
AltMin algorithm will quickly get close to the performance of
the optimal digital precoder. Interestingly, we discover that the
low-complexity PE-AltMin algorithm can achieve almost the
same spectral efficiency as that of the MO-AltMin algorithm
when the numbers of RF chains and data streams are equal.
This phenomenon is the same as that in narrowband systems,
and it demonstrates that the extra orthogonality constraint on
the digital precoder also has negligible impact on spectral
efficiency in mmWave OFDM systems. It is also found in Fig.
8 that the PE-AltMin algorithm outperforms the OMP-based
method in mmWave OFDM systems. This indicates that the
PE-AltMin algorithm can serve as an outstanding candidate
for the low-complexity hybrid precoding, both in narrowband
and broadband OFDM systems, when the transceivers only
have limited RF chains available.
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VIII. CONCLUSIONS

Built on the principle of alternating minimization, in this
paper, we proposed an innovative design methodology for
hybrid precoding in mmWave MIMO systems. Effective al-
gorithms were proposed for the fully-connected and partially-
connected hybrid precoding structures, and simulation results
helped reveal the following valuable design insights:
• The hybrid precoders with the fully-connected structure

can approach the performance of the fully digital precoder
when the number of RF chains is slightly larger than
the number of data streams. Considering the increasing
cost and power consumption, there is no need to further
increase the number of RF chains.

• For the partially-connected structure, in terms of spectral
efficiency, hybrid precoders provide substantial gains over
analog beamforming. Furthermore, it is profitable to
implement a relatively large number of RF chains, in
order to enhance both spectral and energy efficiency.

Finally, our results have clearly demonstrated the effectiveness
of alternating minimization in designing hybrid precoders in
mmWave MIMO systems. It will be interesting to extend the
alternating minimization techniques to other hybrid precoder
design problems, as well as to consider the hybrid precoder
design combined with channel training and feedback. Also a
finer convergence analysis and optimality characterization of
the proposed algorithms will require further investigation.

APPENDIX A
FORMULATION OF THE HOMOGENEOUS QCQP PROBLEM

The original problem is a non-homogeneous QCQP problem

minimize
FBB

‖Fopt − FRFFBB‖2F

subject to ‖FBB‖2F =
N t

RFNs
Nt

.
(46)

According to the vectorization property, the objective function
in (46) can be rewritten as

‖Fopt − FRFFBB‖2F = ‖vec(Fopt − FRFFBB)‖22
= ‖vec(Fopt)− vec(FRFFBB)‖22
= ‖vec(Fopt)− (INs ⊗ FRF)vec(FBB)‖22 .

(47)

To simplify the notation, denote f = vec (Fopt), b =
vec (FBB) and E = INs ⊗ FRF. In order to apply SDR, we
introduce an auxiliary variable t to homogenize the original
problem as

minimize
b

‖tf −Eb‖22

subject to

{
‖b‖22 =

NtRFNs
Nt

t2 = 1.

(48)

The objective function in (48) can be further rewritten as

‖tf −Eb‖22 =
[

bH t
] [ EHE −EHf
−fHE fHf

] [
b
t

]
.

(49)

Furthermore, the two constraints in (48) can also be manipu-
lated as

‖b‖22 =
[

bH t
] [ INtRFNs

0

0 0

] [
b
t

]
=
N t

RFNs
Nt

,

(50)

t2 =
[

bH t
] [ 0NtRFNs

0

0 1

] [
b
t

]
= 1. (51)

Consequently, if we define

y =

[
b
t

]
,Y = yyH ,C =

[
EHE −EHf
−fHE fHf

]
,

A1 =

[
INtRFNs

0

0 0

]
,A2 =

[
0NtRFNs

0

0 1

]
,

the original problem (46) can be reformulated as

minimize
Y∈Hn

Tr(CY)

subject to





Tr(A1Y) =
NtRFNs
Nt

Tr(A2Y) = 1

Y � 0, rank(Y) = 1.

(52)
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