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Simulation of Correlated Wind Speed Data for
Economic Dispatch Evaluation

Daniel Villanueva, Andrés Feijóo, and José Luis Pazos

Abstract—The Economic Dispatch problem consists of mini-
mizing the cost of producing the power demanded by an electrical
power system, by means of the suitable dispatching of the power
production between the available generators. The difficulty in
predicting wind power generation means that penalty and reserve
costs must be considered when it is included in the evaluation.
Analyzing the output power of each wind turbine individually
is not enough when evaluating these costs and the correlation
between wind speed values must be considered as another input
because it also has an influence. This paper introduces a new
method for generating correlated wind power values and explains
how to apply the method when evaluating Economic Dispatch. A
case study is provided to analyze whether considering correlation
in the problem has any influence or not.

Index Terms—Correlation, economic dispatch, Monte Carlo
simulation, Weibull distributions, wind power.

I. INTRODUCTION

E CONOMIC dispatch (ED) consists of dispatching the
power to be generated among available generators,

in order to obtain the most efficient, low-cost, and reliable
operation of a power system. It considers operating limits,
availability, and reliability, and minimizes costs so that both
load demand and losses are supplied [1]. It, therefore, plays a
key role in power system planning and operation.
As wind power increases its share ratio in electrical networks,

the ED problem must consider scheduled wind power and its
costs. Even though wind power forecasting methodologies [2]
have been considerably improved during the last years, wind
power cannot be scheduled with total accuracy.
The generally used models for wind power forecasting

are based on several factors: current data and atmospheric
behavior, such as the numerical weather prediction (NWP);
historical data, such as auto regressive (AR), auto regressive
moving average (ARMA), etc.; spatial correlation; artificial
intelligence; or a combination of these [3]–[6].
Therefore, taking into account that scheduled and available

wind power may not coincide, the costs to be considered in the
ED problem are different in nature, as will be explained later.
The ED problem is solved a priori, which means that the

power to be produced is scheduled. Flexible plants can set
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output power to the required value, so both the scheduled and
the produced power values coincide unless the unit is malfunc-
tioning. There are other things to consider when wind power is
taken into account because the available and scheduled powers
at the corresponding wind turbine (WT) may differ and give
rise to costs that must be evaluated.
Several types of procedures can be applied to solve the ED

problem. Analytical solutions like those in [7] are very difficult
to apply when considering wind power correlation so numerical
solutions like the ones in [8] are preferred. Therefore, the ED
evaluation carried out in this paper is based on four terms that
depend on the following:
1) the scheduled power of flexible plants;
2) the scheduled wind power;
3) the difference between available and scheduled wind
power, when it is positive;

4) the difference between scheduled and available wind
power, when it is positive.

From the point of view of the system operator, there is a first
term for the cost due to the sum of the power provided by the
conventional generators.
The second one is due to the amount to be paid to wind power

producers according to agreements established with them.
A term is included that evaluates the cost of the difference

between available and scheduled wind power. These costs in-
clude the payment to the wind power producers for not using the
available power, which is wasted or diverted to another gener-
ation facility like a hydro pumping station. Therefore, the third
term is basically related to penalty costs due to not using all
the available power in the network, i.e., it evaluates the cost of
under-forecasting wind power.
On the other hand, if the wind power is over-forecasted, the

power requested by the load demand has to be supplied anyway,
so the power must be purchased from an alternative source.
Therefore, the cost of the reserve power or the cost of the power
purchased through an interconnection is evaluated in the fourth
term.
So, these four terms evaluate the costs in order to solve the

ED problem. However, this is a general model to evaluate ED
and it is adaptable to all possible situations, so any term can be
removed depending on specific cases.
Notice that if the total power generated and demanded in an

electrical network were not equal, then steady-state security
could be affected, because this balance is needed for keeping
adequate operating conditions. Thus, the electrical network
could be seriously influenced by under- or over-forecasting
wind power if the steps towards achieving the balance were not
taken into account.
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As explained in [8], the ED problem can be solved by taking
into account the probabilistic nature of the wind speed: its statis-
tical distribution can be approximated using a Weibull distribu-
tion and the probability density function (pdf) of the wind power
can be obtained. However, the correlation between wind speed
values and, consequently, between wind power values has to be
included in the ED problem.
Generally, it can be said that correlation between wind speed

values has great influence in electrical networks with WTs. In
this paper, a method is derived to simulate series of WT output
power data based on given correlated wind speed values be-
tween the locations where they are installed and also on lag-one
autocorrelated values for each one. The series of WT output
power data represent all possible situations. This method up-
grades former approaches to this simulation in accuracy and
computation time [9]–[12]. The WT output power series are
used to obtain a more realistic result in the minimization of total
cost, now defined on the basis of these data series.
Notice that the method proposed in this paper does not corre-

spond to a wind power forecasting methodology but is instead
a way to define all possible wind power generation states in a
group of WTs.
The Interior Point Method is applied to solve the minimiza-

tion problem, as it is usually used as an optimization tool for ED
[13]–[16].
This paper is organized as follows: Section II explains how

to simulate series of correlated and autocorrelated wind speed
values; Section III outlines how to convert these wind speed
series into WT output power series; Section IV describes the
ED problem considering wind power and how to introduce the
correlation factor; Section V shows a case study and Section VI
states the conclusions.

II. WIND SPEED SERIES

First, let us briefly comment on some of the former ap-
proaches proposed to obtain correlated wind speeds. The
objective is to find a number of wind speed series where each
one fulfills a given Weibull distribution, with parameters ( ,
), and the correlation coefficients are those provided by the
correlation matrix.
In [9], a method that keeps the Weibull features of each of the

series and obtains the exact correlation matrix is applied. How-
ever, in this method Spearman rank correlations are considered
[17], so this feature must be considered when data and results
are used.
Evolutionary algorithms have been used in [10] for the same

purpose. They are based on the initial generation of wind speed
series fulfilling the distribution features, followed by the rear-
ranging of the values in each of the series in a trend towards
obtaining the desired correlation matrix. Although the results
provided by this method are very accurate, the computation time
increases considerably as the number of locations rises.
In [11], a method has been proposed that is based on the

sum of two squared Normal distributed variables in order to
obtain the square of a Weibull distributed one, which involves
solving equations by means of iterative processes. This method
has nothing to do with the one proposed in this paper.

Aminimization process is proposed in [12], thus using the de-
composition of Weibull distribution variables as weighted sum
of Uniform ones.
Except for the method proposed in [9], the time consumed by

these methods tends to be increasingly greater as the number of
locations increases, due to computational issues. Moreover, the
accuracy of these methods depends on the error accepted by the
minimization procedures. The method proposed in this paper
reduces the computational time to a minimum because it does
not use iteration processes, as it holds the starting correlation
values, is fully accurate, and also considers parametric correla-
tion, which is the convention.
In the methods mentioned above, only the correlation be-

tween wind speed data has been considered. However, in [11],
the autocorrelation for each location has also been computed. In
this paper, both types of correlation are taken into account.

A. Conversion of Normal Distributed Series Into Weibull
Distributed Ones

The wind speed pdf at a certain location can be described by
a Weibull distribution [18]–[20].
Widely used in statistics, the cumulative distribution function

(cdf) of a continuous variable with a given distribution makes a
transformation possible between this distribution and a Uniform
one. This feature is usually used in reverse to simulate random
data, when the cdf is inverted to generate uniformly distributed
data between 0 and 1 so that random data can finally be created
with the desired cdf.
For example, in the case of a Weibull distributed variable
, the variable , obtained according to (1) is uniformly
distributed

(1)

where is the scale parameter and the shape parameter of the
Weibull distribution [21].
Exactly the same can be said for Normal distributions, as can

be seen as follows:

(2)

where is the cdf of the variable , erf( ) is the error function,
defined in (3), and and are the mean and the standard devi-
ation of the Normal distribution.
The error function, erf( ), is continuous, and its features are

shown in many handbooks of mathematics [22]

(3)

The reason for using the feature mentioned above is because
it is intended to operate a conversion from Normal distributed
data into Weibull distributions. First, the value obtained from
the Normal distribution is converted into a value belonging to a
Uniform one, and then this value is converted into a new one,
corresponding to a Weibull distribution. So the operations in-
volve beginning with Normal distributed data and using (2), in
a direct way, and (1), in an inverse way, to obtain the Weibull



144 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 1, JANUARY 2012

Fig. 1. Process to convert Normal values into Weibull ones.

distributed data. The whole process can be performed by ap-
plying (4) to a Normal distributed variable , with parameters

and , obtaining a Weibull distribution one with
parameters and

(4)

where log denotes natural logarithm. The use of the Standard
Normal distribution will be justified later.
Fig. 1 shows the process to convert a Normal value into

a Weibull one by using (4).
For example, starting from a Normal value of ,

the corresponding value of the Normal cdf is ,
this value is taken as the Weibull cdf, , which provides a
value of .
Therefore, instead of working with Weibull distributions to

obtain correlated and autocorrelated series of data, it is easier
to generate the data using Standard Normal distributions, which
are converted into Weibull ones in a second step, as explained
earlier.
In order to check that the correlation coefficients keep their

value once the change suggested in (4) is applied, aMonte Carlo
simulation has been performed. The correlation coefficients of
two Bivariate distributions have been compared: the Standard
Normal and the Weibull one. Taking values of the Standard
Normal correlation coefficient from 1 to 1, and Weibull pa-
rameters equal to , , , and , the
relationships between both correlation coefficients are shown in
Fig. 2.
The Monte Carlo simulation has been repeated for Weibull

parameters varying in the following intervals: and
in steps of 0.1 for both. However, for any combination

of parameters in the intervals, the graph is exactly the same.
Therefore, it can be concluded that the correlation coefficients

are eventually the same.

B. Simulation of Autocorrelated Series

In order to simulate wind speed series with known parame-
ters, two types of correlation have to be considered. First, the
temporal correlation, which takes into account the dependence

Fig. 2. Comparison between correlation coefficients.

between a sample value and the previous ones. When this de-
pendence is considered among samples from the same location
it is called autocorrelation. Second, the spatial correlation con-
siders the dependence between simultaneous sample values at
a pair of locations. The former is developed in this subsection
and the latter in the following one.
The simplest way to take temporal correlation into account is

to consider the lag-one autocorrelation for each location, which
reduces this type of correlation to the dependence between each
single value and the previous one from the same location [23].
In this case, a first order autoregressive process, AR(1), can be
applied [11].
An AR(1) can be operated according to (5)

(5)

where is the value of the variable at time , is its value
at , is a constant value, the lag-one autocorrelation value,
and is a normal distributed variable, with parameters ,
and .
The lag-one autocorrelation value, , for a certain location is

calculated according to the following steps:
1) to take the series of available wind speed values at that
location;

2) to move the values of this series one step backwards;
3) to obtain the correlation coefficient between both series.
The values of standard deviations and are related ac-

cording to

(6)

Taking into account that follows a Standard Normal distri-
bution, i.e., , the value of is obtained as in

(7)

Therefore, in order to simulate series of autocorrelated values
according to an AR(1) model for a Standard Normal distribution
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variable, with lag-one autocorrelation value , the process is as
follows:
1) to obtain from (7);
2) to give an initial value ;
3) to obtain a random value , taking into account that

;
4) to generate according to (5);
5) to repeat steps iii) and iv) as many times as needed.
This process has to be performed independently for each lo-

cation considered, due to the different values of the lag-one au-
tocorrelation.

C. Obtaining Correlated Series

The spatial correlation considers the dependence between si-
multaneous values at a pair of locations. Therefore, when a
group of locations are involved, the correlation coefficients for
each pair are organized in a matrix called correlation matrix.
As the variables are Standard Normal distributed, the

Cholesky decomposition is used in order to obtain correlated
series. It is based on obtaining a lower triangular matrix , that
fulfils (8), where is the desired correlation matrix.
The desired correlation values between a pair of locations is

usually obtained from existing series of wind speed data, but in
cases when some of the correlation values are not available, an
approximation based on the distance between both locations can
be used [24]

(8)

where , , and are matrices, where is the number
of variables, and means transposition of .
If is applied to a vector of uncorrelated samples , the

resulting vector contains samples with the correlations pro-
vided by

(9)

The correlated series of Standard Normal distributed data can
be converted easily into correlated wind speed series that strictly
follow the Weibull distribution for each location and keep the
correlation provided by , using (4). The process also keeps
the lag-one autocorrelation introduced before the Cholesky de-
composition is applied, i.e., the vector in (9) is uncorrelated
but each sample of values is autocorrelated.
Notice that if the Cholesky decomposition were applied to

variables with a distribution different from the Normal one,
the results obtained in would not follow a known distribu-
tion. If each series in follows a Standard Normal distribution

, each series in will follow the same one, as
proven in the Appendix. Moreover, as the Cholesky decomposi-
tion performs linear combination of the series in to obtain the
series in and as can be deduced from the Central Limit The-
orem, any type of distribution will tend to Normal ones when it
is applied; therefore, there is no other type of distribution to be
used instead in this method.
The same method can be proposed but using Uniform dis-

tributions instead of Normal ones. In this case, the Uniform
features in will be lost after applying (9) and these series

will tend to Normal ones as long as their number increases.
Therefore, in this case, the change of variables from Uniform
to Weibull will not provide the desired series of values because
they do not fulfill the specifications required. The change of
variables will try to convert Uniform series of values into
Weibull ones, but the data in will not be series of Uni-
form values; therefore, the result will not have the required
distribution.
Obviously, if Weibull distributed series of data are used di-

rectly in the method, the results obtained do not provide the de-
sired requirements, i.e., after applying (9) the series will not ful-
fill the Weibull condition.

D. Wind Speed Series

The ED is carried out some time before the real situation oc-
curs. So, in order to obtain series of wind speed data that can
be considered as groups of possible situations, the autocorrela-
tion has to be taken into account to obtain one group of possible
wind speed values, using as many periods as there will be be-
tween making the calculations and applying them. Finally, the
correlation has to be considered between all groups.
For example, if the wind speed data are taken every 10 min,

and the ED is going to be calculated 24 hours in advance, as hap-
pens in the Spanish market, then the procedure consists of cal-
culating autocorrelated series of 144 wind speed data. Starting
from a group of known samples, corresponding to the current
values, the group of samples formed by the 144th values can
be described as a feasible group of values. Then, in order to ob-
tain several groups of this type, the procedure is repeated 10 000
times. Afterwards, the method to obtain the correlation between
all groups of values is applied. So, 10 000 correlated groups of
wind speed values, considering autocorrelation, are provided.

III. WIND POWER SERIES

The next step is to obtain wind power series from these wind
speed series. This is usually performed by using the power
curve, which is a group of pairs of data points, provided by the
WT manufacturer. However, in order to make it computation-
ally effective, a cubic spline interpolation is used. This method
fits a different polynomial for each interval, which is defined
by two pairs of data points. So the power curve can be modeled
as a piecewise polynomial curve, as shown in the following:

(10)

where is the wind speed and is the wind power, and
are the wind speed data provided by the manufacturer, , ,
, and are the polynomial coefficients corresponding to the
th interval.
The values given by this model have been compared with the

manufacturer data of a Vestas V100 WT [25] and the result of
this comparison can be seen in Fig. 3.
Therefore, the wind power series for each location are ob-

tained simply by applying this model to the data provided by
the manufacturer of the WT installed there.
Finally, simulated series of wind power values provided by

WTs are obtained by taking wind speed correlation and auto-
correlation into account.
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Fig. 3. Spline approximation of the power curve of a VESTAS V100 WT.

IV. ECONOMIC DISPATCH

A. Economic Dispatch Including Wind Power

The ED can be mathematically expressed as an optimization
problem, where the objective is to minimize the total cost of
generating the requested power, considering the power values
scheduled in all generators for a certain time period, when the
ED is intended to be solved.
If the power sources of the electrical network can be fully

programmable, as happens with flexible plants, then generation
coincides with the scheduled load demand. However, if the elec-
trical network includes WTs, the scheduled and available power
might not coincide, because the primary source, the wind, can
neither be controlled, nor forecasted with full accuracy.
Therefore, when WTs are involved the cost minimization

problem includes more terms than usual because the available
wind power may differ from the scheduled one.
First, it is necessary to consider what happens when not all the

available wind power is used, i.e., when there is more available
wind power than the scheduled one. In this case, a penalty cost
is applied, which is the payment to the wind power producer for
that additional power.
Second, when the scheduled wind power is not achieved, or

in other words, when the available wind power is lower than
the expected one, a reserve power source has to provide the
difference. A reserve cost has to be taken into account when
there are WTs in the electrical network.
On the other hand, it can be said that the load demand can

be established with high accuracy for a certain period of time,
based on historical data. However, it must be pointed out that
there is always a degree of uncertainty in its value because, in
fact, it is forecasted in some way. In the method proposed in this
paper, the load demand is considered as known.
Moreover, wind power and load demand are both forecasted

and in some cases, due to the influence of the sun, both follow
similar paths throughout the day. However, this cannot be stated
as a general rule and so, in the method proposed here, load de-
mand and wind power are considered statistically independent
without a significant error.

So, the ED problem consists of obtaining values for all ,
power scheduled for the th conventional generator (CG), and
, power scheduled for the th WT, pursuing to minimize

(11)

where is the number of CGs and is the number of WTs.
Constraints described by (12)–(14) also need to be fulfilled

(12)

(13)

(14)

where is the total load demand plus losses, and are
the minimum and maximum powers that the th generator can
supply, and is the rated power of the thWT. In the following
paragraphs, the terms of (11) are explained more in detail.
In (11), is the cost function for the th CG, and it is

usually expressed as in

(15)

where , , and are parameters for the th CG.
On the other hand, the cost function for the th WT,

can be expressed as in

(16)

where is a parameter for the th WT.
The penalty cost , which is a function of the difference

between the available and scheduled wind power, is considered
proportional to the expected value of that difference

(17)

where is a constant value for the th WT, and generally de-
pends on local regulations.
The expected value is calculated as in

(18)

where is the variable, is the scheduled power for the th
WT and is the pdf of the wind power.
The reserve cost is considered as a function of the

difference between the scheduled and the available wind
power, and is taken as proportional to the expected value of
that difference

(19)

where is a constant value for the th WT, and depends on the
agreement between seller and buyer and on local regulations.
Equation (20) shows how to obtain the expected value as

follows:

(20)
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B. Economic Dispatch Considering Correlated Wind Power

The consideration of correlation between wind power values
affects the third and fourth terms of (11), which are evaluated
as in

(21)

According to [8], both types of functions can be expressed as
proportional to the expected value of the differences, as in

(22)

Applying the properties of linearity of the expectation, (22)
can be easily converted into

(23)

Again, (23) turns into (24) due to linearity, as follows:

(24)

And (25) is obtained due to the linearity of expectation, as
follows:

(25)

Therefore, considering series of values instead of a function,
the value of is obtained by evaluating the mean of all possible
values of , each named , as in

(26)

where is the number of elements in the series of wind power.
Each is calculated according to (25), where is the wind
power available in the th WT for the th simulation value and
where is the scheduled wind power in the th WT, which is
the same for the simulation values.

C. Optimization Technique for the Economic Dispatch

The techniques that have been usually applied to solve the
ED are based on the Lagrangian Relaxation [26], Direct Search
Method [27], Evolution Programming [28], Particle Swarm Op-
timization [29], Genetic Algorithms [30], Simulated Annealing
[31], and Interior Point Method.
In this paper, the Primal-Dual Interior Point Method has been

applied to solve the ED, which is already implemented in most
of the mathematical packages and is independent of the problem
being solved. The application of the Primal-Dual Interior Point
Method is described in [13]–[16].

TABLE I
PARAMETERS OF THE CONVENTIONAL UNITS

TABLE II
COST PARAMETERS OF THE WTs

TABLE III
WIND SPEED PARAMETERS

V. CASE STUDY

This section compares two methods for evaluating ED, the
one proposed in [8] and the one proposed in this paper. An
electrical network with two conventional units and eight WTs
is used in this case study, where different load values for the
system are evaluated. Both conventional units are required to
be operating for any load value. The parameters regarding these
units are provided in Table I.
The cost parameters of the WTs are listed in Table II, and

the wind speed parameters of the corresponding locations are
shown in Table III.
In Table III, and are the parameters of the Weibull distri-

bution of the wind speed for each location, and is the lag-one
autocorrelation value.
There are four Vestas V80-2.0 MW WTs and four Vestas

V90-3.0MW.
In order to check the differences between both methods, just

two cases have been taken into account. The first one is for no
correlation, where correlations have not been considered in the
analysis, and the second one is for high correlation, where a cor-
relation value of 0.9 is utilized for all pairs to obtain the corre-
lated wind speed values. These two cases are computed for dif-
ferent values of total load, with values from 10 to 35 MW.
The ED minimization problem is solved using the Interior

Point algorithm providing the results shown in Fig. 4. The dif-
ferences can be seen between the method proposed here and the
one proposed in [8], both for total costs and for wind power gen-
eration costs.
For example, for a total load of 15 MW, the consideration of

correlation provides a cost of 1665 €/h, whereas if it is not taken
into account, the cost is 1259 €/h which means that if correlation
is not taken into account the error produced when evaluating the
optimal cost is around 25%. The same happens for a total load
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Fig. 4. Costs comparison, neglecting and including correlation.

of 25 MW, where the result is 3288 €/h against 3108 €/h, re-
spectively, although in this case the error is around 5%. As long
as the total load is increased, the influence of considering the
correlation, in this case, is reduced. For a total load of 35 MW
the difference is just 22 €/h, so there is almost no influence of
the correlation in this case.
It can be said that in this case study the amount of error when

evaluating the optimal cost of generating the load demanded
is higher as the load demand decreases. The low limit for that
situation is 10 MW because it is the sum of the minimum power
generated by conventional generators, and so in this electrical
system it is not possible to generate less than 10 MW.
Fig. 4 also shows the comparison of the wind power cost eval-

uated with and without correlation. In this case, for each value of
load demand, the difference between both methods is almost the
same as in the case of the total cost, which means that the cost of
the power injected by conventional generators in the electrical
network is the same when utilizing both methods.

VI. CONCLUSION

In this paper, a new method has been described for including
correlation and autocorrelation in series of randomly generated
wind speed distributions, keeping their distribution features
(i.e., Weibull parameters). It makes use of a relationship estab-
lished between the cdfs of Normal and Weibull distributions.
The method has been applied to the generation of correlated

wind speed values to obtain wind power values that contribute
to solving the ED problem. The introduction of correlation and
autocorrelation of wind speed series enables a more realistic
approach to the problem itself.
The proposed model for the ED analysis is to some extent

more complex than the previous one. However, any increase in
computing time due to upgrading the method by including the
simulation of correlated wind speed values is not appreciable.
Obviously, the influence of wind power correlation in the total

cost of generating the demanded power becomes more consid-
erable as the percentage of wind power becomes higher in the
total power produced by the electrical network. The percentage

of wind power depends on the load being demanded but also on
network configuration. So, if the number of WTs increases with
respect to conventional units, the influence will be greater.
The results of the case study reveal that it is relevant to con-

sider correlation in the analysis. In fact, in our example, the re-
sults give us a more expensive generation cost when correlation
is included. The correct interpretation of the results is that when
correlations are not included in the analysis an error is being
produced in the generation cost estimation. In the case of our
example, we can conclude that these costs are underestimated
when correlations are not taken into account.

APPENDIX
CHOLESKY DECOMPOSITION

The decomposition of a Hermitian, positive-definite matrix
into the product of a lower triangular matrix and its conjugate
transpose is called the Cholesky decomposition.
The Cholesky decomposition is mainly used for the numer-

ical solution of linear equations, linear least square problems,
nonlinear optimization, or Kalman filters. In this paper, it has
been used in the MC simulation.
Given a matrix of uncorrelated series of samples , and the

lower triangular matrix , obtained from the Cholesky decom-
position of the desired correlation matrix , a matrix can
be obtained of correlated series of samples according to by
means of

(A.1)

where is the number of samples of each series and is the
number of series.
Moreover, if each sample series follows a Normal distribu-

tion, the results are also sample series that follow a Normal dis-
tribution, which can easily be demonstrated.
The th series is formed by n elements of the type expressed

in

(A.2)

If is distributed according to a , then will
tend to follow

(A.3)

Moreover, if and
, then will follow

(A.4)
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And, in the Standard case, if and , then will
be distributed according to

(A.5)

On the other hand, (A.6) is also valid, because it is a condition
derived from the Cholesky decomposition, when it is applied to
a correlation matrix, which has all the diagonal elements equal
to 0

(A.6)

Therefore, in the particular case
, will be distributed by a .
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