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Abstract

In this thesis, a machine learning approach was used to develop a predictive model
for residual methanol concentration in industrial formalin produced at the Akzo
Nobel factory in Kristinehamn, Sweden. The MATLAB™ computational envi-
ronment supplemented with the Statistics and Machine Learning™ toolbox from
the MathWorks were used to test various machine learning algorithms on the
formalin production data from Akzo Nobel. As a result, the Gaussian Process
Regression algorithm was found to provide the best results and was used to create
the predictive model. The model was compiled to a stand-alone application with
a graphical user interface using the MATLAB Compiler™,
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1 Introduction

In recent decades, there has been a growing interest in utilizing machine learning
methods in various industrial, scientific and business applications e.g. Google,
Amazon or WEKA. Machine learning is applied within a broad area of engineer-
ing and science including a set of well established algorithms and best practises
as well as a rapidly developing discipline. With the progress in computation tech-
nologies, it has become possible to use machine learning in solving some of the
biggest problems of today e.g. analyzing the ever-growing volumes of data in a
structured way to make rational and knowledgeable business decissions.

Machine learning could roughly be divided into two subfields; unsupervised and
supervised machine learning, although more subcategories could also be distin-
guished. While the unsupervised machine learning is used for discovering natural
patterns in complex data sets, the supervised machine learning aims at building
predictive models that can be utilized to make predictions for new sets of data. [1]

In this thesis, the formalin process data obtained from Akzo Nobel AB* will be an-
alyzed using both the unsupervised and supervised machine learning algorithms.
The main objective of this analysis is to develop a model able to predict the con-
centration of residual methanol in the final product (formalin). MATLAB and
the Statistics and Machine Learning toolbox from the MathWorks*™ were used to
perform the analysis and develop the predictive model.

The raw material used for synthesizing formalin in the process under considera-
tion is methanol. The reactor system consists of two parallel reactors connected
to an absorption column. Figure 1.1 shows a basic overview of the system for one
reactor only. FEach reactor has 1000 small tubes with internal ceramic rings of
two types i.e. inert and catalyst (iron-molybdenum) rings. The rings are ordered
in different layers, where the number of layers and the length of the tubes are
different for each reactor.

*The formalin production factory in Kristinehamn, Sweden.
**The MathWorks Swedish Office in Kista.
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Figure 1.1: An overview of the reactors’ pa-
rameters.

The underlying chemical process taking place in both reactors can be described
by the following chemical reaction equation:

Methanol + Oxygen — Formaldehyde + Water + Heat

CH30H + 5 O — CH,0 + Hy0 + heat

Since the reaction is higly exotermic, the system needs to be cooled down with a
special oil coolant. The main product of the reaction (formaldehyde) is transported
into the absorption column where it is dissolved in water forming the final product
(formalin), see Figure 1.2. As a consequence of the reactions, the catalyst rings
of each reactor deteriorate and need to be exchanged to maintain the optimal
reaction efficiency. Until this happens, the ingoing oil temperature needs to be
increased proportionally. After the catalysts rings have been exchanged, the oil
temperature is lowered back to its initial value.
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Figure 1.2: An overview of the absorbtion
column’s parameters.



Formalin produced using this method contains small amounts of methanol (up to
1.7% at the extreme), which significantly lowers its quality. Therefore, reducing
the concentration of the remnant methanol or idealy eliminating it completely is
of great importance to ensure the highest quality of the product. A question arises
then, how could one control the system’s parameters (Figures 1.1 and 1.2) to lower
the concentration of residual methanol in the final product as much as possible?
As the formalin production process is complex and many factors of different na-
ture are involved, it is difficult to develop a traditional mathematical model that
could be used to accurately predict the concentration of residual methanol. An
interesting alternative to traditional approaches seems to be machine learning for
the following reasons; it can be used to reveal patterns and relationships hidden in
data to understand the processes involved (unsupervised machine learning), and
apply that knowledge to develop models capable of making predictions on new
sets of data (supervised machine learning).

The goal of this thesis is to use first unsupervised machine learning to investi-
gate pattern and relationships in the data, and then create a model that could
accurately predict the concentration of methanol in formalin based on new or
anticipated process data using supervised machine learning.



2 Description of the machine learning
algorithms used

This chapter provides an overview of the machine learning algorithms used through-
out the work, without including their formal mathematical discussion. The reader
should consult each section’s references for more comprehensive discussion of the
methods. In particular; linear regression, support vector regression machines,
gaussian process regression and artificial neural network, have been selected as
the most promising candidates for creating the predictive model.

2.1 Principal component analysis

Principal component analysis (PCA) is a method often used to search for pat-
terns in multivariate data sets (unsupervised learning). It is a statistical method
that can be used to transform a number of possibly correlated variables into a
smaller number of uncorrelated variables called principal components. It uses an
orthogonal transformation to linearly transform a data set into a set of principal
components, while preserving as much as possible of the variation in the original
data. The method does not ignore covariances and correlations but focuses on
variances. The principal components are independent of each other and are ar-
ranged such that the first few principal components explain most of the variation
of all the original variables. The principal componets can be viewed as axes in
a new space, where they are orthogonal to each other. If the first few principal
components explain the majority of the data, it is possible to visualize a highly
dimensional data set in fewer dimensions without losing extensive amount of in-
formation. [2]

2.2 Regression models

2.2.1 Linear regression

Linear regression is a method extensively used for numerous different problems
to model relationships between variables, considered to be both dependent and
independent, by fitting a linear equation to observed data. A possible linear



regression model can be written in the following general form:

K
yi:bO‘I'Zbkfk(xil;mi%“-vxip)+Ei t=1,---,n, (2.1)
=1

where y; is the dependent variable, by is a constant term while by is the kth
coefficient, f; is a function of the independent variables, x;;, that may have any
form, x;; is the ith measurement of the jth variable (j = 1,2,...,p) and ¢; is
the ith noise term (a random error). The noise terms ¢; have all the same normal
distributions with zero mean and constant variance [3], [4]. The MATLAB function
fitlm computes, if no arguments are given, a linear regression model that contains
an intercept and linear terms for each independent variable. The fitted linear
function has the same structure as the equation (2.1), where y; is the predicted
response and by, are the fitted coefficients. The coefficients are determined, so that
the error of the least squares of the predicted response vector, y, and the true
response vector, y, is as small as possible [5].

2.2.2 Support vector regression machines

Support vector machines (SVMs) can be used for classification, which in this
method is the processes of separating different groups in the data by finding the
hyperplane that has the biggest margin between the groups. A hyperplane is a
subspace of the original n-dimensional space whose dimension is n — 1. SVMs
are binary by nature, meaning they are only directly applicable to data with two
classes. Cortes and Vapnik have introduced the soft margin hyperplane concept
to make it possible to separate data that is not strictly linearly separable [8].

Later Drucker et al. introduced a regression technique based on Vapnik’s concept
of support vectors referred to as support vector regression machines. The MAT-
LAB’s support vector regression machines algorithm implements e-insensitive loss,
which is a loss function that treats errors within e distance of an observed value
as equal to zero. Essentially the loss is measured based on the distance between
observed values y and the ¢ boundary. The algorithm aims to find a function
f(z) that does not lie further from the responses y; than € for each training point
x. If no function f(x) satisfies the constraints for all points, slack variables* are
introduced for each point, similar to the soft margin concept mentioned above.
[9], [10]

2.2.3 Gaussian process regression

Gaussian process regression (GPR) is a very versatile generic supervised learning
method that also allows for specifying custom stationary models, including using
probabilistic techniques based on covariance functions™. In short, the algorithm

*Slack variables are defined to transform an inequality expression into an equality expression.
**The covariance functions, also referred to as kernels, will determine how the response at one
point, x; is affected by responses at other points, x;.



uses a probability distribution of basis functions to determine the best distribution
of functions that fits the observed data. Assuming that the observed data can be
represented as a sample from a multivariate Gaussian distribution, this technique
can be combined with a Gaussian process (GP). In such a process every point
in the data is associated with random variables that are normally distributed. It
is also assumed that the mean of the GP is zero everywhere i.e observations are
related to each other through the covariance function k(z,2’|¢). The covariance
function may be any valid kernel function and |, indicates that the functions are
parameterized by a set of hyperparameters 6. [6]

P(yil f (i), 23) ~ N(yil h(2:)" 8+ f (1), 0%) (2.2)

2.2) represent a GPR model (in non-vector form) for one response ;. where T is
(2.2) rep ponse y;,

the transpose, f(x;) are the latent variables introduced by the GP for each obser-
vation x;, h(z;) is the basis function, /5 are the coefficients for the corresponding
basis function and o is the error variance. The probability equation (2.2), relates
the probability of y; to the given data. The MATLAB function fitrgp can estimate
the coefficients 3, the noise variance o2 and the hyperparameters § of a kernel
function from the data while training the model, the default kernel function is the
squared exponential kernel. [6], [7]

2.2.4 Artificial neural network

Artificial neural networks models (inspired by biological nervous systems) are used
to approximate, generally unkown, functions that are commonly dependent on
a considerable number of inputs. It is constructed by interconnected neurons
that map inputs to responses. Figure 2.1 shows how a typical neural network is
structured.

Input Hidden Layer Output

ST

F(x;.x,)

Figure 2.1: Structure of a typical artificial
neural network.



The inputs, x;, have an associated weight, w; ; and then with the use of transfer
functions, shown as black arrows in Figure 2.1, the information in z; is multi-
plied by the corresponding weight. It is a linear combination of the values from
the previous neurons, whose coefficients are the weights w; ;. This information
is integrated into the neuron and the primitive functions f;; are calculated, e.g.
fa1(wiaz1 + wypzy). The difference between different artificial neural network
models lies primarily in the assumptions about the primitive functions f(z), the
interconnection pattern and timing of the transmission of information. The func-
tion F'(x1,22) in Figure 2.1 is the network function. The primitive functions are
combined to create the network function. By adjusting the different weights, a
new network function will be produced. In short, training an artificial neural net-
work model requires, iteratively adjusting every weight until the desired outputs
are obtained for the inputs. [11]

The neural network implementation in MATLAB is a feedforward network. Each
time the feedforward network is initialized, the network parameters will in general
be different and the network may produce different results [12].



3 Method and Results

3.1 Preprocessing the data

The formalin production data set is divided into three sections; reactor one, re-
actor two and the absorption column (Figures 1.1 and 1.2), where the respective
parameters are most likely to have the greatest effect of the methanol concen-
tration in formalin. All values of the control parameters from the three sections
were recorded at the same time by a computer system. Each measurement set (at
a specified time) in the data reflects a change in the value of one of the control
parameters. The process data must be linked to the concentration of methanol
in formalin which is normally analyzed once a day. This restricts the amount of
process measurements to 396 days, i.e the period from April 1, 2015 to April 30,
2016, when the measurements were done.

Machine learning algorithms work best for large data sets. Since the sample of
396 measurements is clearly not a big data set, a risk of overfitting the data arises.
Overfitting means that a regression model is customized too much in the learning
process to describe the relationships between the training data and the responses.
Thus the model becomes to complex which leads to inaccurate predictions when
new data is introduced. For this reason only the measurements recorded when
both reactors were active, were taken into account in the analysis. The methanol
to carburetor* parameter is used to remove insignificant measurments from the
data. That is, all measurements corresponding to the values of methanol to car-
buretor lower than 15 kg/min were removed as any value lower than 15 kg/min
means inactive reactor. The measurements for which the methanol concentration
was not recorded were also removed. In effect the number of significant measure-
ments shrank to 329.

Both reactors’ are characterized by the same eight parameters (Figure 1.1) whilst
the absorption column by five (Figure 1.2). By merging the three sets of parame-
ters, a new set of data is constructed containing every parameter for both reactors
and the absorption column, in total 21 parameters. In addition to that, another
set of data was constructed, in an attempt to improve the accuracy of the pre-
dictive models, by treating the two reactors as one, i.e. by taking the mean of
their corresponding eight parameters. By adding the five parameters in absorp-
tion column’s data, the resulting parameters where 13 in total. From now on this
13 dimensional data will be referred as ’transformed’ data, while the previous 21

*This parameter describes the amount of methanol transported into the carburetor per unit
time.

10
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dimensional data is referred as 'not transformed’.

3.2 Unsupervised learning

Unsupervised learning can be used to approach different problems with limited or
no knowledge. It is possible to derive structures, in the form of clusters, based
on relationships among the variables in the data where the effect of the different
variables is not necessarily known in the beginning.

3.2.1 Correlation

Correlation can be used to test for the existence of linear relationships between
parameters in a data set. The correlation for each reactor was computed to inves-
tigate relationships between their parameters. The MATLAB’s function corr(X)
computes, by default, the widely used Pearson’s linear correlation coefficients and
returns a matrix of pairwise linear correlation coefficients between each pair of
columns in the matrix X[13]. The correlation matrices were plotted as heatmaps*
to visualize the correlations of the reactors’ parameters and make it easier to
distinguish the differences between the two reactors, Figures 3.1a and 3.1b.
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The values in the figures indicate the degree of linear relationships between the
parameters and zero indicates lack of such a relationship.

It is seen that the outgoing and ingoing oil temperature together with the other
related parameters, have high correlations, forming squares of similar colour. Note
that the colorbars in both figures are the same scale and the difference between
them is caused by different values of correlation. No correlation value in Figure
3.1b is lower than 0.4881 compared to Figure 3.1a, where the darkest blue is as low
as 0.0276. While similarites between the two figures exists, the results indicate
that there is a stronger relationship between most of the parameters of reactor
two than reactor one.

3.2.2 Principal component analysis

It might be difficult to identify hidden patterns in high dimensional data sets
without thorough analysis. PCA is used to identify patterns by finding principal
components using the method described in 2.2.1. The principal components are
calculated with the MATLAB’s pca(N) function, where N is the matrix repre-
senting the normalized data. The industrial process data used in this section is
normalized using the function zscore(X), which normalizes data by centering each
column (parameter) of the original data, X, so the resulting data set has a mean
of 0 and a standard deviation of 1 [14].

Furthermore, the pca function can return a number of output arguments;

[pes, sers, , , pexp] = pea(N), where pcs is a n-by-n matrix of principal compo-
nents. It defines the linear transformation between the untransformed (original)
normalized data N and the transformed data returned by the second output scrs,
so scrs = N*pes or N = sers*pes?. The output pexp is a vector of the percentage
of variance explained by each component. [15]

Reactor data

The principal components for each reactor are calculated with the pca function
and the variances explained by each principal component are shown in Table 3.1.

12



Table 3.1: Variance explained by the prin-
cipal components for reactor one
and two.

Principal || Variance (%): | Variance (%):
component || Reactor one Reactor two
1 58.70 76.17
2 22.22 11.88
3 9.51 7.38
4 7.12 3.45
5 1.69 0.73
6 0.59 0.28
7 0.12 0.1
8 0.05 0.01

The cumulative sums of the first three principal components of reactor one and
two are 90.43% and 95.43% respectively. The eight dimensional data sets for each
reactor are visualized in two and three dimensions using the first two and three
columns in the matrix scrs, the second output from the pca function, Figures 3.2a
to 3.3b. To relate the principal components to the original parameters the pcs
matricies were visualized as heatmaps, Figures 3.4a and 3.4b.

R1 R2

Principal component 2
Principal component 2

r . . . I : . | I |
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Principal component 1 Principal component 1

(a) Reactor one (b) Reactor two

Figure 3.2: Visualization of both reactors’
eight dimensional data sets with
the first two principal compo-
nents.
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Figure 3.3: Visualization of both reactors’
eight dimensional data sets with
the first three principal compo-

nents.

In Figures 3.2a and 3.2b similar patterns of two clusters can be identified. More
prenounced patterns in the data can be revealed using the first three principal
components, Figures 3.3a and 3.3b, where the difference in the cluster structures
seen will be adressed in the discussion section.
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The three first principal components, 1 — 3 in Figure 3.4, explain over 90% of
the data and are therefore the most interesting components to focus on. The
high values indicate strong relation between the corresponding parameters and
the principal component. Thus, they help to identify how the original parameters
affect the structure present in the data revealed by the principal components.

The correlation heatmap (Figure 3.4b) exhibit nearly similar values of the correla-
tion between the temperature parameters and the first three principal components.

The possible causes of the difference between the two reactors will be analyzed in
the discussion section.

’Not transformed’ and ’transformed’ data

Table 3.2 presents the variance explained in the eight first principal components
for both sets of data. Figures 3.5 to 3.8 presents the visualization of the data
in three dimensions and the relations of the principal components to the original
parameters.

Table 3.2: Variance explained by the first
eight principal components for
the 'not transformed’ and 'trans-
formed’ data.

Principal component Variance (%): | Variance (%):
component 'Not transformed’ | "Transformed’

1 35.99 37.48

2 23.25 21.23

3 14.15 15.87

4 11.25 10.61

5 4.27 4.71

6 3.25 4.09

7 2.30 3.10

8 2.17 1.83

15
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Figure 3.5: Scatter plot of the first three
principal components from the
'not transformed’ data.
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Figure 3.6: Heatmap showing the relations
between the eight first prinic-
pal components and original pa-
rameters (‘not transformed’).
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Compared to previous results, applying PCA analysis on to the mot transformed’
data set reveals that only 73.4% is explained by the first three principal com-
ponents. It is not clear at the moment what kind of an underlying pattern the
clusters seen in Figure 3.5 reveal. Some suggestions will be provided in the dis-
cussion section.

Figure 3.6 presents the dependence of the first eight principal components on the
system’s parameters (reactor one and two plus the absorption column). As can
be seen from the figure, the first principal component shows a stronger correlation
with the second reactor’s parameters, while the second principal component seems
more correlated with the first reactor’s parameters. On the other hand the third
principal component is mostly affected by the absorption column’s parameters.
However, all dependencies are relatively small for all parameters related to the
principal components that explain most of the variance.

By comparing the results of PCA applied to the ’transformed’ and ’'not trans-
formed’ data, a better insight into the pattern formation revealed by Figure 3.5
can be achieved. The first three principal components explain 74.6% of the orig-
inal data, as shown in Figure 3.7. Figure 3.8 shows results for the 'transformed’
data.

Principal component 3
£ %
|

F'nnc;pa! Component 1

Figure 3.7: Scatter plot of the first three
principal components from the
‘transformed’ data.
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Figure 3.8: Heatmap showing the relation
between the first eight princi-
pal components and the origi-
nal parameters for the ’trans-
formed’ data.

No clear cluster pattern can be seen in Figure 3.7. One could understand it by con-
sidering the pattern revealed in Figure 3.5, which could contain only two groups,
is related to each of the two reactors, taken that the transformed’ data represents
a linear combination of the two reactors, whilst no transformation was applied
to the absorption column’s data. Correlation pattern in Figure 3.8 and 3.4a are
similar, with exception to the absorption column’s parameters.

The analysis has revealed patterns and clusters in the data, suggesting that there

is a difference between the two reactors. Furthermore, no single parameter can be
distinguished to affect the majority of the entire processing system.
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3.3 Supervised learning

The goal of supervised learning is to build a predictive model in terms of predictor
variables, where knowledge obtained from the unsupervised learning algorithms
can assist in finding and excluding nonessential predictors.

3.3.1 Preparing the data for regression based learning

To train regression models, data needs to be split into two sets; the training and
validation set. Each of the two non-normalized sets of data (‘not transformed’
and ’transformed’) are divided into the two seperate sets using the MATLAB’s
function cvpartition with the argument 'Holdout’, which specifies the percentage
of data that will be put into the validation set. The function will randomly divide
the rows of measurements for one selected parameter, while attempting to evenly
distribute measurements with equal values between the two sets. To set the seed
of the random number generator, the MATLAB’s function rng(n) is used. To
create the training and validation sets, the seed (n) was set to 1234. The pa-
rameter of choice for the cvpartition function was the concentration of methanol,
where the percentage of measurements put into the validation set was 30%, i.e.
98 randomly selected rows from the formalin data and 231 rows in the training
set. The randomly selected rows of measurements obtained from the cvpartition
function are used to divide both the "transformed’ and the 'not transformed’ data
into seperate training and validation sets.

3.3.2 Regression and predictions

The linear regression algorithm has been applied to both the 'not transformed’
and ’transformed’ data sets using the fitlm(X,Y) function with the default model
specification ‘linear’, where X is the training set and Y is the corresponding vec-
tor of responses (concentration of methanol). After the training, the MATLAB’s
function predict(mdl,valid), where mdl is a MATLAB model object containing the
regression model and valid is the validation data set, is used to predict the con-
centration of methanol for all the following regression models. The error for each
corresponding model is calculated by mean square error (MSE) and by taking the
mean of the absolute values for all percentage error for each prediction (Mean Abs.
Perc. Error).

Figure 3.9 displays the predicted values of the linear regression model for the
validation set, comparing them to the analyzed methanol concentration, shown
in blue. The predictions follow the methanol conentration fairly well considering
that the difference between the measurements are relatively small. The error
calculation for both models are presented in Figure 3.10 where the red bars is the
‘transformed’ data, the black bars are the 'not transformed’ and the vertical axes
display the number of measurements included in each bar.
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Figure 3.9: The predicted concentration of
methanol using linear models
(the measured methanol con-
centration in blue).
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Figure 3.10: Error calculations for the lin-
ear models. The red is the er-
ror for the ’transformed’ data
and the the black for the 'not
transformed’.
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The two support vector regression machines (SVRMs) models are trained using the
function fitrsvm(X,Y) and the predictions for the validation data are presented
in Figure 3.11, whilst the error in Figure 3.12. Comparing the results obtained
from the linear regression models with the results from the SVRMs shows that
the linear regression exhibit the smallest error and predicts the concentration of
methanol more accurately.

SVM
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—*— Predicted MeOH %: Not transformed M ?
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0 10 20 30 40 50 60 70 80 90 100
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Figure 3.11: The predicted concentration of
methanol using SVRMs mod-
els (the measured methanol
concentration in blue).
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Figure 3.12: Error calculations for the
SVRMs models. The red is
the error for the transformed’
data and the the black for the
‘not transformed’.

The GPR models are trained using the MATLAB’s function fitrgp(X,Y’). Figures
3.13 and 3.14 display the predicted concentration of methanol and the prediction
error respectively.

GPR
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—*— Predicted MeOH %: Not transformed

100
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Figure 3.13: The predicted concentration of
methanol using GPR models
(the measured methanol con-
centration in blue).
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Figure 3.14: Error calculations for the GPR
models. The error is depicted
in red for the ’transformed’
data and black for the ’not
transformed’.

Based on the analysis of the different regression models, it has been found that the
GPR model provides the most accurate predictions for the methanol concentration.

Fitting of the neural network model is done using the application Neural Net
Fitting™, which is part of the Statistics and Machine Learning toolbox. The
data fed to the application is partitioned automatically. To train the neural net-
work models the following settings were used; 70% of the data is selected for
training, 15% for validation and 15% for testing, with 10 hidden layers and the
training algorithm Bayesian Regularization. The validation data is used to assess
the network generalization, and the application halts the training when the gen-
eralization does not change. The testing data set is independent of the training
procedure, thus provides an indepentent measure of the models performance dur-
ing and after training. The neural network model were trained only once for the
‘transformed’ and 'not transformed’ data sets.

Because of the way neural network models are trained, it cannot be determined
what measurements from the data set will be selected by the application for the
training, validation and testing sets. It is therefore very likely that many of the
measurements in the previously created validation sets have also been used in the
training of the neural network models. Thus, it would be quite risky to estimate
the quality of the neural network and regression models by comparing the predicted
concentrations of methanol based on the same validation sets. Instead, the quality
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of the neural network model will be asserted by comparing the model’s predictions
with those of the GPR models for the same validation set not included in the
training data of any of the models. The data used for the analysis were recorded
between May and June 2016. The corresponding predictions are presented in

Figure 3.15 and 3.16.
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Figure 3.15: The predicted methanol con-
centration by the GPR models
for May and the first six days
in June.
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Figure 3.16: The predicted methanol con-
centration by the neural net-
work models for May and the
first six days in June.

The predicted concentration of methanol does not exactly follow the experimental
concentration, as seen in the previous figures. Moreover, the regression models
are not capable of predicting the signifiquent drop in methanol concentration seen
in the experimental data, most likely due to overfitting of the training data set.
The risk of overfitting data is especially high for small data sets. The accuracy of
the predictions based on the regression models is also affected by a high frequency
in the variation of the measured data which the predictions are compared, Figure
3.17. Since the variation is unavoidable due to the measuring technique the MAT-
LAB’s function filter was used to smoothen the measured methanol concentration,
using the moving average method. Figure 3.17 presents the originally measured
methanol concentration (blue) and the smoothen data (red).
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Figure 3.17: The measured methanol con-
centration before and after the
moving average filter.

Next both the GPR models and the neural network models were trained using the
same predictor data and the filtered response data (smoothen methanol concen-

tration).

As shown in Figures 3.18 and 3.19, the accuracy of the predictions of the different
models have been improved, i.e. the significant drop in the methanol concentra-
tion is now well predicted, however there are still quite considerable differences
between the predicted and measures concentration of methanol. Nonetheless, the
GPR model is clearly more accurate than the neural network model, Figure 3.19,
and the 'transformed’ data is less accurate than the 'not transformed’; suggesting
that representing both reactors as one ("transformed’ data) does not improve the
quality of the model’s predictions. In the Appendix (Figure A.1 to A.4), the ac-
curacy of the GPR models’ predictions for the validation set can be seen with the
filtered methanol concentration, supporting the claim that the variation seen in
Figure 3.17 was affecting the quality of the predictive models.
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Figure 3.18: The measured methanol con- Figure 3.19: The measured methanol con-
centration for May and the centration for May and the
first few days in June, for first few days in June, for the
the GPR model fitted to neural network model fitted
the filtered concentration of to the filtered concentration of
methanol. methanol.

It seems reasonable to assume that removing some of the parameters from the data
set, which do not affect the concentration of methanol, could improve the accu-
racy of the models. The PCA analysis can in general be used to determine which
parameters can be removed from the orginial data set in the data preprocessing
phase. However, it is not always possible to clearly decide which parameters to be
removed from the original data set before training a regression model. Therefore
deep knowledge of the industrial systems is extremely valuable too. As a result of
discussions involving the process engineering group from Akzo Nobel, a subset of
the reactors parameters; in- and outgoing gas temperature, steam pressure after
cooler and temperature before the absorber, have been selected which most likely
will not affect the concentration of methanol. Through trial and error, the mod-
els were retrained with the same data, each time one or more of the mentioned
parameters would be removed until all possible variations had been tested. In the
end the removal of all the mentioned parameters; gas temperatures, temperature
before absorber and steam pressure after cooler, provided the most accurate model,
Figures 3.20 and 3.21. Without any doubt the GPR model is much more stable
and accurate than the neural network model. Furthermore, the other two models
(linear regression and SVRMs) were also fitted to the filtered methanol data, but
none of them would give nearly as good predictions as the GPR model, Figure 3.20.
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Figure 3.20: The measured methanol con- Figure 3.21: The measured methanol con-
centration for May and the centration for May and the
first few days in June, for first few days in June, for
the GPR model fitted to the neural network model fit-
the filtered concentration of ted to the filtered concentra-
methanol, without the param- tion of methanol, without the
eters gas temperature, cooler parameters gas temperature,
and temperature before ab- cooler and temperature before
sorber. absorber

The analysis has clearly shown that the most accurate predictions for the methanol
concetration are provided by the GPR models, trained on filtered methanol con-
centration data and reduced number of predictors.

3.3.3 Stand-alone application

A graphical user interface (Figure 3.22) was added to the MATLAB code im-
plementing the model and into a stand-alone application using the MATLAB
Compiler. The application can be used to import and automatically partition
the training data from the excel file "Training.xlsx’, and the data used for the
predictions from the file 'Predict.xlsx’. The user can then select how many predic-
tor variables that will be used in the training process of the GPR model. When
the training is completed, the model can be used to predict the concentration of
methanol based on the prediction data. The excel file "Predictions.xlsx” must be
selected as it will contain the predicted concentration of methanol. All actions
are forced to be performed in a specific order to ensure the robustness of the
application.
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Figure 3.22: The graphical user interface
for the stand-alone application
on OS X operating system.
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4 Discussion

4.1 Unsupervised learning

In the previous sections, various interesting results were obtained using the unsu-
pervised learning methods. The difference in the computed correlations indicate
stronger relationships between all parameters in the second reactor’s system (Fig-
ure 3.1b) than the first reactor’s system (Figure 3.1a). This difference could be
explained by the different lengths of the tubes, the different amount of the ceramic
mixture layers* and their respective age.

The PCA analysis reveals natural patterns and clustering in various sets of the
analyze data, e.g. Figures 3.3a, 3.3b and 3.5. The patterns in Figures 3.3a and
3.3b illustrate the difference between the reactor systems, where the data points
representing reactor two form a ”"denser” cluster. Since reactor two is newer, it
may provide higher processing efficiency compared to reactor one, therefore the
"denser” cluster. However, there are several other components in both systems
that may also affect the pattern, e.g. the cooler or the isolated oil coolant sys-
tem. Additional pattern structure is also seen in Figures 3.3a and 3.3b, most
likely depending on the ingoing and outgoing oil temperature parameters. The
other parameters are mostly kept at constant levels, whereas the oil temperatures
are continuously increased until the respective reactor’s catalysts are replaced and
then the temperatures are decreased again, i.e. the largest change of values be-
tween all measurements is seen in the oil temperature parameters. However, the
methanol to carburetor parameter could also be affecting the pattern depending on
the amount of methanol pumped into each reactor, as this parameter also changes
notably in value. To get a deeper understanding of the relationships in the reactor
systems, other unsupervised learning methods can be used, but those will not be
considered in this thesis.

The clusters seen in Figure 3.5 can be considered seperate as they disappear when
the 'transformed’ data is constructed, see Figure 3.7. Thus suggesting that the
cluster patterns are due to the difference in technical parameters of the two reactor
systems. The concept of the 'transformed’ data aimed at lowering the number of
predictors in the regression models, hence increasing the accuracy by representing
the two reactors as one, considering that the parameters of both systems are the
same. However the results from PCA and correlation analysis suggests that the
two parallel reactor systems differ more than what was originally assumed.

*The different layers are made of mixtures between the catalyst rings and the inert rings.
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To control the processing system, both reactors’ parameters would need to be reg-
ulated simultaneously, Figure 3.6. Additonally, Figure 3.8 shows stronger relation-
ships of the parameters for the 'transformed’” data because of the reduced number
of parameters, corresponding to the results obtained for reactor one (Figure 3.4a).
Hence, reactor one may affect the operation of the whole system stronger than
reactor two. Thus, it seems to be possible to fine-tune reactor two more easily
than reactor one, by adjusting all of its parameters simultaneously.

4.2 Supervised learning

The GPR model trained on the 'not transformed’ data (reduced parameters and
smoothen methanol concentration) has been found to provide the most accurate
predictions of the residual methanol concentration.

It is possible to improve the created neural network model to provide more ac-
curate predictions. However, as it is a feedforward network and every time the
neural network model is trained it is likely to be different from the previous one, it
is therefore difficult to produce the same results repeateadly when larger training
sets are used. This is not a major concern as to GPR model because only different
training data sets are used.

Since the GPR model has been trained on a relatively small set of data (329 mea-
surements in a 21 dimensional parameter space), it may not provide as accurate
predictions for very large data sets. The possible ways of improving the model
could be; using larger training sets which will decrease the risk of overfitting the
data and increase the accuracy of predictions based on the model.

Removing outliers from the methanol concentration could additionally decrease
the risk of overfitting and hence improve the models accuracy.

4.2.1 Stand-alone application

The application can be used to predict the methanol concentration on new or an-
ticipated data, providing an alternative way of fine-tuning the control parameters
before they are changed in the processing system. It will provide the user with a
fast and reliable method for changing and experimenting with the control param-
eters without affecting the production processing system, which was not available
prior to this work. The application is highly customizable, i.e. many different
MATLAB functions can be supplemented to the application if the need arises.
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5 Conclusion

Processing the formalin production data using unsupervised learning methods and
analyzing the results in a 3-dimensional space of the first three, most variance ex-
plaining principal components has revealed a distinct pattern in the data, consist-
ing of two groupings (clusters). The clusters can be related to the two reactors,
which together with the absorption column constitute the formalin production
system used in the Akzo Nobel’s factory. Their existence may also indicate dif-
ferences between the reactors resulting from age (reactor one is older than reactor
two) and technical details (different length of the tubes and different number of
mixture layers). Any attempt to control and fine tune the system to lower the
concentration of residual methanol in formalin would need to involve setting the
two reactors’ parameters independently i.e. the two reactors should not be treated
as one reactor system described by the same set of parameters.

It has been found that the Gaussian Process Regression method provided the
best predictions of the concentration of residual methanol in formalin and hence
was used as the base algorithm for the predictive model. The model could also be
used in a next-step analysis to find out how the concentration of residual methanol
could be related to the production system’s control parameters. Knowing the re-
lations would help to determine a set of the parameters to be tweaked to lower
the methanol concentration.

The MATLAB code implementing the model was equipped with a GUI and com-
piled into a stand-alone application using the MATLAB Compiler. The application
can now be used as part of the production process, modified and extended if a
need be.
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Appendix

If the reader is interested in obtaining the excel files "Training.xlsx’ and "Pre-
dict.xlsx’” which this thesis uses, please contact Stefan Kvarth at; Stefan.kvarth@akzonobel.com

Gaussian process regression
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Figure A.1: Predicted concentration of
methanol for the GPR models,
trained using the filtered
methanol concentration (blue).
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Figure A.2: Error calculations for the GPR
models, trained with the fil-
tered methanol concentration.
The red is the error for the
‘transformed’ data and the the
black for the 'not transformed’.
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Figure A.3: Predicted concentration of
methanol for the GPR models,
trained using the filtered
methanol concentration (blue)
with reduced parameters.
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37



Main MATLAB code

%% Import data
[data,varnames,”] = Import(’Training.xlsx’);
[datapred,varnamespred,idxP] = Import(’Predict.xlsx’);
% Vectors for each section of the data
idxtot = {[1:8], [9:16], [1:21]};
% Normalizing the data
Rinorm = zscore(data(:,idxtot{1}));
R2norm = zscore(data(:,idxtot{2}));
datanorm = zscore(data(:,idxtot{3}));
ToTo oo o o To To oo oo To o To oo fo o To o To foTo o

%% Combine both reactors through linear transformation for both sets of data
% Training set
Rtrans = (data(:,idxtot{1}) + data(:,idxtot{2}))./2;
datatrans = [Rtrans data(:,17:21)];
datatransnorm = zscore(datatrans);
% Prediction data set for May and June
Rtranspred = (datapred(:,idxtot{1}) + datapred(:,idxtot{2}))./2;
datatranspred = [Rtranspred datapred(:,17:21)];
Yoo 1o o To o JoTo o o o To o To o o To o o o ToToTo o o

%% Corr R1 and R2

Rstr = {’R1: ’,’R2: ’};
for i = 1:2
figure(i)

imagesc(abs(corr(data(:,idxtot{i}))))
labelXTicks(strcat (Rstr{i},varnames(1:8)))
labelYTicks(strcat (Rstr{i},varnames(1:8)))
colorbar
caxis([0 1]) % change colorbar limits
plotsettings
end

Yoo To oo o ToTo o oo ToTo o o o To o o o ToToTo o o

%% PCA for each reactor
[Ripcs,Rlscrs,”™,”,Rlpexp] = pca(Rlnorm);
figure
pareto(R1pexp)
title(’R17)
cumsum (R1pexp)
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[R2pcs,R2scrs, ™, ,R2pexp] = pca(R2norm);
figure

pareto(R2pexp)

title(’R27)

cumsum (R2pexp)

Tolo o oo oo To o oo ToToToTo oo o 1o 1o o o o o

%% Visualize the data
figure
scatter3(Rlscrs(:,1),Rlscrs(:,2) ,Rlscrs(:,3),’.7)
title(’R1’)
xlabel (’Principal component 1°)
ylabel (’Principal component 2’)
zlabel (’Principal component 37)
set(gca, ’Xlim’, [-6 6],’Ylim’,[-6 3],’Zlim’,[-3 3])
plotsettings
view(26,10)
set(get(gca,’xlabel’), ’rotation’,-4)
set(get(gca,’ylabel’), ’rotation’,25)
figure
scatter3(R2scrs(:,1) ,R2scrs(:,2),R2scrs(:,3),’.7)
title(’R2’)
xlabel (’Principal component 1°’)
ylabel(’Principal component 2’)
zlabel (’Principal component 3’)
set(gca,’X1lim’, [-6 6],’Ylim’,[-6 3],’Zlim’, [-3 3])
plotsettings
view(26,10)
set(get(gca,’xlabel’), ’rotation’,-4)
set(get(gca,’ylabel’), ’rotation’,25)

Yoo 1o o To o JoTo o o o ToTo o o o To o o o ToToTo o o

%% Visualize the relationship between the variables and the first few
% principal components, which represent the greatest amount of variance in
/» the data.

figure

imagesc(abs(Rlpcs))

labelYTicks(strcat (Rstr{1},varnames(1:8)))

xlabel (’Principal Component’)

colorbar

caxis([0 1])

plotsettings

figure

imagesc(abs(R2pcs))

labelYTicks(strcat (Rstr{2},varnames(1:8)))
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xlabel (’Principal Component’)
colorbar
caxis ([0 1])
plotsettings
Yoo 1o o To o JoToo o o ToTo o o o To o o o JoTo o o o To o o

%% PCA on the complete normalized data sets transformed
% and not transformed

[pcs,scrs,”,”,pexp] = pca(datanorm);

pareto (pexp)

% Visualize
figure
scatter3(scrs(:,1),scrs(:,2),scrs(:,3),’.”)
xlabel (’Principal component 1°)
ylabel(’Principal component 2°’)
zlabel (’Principal component 3’)
set(get(gca,’xlabel’),’rotation’,3)
set(get(gca,’ylabel’), ’rotation’,-40)
view(-16,14)
plotsettings

%% Visualize the relationship between the variables and the first few
% principal components, which represent the greatest amount of variance in
% the data.

figure

imagesc(abs(pcs(:,1:8)))

labelXTicks(1:8,0)

labelYTicks([strcat (Rstr{1},varnames(1:8)), strcat(Rstr{2},varnames(9:16)), ..

varnames (17:21)1)

xlabel (’Principal Component’)

colorbar

caxis([0 1])

plotsettings

%% PCA on the normalized tranformed data
[datatranspcs,datatransscrs,”,”,datatranspexp] = pca(datatransnorm);
figure
pareto(datatranspexp)

% Visualize
figure
scatter3(datatransscrs(:,1) ,datatransscrs(:,2),datatransscrs(:,3),’.7%)
view(23,15)
xlabel (’Principal component 1)
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ylabel (’Principal component 2°’)
zlabel(’Principal component 37)
set(get(gca,’xlabel’), ’rotation’,-6)
set(get(gca,’ylabel’), ’rotation’,30)
plotsettings
figure
imagesc(abs(datatranspcs(:,1:8)))
labelYTicks(varnames([1:8,17:21]))
xlabel (’Principal Component’)
colorbar
caxis ([0 1])
plotsettings

ToTo oo o To o o To o o ToTo o JoTo o o To o

%% Filter Moving average
rng(1234)
windowSize = 5;
b = (1/5)*ones(1,windowSize)
a=1;
respfilter = filter(b,a,data(:,22));
respfilter(1:4,:) = data(1:4,22);
figure(1)
hold on
plot(data(:,22))
plot(respfilter,’r’)
hold off
legend (’Measured MeOH’,’Filtered MeOH’,’Location’,’NorthWest’)
xlabel(’No. of row in the data’)
ylabel (’MeOH (%)’,’Rotation’,90)
plotsettings

oo oo o oo To o oo o fo o To o To oo o

%% Split transformed data into training and validation sets
rng(1234)
part = cvpartition(data(:,22),’Holdout’,0.30);
trainidx = training(part);
% Vector for removing parameters, change to [1:2,6,8:10,14,16:21] for idxpara21
% and idxpara to [1:2,6,8:13]
idxpara21 = [1:21];
idxpara = [1:13];
% Training set
datatrain2l = data(trainidx,idxpara21);
datatrain = datatrans(trainidx,idxpara);

% Test set
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datatest21l = data("trainidx,idxpara2l);
datatest = datatrans(“trainidx,idxpara);
% Unfiltered responses
% resptrain = data(trainidx,22);
% resptest = data("trainidx,22);
% Filtered responses
resptrain = respfilter(trainidx,:);
resptest = respfilter(“trainidx,:);

Yoo To oo oo ToToTo o o To oo o o To o o

%% Fit a multivariate linear model, Transformed
mdl = fitlm(datatrain,resptrain,’linear’);
mdl21 = fitlm(datatrain21,resptrain);
mdlname = ’Linear’;
%% Fit an SVM regression model
Jmdl = fitrsvm(datatrain,resptrain);
Jmdl21 = fitrsvm(datatrain2l,resptrain);
%mdlname = ’SVM’;
%% Fit a Gaussian process model
Jmdl = fitrgp(datatrain,resptrain);
Jmdl21 = fitrgp(datatrain2l,resptrain);
Y%mdlname = ’GPR’;
%% Evaluate model at test predictor values Transformed
pred = predict(mdl,datatest);
% Evaluate model at test predictor values Not transformed
pred21 = predict(mdl21,datatest21);
%% Plot the predicted test and real respones
figure
hold on
plot(1:numel(resptest) ,resptest,’b--o’,’MarkerSize’,7);
plot(1:numel(resptest),pred,’r-sq’,’MarkerSize’,7);
plot(1:numel(resptest) ,pred2l,’k-*’,’MarkerSize’,6);
legend(’Filtered MeOH %’,’Predicted MeOH %: Transformed’...
,’Predicted MeOH %: Not transformed’,’Location’,’Best’)
xlabel(’No. of row in the validation matrix’)
ylabel (’MeOH (%)’,’Rotation’,90)
title(mdlname)
plotsettings
hold off
evaluatefitnew(resptest,pred,pred21)
oo oo 1o oo To oo oo To o To o To oo fo o To o To fo o
%% Prediction for data in May and June

validpredtrans = predict(mdl,datatranspred(:,idxpara));
validpredtot = predict(mdl21,datapred(:,idxpara2l));
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figure
hold on
plot(datapred(:,22), ’b-sq’,’MarkerSize’,7)
plot(validpredtrans,’r-o’,’MarkerSize’,7)
plot(validpredtot,’k-*’,’MarkerSize’,6)
legend (’Measured MeOH 7’ ,’Predicted MeQOH %: Transformed’,...
’Predicted MeOH %: Not transformed’,’Location’,’NorthEast’)
xlabel(’No. of row in the validation matrix’)
ylabel (’MeOH (%)’,’Rotation’,90)
title(mdlname)
plotsettings
ToTo oo To oo To oo oo fo o o oo fo o o o o fo o o

MATLAB functions
function [data,varnames,idxT] = Import(name)
if strcmp(name,’Training.xlsx’)

[type,sheetname] = xlsfinfo(name);
m=size(sheetname,?2);

x = cell(1, m);
y = cell(l, m);
for(i=1:1:m);
Sheet = char(sheetname(1,i)) ;
[x{i},y{i}] = xlsread(name, Sheet);
end

R1 = x{1}; R2 = x{2}; A = x{3}; MeOH = x{4};
varRl = y{1}; varR2 = y{2}; varA = y{3}; varMeOH = y{4};

% Remove bad measurements
idxR1 = R1(:,9) < 15;
idxR2 = R2(:,9) < 15;
idxMeOH = isnan(MeOH(:,3));

% Combine data
idxT = ~(idxR1+idxR2+idxMe0H) ;
data = [R1(idxT,2:end) R2(idxT,2:end) A(idxT,2:end) MeOH(idxT,3)];
varnames = [varR1(:,2:end) varR2(:,2:end) varA(:,2:end) varMeOH(:,3)];

elseif strcmp(name,’Predict.xlsx’)
[type,sheetname] = xlsfinfo(name);
m=size (sheetname,?2);
x = cell(1, m);
y = cell(l, m);
for(i=1:1:m);
Sheet = char(sheetname(1,i)) ;
[x{i},y{i}] = x1lsread(name, Sheet);

end
R1 = x{1}; R2 = x{2}; A = x{3}; MeOH = x{4};
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varR1 = y{1}; varR2 = y{2}; varA = y{3}; varMeOH = y{4};
% Remove bad measurements
idxR1 = R1(:,8) < 15;
idxR2 = R2(:,8) < 15;
% Combine data
idxT ~(idxR1+idxR2) ;
data [R1(idxT,1:end) R2(idxT,1:end) A(idxT,1l:end) MeOH(idxT,1)];
varnames = [varR1(:,1:end) varR2(:,1:end) varA(:,l:end) varMeOH(:,1)];
else

data = ’Wrong’;
end

end

function plotsettings
width = 8;
height = 7;
alw = 0.75;
fsz = 13;
pos = get(gcf, ’Position’);
set(gcf, ’Position’, [pos(1l) pos(2) width*100, height*100]);
set(gcf, ’PaperPositionMode’,’auto’)
set(gca, ’FontSize’, fsz, ’LineWidth’, alw);
grid on

end
function labelXTicks(labels,rot)

if nargin < 2

rot = 60;
end
ax = gca;
ax.XTick = 1:numel(labels);
ax.XTickLabel = labels;
ax.XTickLabelRotation = rot;

end

function labelYTicks(labels,rot)

if nargin < 2
rot = 0;

end
ax = gca;
ax.YTick = 1:numel(labels);
ax.YTickLabel = labels;
ax.YTickLabelRotation = rot;
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end

function evaluatefitnew(y,bpred,ypred)
figure
% Distribution of errors
subplot(2,2,1)
errl = y-bpred;
MSE1 = mean(errl.”2,’omitnan’);
histogram(errl)
set(get(gca,’child’),’FaceColor’,’r’,’EdgeColor’,’k’);
title([’MSE = ’,num2str (MSE1,4)])
xlabel (’Prediction error’)
plotsettings
% Distribution of percentage errors
subplot(2,2,2)
errl = 100*errl./y;
MAPE1 = mean(abs(errl),’omitnan’);
histogram(errl)
title([’Mean Abs. Perc. Error = ’,num2str(MAPE1,4)])
xlabel (’Prediction percentage error’)
set(get(gca,’child’),’FaceColor’,’r’,’EdgeColor’,’k’);
plotsettings
% Distribution of errors
subplot(2,2,3)
err = y-ypred;
MSE = mean(err.”2,’omitnan’);
histogram(err)
title([’MSE = ’,num2str (MSE,4)])
xlabel (’Prediction error’)
set(get(gca,’child’), ’FaceColor’,’k’, ’EdgeColor’,’k’);
plotsettings
% Distribution of percentage errors
subplot(2,2,4)
err = 100%*err./y;
MAPE = mean(abs(err),’omitnan’);
histogram(err)
title([’Mean Abs. Perc. Error = ’,num2str(MAPE,4)])
xlabel (’Prediction percentage error’)
set(get(gca,’child’),’FaceColor’,’k’, ’EdgeColor’,’k’);
plotsettings
end
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Stand-alone application: MATLAB code

function Menu

%» Create and then hide the UI as it is being constructed.
f = figure(’Name’,’Machine Learning’,’Toolbar’,’none’,’Visible’,’off’,...
’Position’, [360,500,450,285] , ’NumberTitle’,’off’);

% Construct the components.
% Text box
htextdata = uicontrol(’Style’,’text’,’String’,...
[’Keep in mind not to change the order ’...
’of the columns in the Training.xlsx or Predict.xlsx’],’Position’,...
[10,150,170,60],°Units’, ’characters’,’FontSize’,11);
% Import data buttons
hdatatrain = uicontrol(’Style’,’pushbutton’,’String’,...
’Import training data’,’Enable’,’on’,’Position’,...
[30,130,150,25],’Callback’,{@datatrainbutton_Callback}, ’FontSize’,11);

hdatapred = uicontrol(’Style’,’pushbutton’,’String’,...
’Import prediction data’,’Enable’,’off’,’Position’,...
[30,100,150,25],’Callback’,{@datapredbutton_Callback}, ’FontSize’,11);
% Popup button
htext = uicontrol(’Style’,’text’,’String’,[’Select data with all ’

’parameters or with the gas temperatures, temperature before absorber ’...

’and pressure after cooler removed. The removed parameters were '’
’shown to give more accurate predictions for May and June.’],
’Position’, [260,180,250,90],’Units’, ’characters’,’FontSize’,11);
hpopup = uicontrol(’Style’,’popupmenu’,. ..
’String’,{’All parameters’,’Removed parameters’},...
’Enable’,’off’,’Position’, [160,150,200,25], ...
’Callback’,@popup_Callback, ’FontSize’,11);
% Training button
htrain = uicontrol(’Style’,’pushbutton’,’String’,’Train the data’,...
’Enable’,’off’,’Position’, [150,80,150,25],. ..
’Callback’,{@trainbutton_Callback}, ’FontSize’,11);
% Predict button
hpredict = uicontrol(’Style’,’pushbutton’,’String’,’Predict’,...
’Enable’,’off’,’Position’, [150,50,150,25], ...
’Callback’,{@predictbutton_Callback}, ’FontSize’,11);

align([htext,hpopup,htrain,hpredict],’Center’,’None’);
align([htextdata,hdatatrain,hdatapred],’Center’,’None’);

% Initialize the UI.
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% Change units to normalized so components resize automatically.
f.Units = ’normalized’;

htextdata.Units = ’normalized’;
hdatatrain.Units = ’normalized’;
hdatapred.Units = ’normalized’;
htrain.Units = ’normalized’;
hpredict.Units = ’normalized’;
htext.Units = ’normalized’;
hpopup.Units = ’normalized’;

% Assign the a name to appear in the window title.
% Move the window to the center of the screen.
movegui(f,’center’)

%Make the UI visible.
f.Visible = ’on’;

function datatrainbutton_Callback(hObject,eventdata,handles)
handles = guidata(hObject);
[FileName,PathName,FilterIndex] = uigetfile();
if strcmp(FileName,’Training.xlsx’)
fullAddress = strcat(PathName,FileName) ;
[data,”] = ImportData(FileName,fullAddress);
% Split data into training and validation sets
rng(1234)
part = cvpartition(data(:,22),’Holdout’,0.30);
trainidx = training(part);

%y Filter Moving average

rng(1234)
b = (1/5)*ones(1,5);
a=1;

MeOHfilter = filter(b,a,data(:,22));
MeOHfilter(1:4,:) = data(1:4,22);

% Create handles

handles.data = data;

handles.MeOHfilter = MeOHfilter;
handles.trainidx = trainidx;
guidata(hObject,handles) %Update handles
set (hdatapred, ’Enable’,’on’);

msgbox (’ Importing Completed’);

47



else
errordlg(’Training.x1lsx was not selected!’)
end
end

function datapredbutton_Callback(hObject,eventdata,handles)
handles = guidata(hObject);
[FileName,PathName,FilterIndex] = uigetfile();
if strcmp(FileName, ’Predict.xlsx’)
fullAddress = strcat(PathName,FileName);
[datapred,idxP] = ImportData(FileName,fullAddress);
handles.datapred = datapred;
handles.idxP = idxP;
guidata(hObject,handles) %Update handles
set (hpopup, ’Enable’,’on’) ;
% Import the data.
msgbox (’ Importing Completed’);
else
errordlg(’Predict.xlsx was not selected!’)
end

end

%» Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to
% current_data because this function is nested at a lower level.
function popup_Callback(hObject,eventdata,handles)
% Retrive GUI data
handles = guidata(hObject);
data = handles.data;
MeOHfilter = handles.MeOHfilter;
trainidx = handles.trainidx;
% Determine the selected data set.
str = get(hObject, ’String’);
val = get(hObject,’Value’);
% Set current data to the selected data set.
switch str{val};
case ’All parameters’ % User selects All Parameters.
idx = [1:21];
idxR1 = [1:8];
idxR2 = [9:16];
%Training set
datatrain = data(trainidx,idx);
resptrain = MeOHfilter(trainidx,1);
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%Validation set
datatest = data("trainidx,idx);
resptest = MeOHfilter(“trainidx,1);
case ’Removed parameters’ 7 User selects Removed Parameters.
idx = [1:2,6,8:10,14,16:21];
idxR1 = [1:2,6,8];
idxR2 = [9:10,14,16];
% Train set
datatrain = data(trainidx,idx);
resptrain = MeOHfilter(trainidx,1);
%Validation set
datatest = data("trainidx,idx);
resptest = MeOHfilter(“trainidx,1);
end

% Create more handles
handles.datatrain = datatrain;
handles.datatest = datatest;
handles.resptrain = resptrain;
handles.resptest = resptest;
handles.idxparameter = idx;
handles.idxR1 = idxR1;
handles.idxR2 = idxR2;

guidata(hObject, handles) J%Update handles

set(htrain, ’Enable’,’on’);
set (hpredict, ’Enable’,’off’);
end

function trainbutton_Callback(hObject,eventdata,handles)
% Retrive GUI data
handles = guidata(hObject);
datatrain = handles.datatrain;
resptrain = handles.resptrain;
datatest = handles.datatest;
% Train the GPR model
mdl = fitrgp(datatrain,resptrain);
% Evaluate model at test predictor values
[pred,”,”] = predict(mdl,datatest);
msgbox (’Training Completed’);
% Declare handles
handles.mdl = mdl;
handles.pred = pred;
guidata(hObject,handles) 7 Update handles
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set (hpredict, ’Enable’,’on’);
end

function predictbutton_Callback(hObject,eventdata,handles)
[FileName,PathName,FilterIndex] = uigetfile();
fullAddress = strcat(PathName,FileName);
% Retrive GUI data
handles = guidata(hObject);
datapred = handles.datapred;
mdl = handles.mdl;
idx = handles.idxparameter;
idxP = handles.idxP;

% Predict values
[pred,”,”] = predict(mdl,datapred(:,idx));

% Fill the O in idxP with NaN and 1 with pred
n = size(idxP);
Main = NaN(n);
j =20
for i = 1:n(1,1)
if idxP(i,1) ==
3= gL
Main(i,1) = pred(j,1);
end
end

T = array2table(Main,’VariableNames’,{’Predicted_MeOH’});
writetable(T,fullAddress,’Sheet’,’Predictions’,’Range’,’C4’)

msgbox (’Predictions Completed’);
end
end

MATLAB function used in the application

function [data,idxT] = ImportData(name,fullAddress)

if strcmp(name,’Training.xlsx’)
[7,sheetname] = xlsfinfo(fullAddress);
m=size(sheetname,?2) ;
x = cell(1, m);
for i=1:m
Sheetl = char(sheetname(1,1i)) ;
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x{i} = readtable(fullAddress, ’Sheet’,Sheetl);
end
Rl = x{1,1}{:,2:end}; R2 = x{1,2}{:,2:end};
A = x{1,3}{:,2:end}; MeOH = x{1,4}{:,3};
% Remove bad measurements
idxR1 = R1(:,end) < 15;
idxR2 = R2(:,end) < 15;
idxMeOH = isnan(MeOH(:,1));
% Combine data
1dxT = ~(idxR1+idxR2+idxMe0H) ;
data [R1(idxT,:) R2(idxT,:) A(idxT,:) MeOH(idxT,:)];

elseif strcmp(name,’Predict.xlsx’)
[type,sheetname] = xlsfinfo(fullAddress);
m=size(sheetname,?2);
x = cell(1, m);
for i=1:m
Sheetl = char(sheetname(1,1i)) ;
x{i} = readtable(fullAddress, ’Sheet’,Sheetl);
end
Rl = x{1,1}{:,1:end}; R2 = x{1,2}{:,1:end};
A = x{1,3}{:,1:end};
% Remove bad measurements
idxR1 = R1(:,8) < 15;
idxR2 = R2(:,8) < 15;
% Combine data
idxT = ~(idxR1+idxR2);
data = [R1(idxT,:) R2(idxT,:) A(idxT,:)];

else
data = ’Wrong’;
end
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